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Summary
The deformation model of a front studied by Hoskins and Bretherton

(1972) is studied further. It is shown that a ugique solution of the

Lagrangian conservation laws governing the motion can still be constructed after
the front has formed. This solution shows that separate upper and lower fronts
propagate into the fluid, and are separated by a region where only smooth
variations occur. Finite difference solutions are also given which converge to a
front with the correct mean slope and maximum long front velocity but without

the correct variation in slope through the depth of the fluid.




1. INTRODUCTION

A great deal of theoretical work has been carried out on the problem of
atmospheric frontogenesis. This problem contains interesting mathematical
features, in particular the tendency to collapse %o a discontinuity in certain
. variables, as well as being physically important. The mathematical work on
this problem has been recently reviewed by Hosking (1982). It is possible to
construct approximate systems of equations whose solutions indicate a tendency
to form discontinuities in a finite time. These discontinuities appear first
on boundaries, or at discontinuities in potential vorticity, such as the
tropopause. In the case of upper tropospheric fronts, folding of the tropopause
inhibits formation . of.the discontinuity. The detailed mafhematics used to
derive these results is set out in Hoskins and Bretherton (1972), henceforward
referred to as HB.

It is a common situﬁtion in computat;onal fluid dyngmics for the solution
to an inviséid set of model equations to become'discontinuous, and for the physical
dissipation scale to be several orders of magnitﬁde smaller than the grid-length
that can be used. In some problems it is possible to p?obe that a disconiinuous
solution to the inviscid problem is the limit As the viscosity tends to zero .
of the viscous problem. Such results exist for many oﬁe'dimenaional systems of
conservation laws, eg Chorin and Marsden, (1979). After the solution becones .
discontinuous the differential equations are no longe£ meahingful, and must be
replaced by a statement of the physical conservation principles from whieh they

were derlved. It is important to select the correct conservation 1aua, or




equations numerically, artificial viscosity has to be used to smear any
discontinuities over a grid length. In order that the correct physical
solution is obtained, subject to the smearing, the correct conservation laws i
must be exactly satisfied, and the required extra conditions enforced. An
example of how this can be done is given by Majda and Osher (1979) for the Lax
Wendroff scheme.

This paper attempts to derive such a discontinuous solution for one of the
inviscid models of frontogenesis discussed by HB. We consider the cimplest case,
that of a front forced by a deformation field in a fluid of zero potential
vorticity confined between rigid upper and lower boundaries. Such a front
forms the boundary between air masses of different potential temperalures and
thus no fluid can cross ite - If is therefore a contact discontinuity. The
presence ;} the front should thus,not invalidate L;grangian conservation laws, w
which follow fluid particles. However it will invalidate the Eulerian form
of the inviscid differential equation. In HB it was shown that the inviscid e
semi-geoétrophic equations could be completely written in the form of Lagrangian
conservation laws. In this paper we show how a solution of these laws can be
constructed in the presence of a discontinuity.

Such a solution turns out to have non-trivial structure. Frohts are :
initially formed at both the upper and:lower boundaries, However a azngle frcnt
through the full depth of the fluid can never be férmed. Thzs is becanse of

.the conservation of mass of parcels of air havxng 1ntermed1ate values 01

‘ifpotentlal temperature. These_parcels‘cangqnlymbe r]\




A standard finite difference solution is then carried out using the

primitive equations rather than the semi-geostrophic equations used in HB.

The discontinuous solution derived to the semi-geostrophic equations should be
a limit of the solution of the viscous primitive equations as the rotation
rate increases and the viscosity tends to zero. Taking either of these

limits may result in the solution becoming singular and it is therefore important

that the limits are taken in the correct order. As discussed in HB, the approximation

of no mixing breaks down, because of the onset of turbulence, before ths semi-
geostrophic approximation breaks down. Thus it is to be expected that the
solution obtained by making the semi~geostrophic approximation and then letting
the viscosity tend to zero will be physically correct.

The computations show that a finite difference solution to the primitive
equations With artificial viscosity converges to a solution with the correct
total frontal thickness anéd maximum 1oug front velocity. However, the vertical
structure of the front is largely missing. The convergence rate is very slow
and 5 km resolution with 4O or 60 vertical levels is required to make the
front sharp even at the boundaries..It isnot certain whether the failure to
obtain any vertical structure is because even higher resolution is reguired
or that the finite difference scheme does not converge to the solution of the
Lagrangian conservation laws. It is also possible that. the finite difference
scheme is converging to an inviscid solution of the primitive equations which
is different f?om an inviscid solution of the semi~geostrophic equations,
because of the different order in which the limits are taken.

2. SOLUTION OF THE SEMI GEOSTROPHIC EQUATIONS
We solve an essentially twodimenséonalsettﬁ'equations, using the

Boussinesq approximation, as in HB:
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The initial conditions in the plane ys O are:
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The boundary conditions at 2t L.

are
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The particular choice of the initial condition (2.3) makee the potential

vorticity zero as will be explained later.

The equations (2.1) are solved in the Lagrangian form used by HB., The
equations for V and © can be written in the form:
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q' is the potential vorticity.
The initial data (2.3) satisfies the condition that surfaces of constant
M and constant © coincide, with slope B 5506‘
M
LU L))
with X es defined by (2.4). This means that 4z0 everywhere initially.
In HB a solution to this problem is then constructed from the information
that surfaces of constant ™M and ® must coincide for all time. The slope of

these surfaces is given by
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In addition, because of the incompressibility condition under the Boussinesq
approximation, and the rigid upper and lower bounderies, the area A( ﬁ@)
of fluid with values of Q in ‘a prescribed range 5] obeys the equation

A A(AG)
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Thus as the sloping surfaces bounding this fluid elemént change slope; they

rmust do so in such a way that ite area sat:.sf:.es (2,900

We now generalise thls procedure to cover the case where a discontinu:.ty

R

has formed. Though mixing wxll take place on amall scales vhere there :I.s

"@ear discontinmty, it is reasonable ‘t “s‘ Ak"a di
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existence of solutions to hyperbolic conservation laws. Since M and @
surfaces coincide, we assume that the distribution of M is also piecewise
constant. Segments in which M and © are constant are separated by straight

lines in the ( X , 9 ) plane with slope
¥
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where [M] " CQ] are the differences in M and @ between the segments.

(2.12)

The area of each segment changes with time according to (2.11).

Up till the formation of a discontinuity, the lines separating the
segments change slope and converge at either the uppér or lowéf boundary
(Fig. 2); but all dividing lines intersect both boundaries. Once they meet,

in order that the conservation laws (2.7), (2.9) and (2.11) remain satisfied,

some of the segements are forced away from the boundaries. The evolution

is depicted diagramatically in Figs 3 and 4. The slopes of surfaces separating :

each pair of segments still satisfy (2.12), but because the frontal surface
separates different segments as it leaves the boundary, it is not straight.

The conservation of area, (2.11), means that a single front cannot be formed
through the depth of the fluid, as otherwise some segﬁeﬁts w6u1d have to vanish.
Inspection of Figs. 2 to 4 shows that there is no difficulty in constrﬁcting

a pattern of segments at each time, so that each is bounded bx lines wlth the f_

correct slope and has the correct area. Bbwever, to prove rmsgroué!y that th;a is

poss1b1e for a11 time would be very dlff;gult.
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(iii) Seek a pattern as shown in Figs. 2 to 4, allowing all the segments
to be fitted in. Once the discontinuity has formed, extra logic is
required to determine which segments adjoin. and what the resulting
frontal slope is. Calculating this requires some iteration. Since
the calculation is symmetrical, the pattern can be built in from both
ends %=%l . The detailed logic is a very ad-hoc procedure which
~requires guessing which segments adjoin, and then calculating exact
poéitions of the boundaries to give the correct areas and slopes. If
no solution is found for-a given arrangement of segments, other arrangements
are tested until all the conditions can be satisfied.
Tge solution obtained this way is aldiscontinuous solution of the
Lagrangian conservation laws (2.7), (2.9) and (2.11). Since the
discontinuity is a contact discontinuity, there is no reason to suppose T
that these laws will break down, since no particle actually crosses the
discontinuity. It is therefore reasonable to hope that this is the
correct physical limiting solution as the viscosity tends fo ZEeroe.
Whether this is actually so can only be determined by experiment.
3.  FINITE DIFFERENCE SOLUTION OF THE PRIMITIVE EQUATIONS

We now seek to establish whether a standard finite difference solution
of equations (2.1) to (2.4) converges to the solution of the semi-geostrophic
equations discussed above as the mesh is refined. Ih order to handle thé
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dlscontlnu;ty, artificial viscosity terms of the form ‘( d A e ‘are added

:I 'to the equations for W ,',V and @ - in (2.1). The aquations are then
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:fapproximated by a standard semi-xmplicit finite différence acheme-'



the scheme is
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The time averaged term S;‘(’L;ZE in (%.1) makes the scheme implicit. Equation
(3.3), together with the boundary condition wW=zQ at 3-: Q0 , is first used

fo calculate W . Equation (3.5), with 4: set equal to zero at 3:0 , is used
to calculate ¢ . Equation (3.1) with the term in ;:t omitted, and
equations (3.2) and (3.4) are then soiyed for U&‘(&;t Ak) ,  wlk« Ak) 3
Olkabk) . The resulting values of W will not satisfy the integral of

(3.3), which states that

-

148
I\d*i(g\gxu 2 N(O) —w(“) = 0 (3.9)

where A is the number of grid points between }= O and W  and the summation is

in the vertical. We therefore seek values of Q)‘(x) such that (w*(k+hl) -ZN:Sxdl‘)

satisfies (3.9). ~10=
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This requires

e 4 z:\“ S,‘\h“(’c-*b‘e)'%“gxgx ¢y = O (3.10)

In order to solve (3.10), we require boundary conditions on ¢* . Since

W is specified at x:‘_’,(L-,'z-A,‘) s these are
Sd, = O ok xaz i(L-%L\m) (3.11)

Conditions (3.11) are consistent with (3.10) provided that
WL 0 )~ wle-Laitn)e 2a (L= 4ax)
which is ensured provided that (3.1) is not ueed td increment Y at these
points. In this case, (3.10) can be solved by a straightforward tridiagonal
inversion.
4.  RESULTS - .
Solutions are shown for equationé (2.1) in a domain of length 2L =°1000 km

with beight H = 10 km. The initial data is given by (2.3) and (2.4) with

60 = 300°K and 3‘ x 1%, The Coriolia parameter 5- is 10"“. The solutions
to the Lagrangian equations can be derived almost exactly; the only possible
error is due to the iteration on the 310pe of the frontal surface as dzscussed
in section 2, However, in order to use standard plottlng routines, the solutions .

have to be transferred to a grld. The interpolatzon procedure in the plattzng




(i) Exact solution extracted to a grid.

(ii) 7Finite difference solution on 100 % 10 grid, with an artificial

viscosity coefficient, KK , of 10° wsec” | for all fields.
(iii) Solution on 100 x 10 grid with K = 5 x 104.
(iv) Solution on 200 x 20 grid with K = 2.5 x ’IOI+

1
(v) Solution on 200 x 20 grid with K = 1.25 x 10"
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(vi) Solution on 100 x 60 grid with

H

(vii) Solution on 200 x 40 grid with K
The solutions for the potential temperature field show a steady convergence
towards the reference solution as the resolution is increaéed to 200 x 20 points
and the viscosity reduced. The front, which is spread alﬁost uniformly through
the depth of the fluid in Fig. 7, is concentrated at the boundaries in Fig. 10.
However, as the resolution is increased further, (Figs. 11, 12), the detail of the
change in slope. of the frontal surface tp a lower value_in the middle of the
fluid is still not captured, and has not improﬁed from Fig. 1C. .The overall width
of the frontal region is correct. The results for the long front velocity show
a steady increase as the resolution is increased, the maximum value at the
highest resolution is within 10% of the correcf value.
The differences between the finiﬁe difference sciution and the exact
Lagrangian solution are significant, but are not likely to have an impact
on the feedback to larger scales, since the frontal width and maximum velocity
are correct. The failure to obtain the corrgct change in slope through the
depth of the fluid could be‘importént when a more complete problem, for
insfance including moisture, was.solved. The most likely reason for the failure
is that the temperature contrast always has to be spread over a few grid .
points; and that the jump condition (2.12) which determines the slope is never
calculated 'u‘sing the full values of the jumps EPQ : C°] across the
front, but only using differences between adjacen% gri&-points. If it turaed

out that the details of the slope were dynamically important; then some action ,:*,{5

would be required to solve the problem.
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S. DISCUSSION

This paper demonstrafes that a discontinuous solution of the two dimensional
deformation model of a front can be uniqueiy constructed and is deterﬁined by
large-scale information. This is thus an example of a problem where the
generation of small scales does not destroy the predictability of the large
scales. It is not possible, of course, to prove that this is the physically

correct solution. That can only be done by carrying out a laboratory experiment.

The finite difference solution converges to a solution with the correct mean slope,
but does not appear to be able to predict the variation in slope with height.
In the atmosphere, this failure may not matter, because the real structure of
a front is much more complex than this simple model; and a great deal of further work
is required to see if that real structure is correctly represented in numerical

models. This paper is only a first step in this direction.
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