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1. Simple finite element approximations

The finite element method is a way of representing data over gome domain by
using a discrete series of functions. The domain is divided into a finiﬁe number of
subregions called elements. A series of functions is built up by defining a éimple
function, for instance a low order polynomial, on each element in turn and requiring
continuity between functions on adjacent subregions. A simple example in one
dimension is to divide a line into a series of segments and to define a function
as linear on each segment and continuous between adjacent segments (Fig 1). In
this case the function is completely defined by giving its values at the endpoints
of the segments. In general we refer to points where values are used to define the

function as nodes and the defining parameters as nodal values. Two more complicated

examples are shown in Fig 2. Fig 2(a) shows a piecewise cubic function defined by
the value and derivative at each end of the segments. The four parameters which are
sufficient to define the cubic enable us to ensure that both the function and its
derivative are continuous between elements. This scheme is usually called Hermite
cubic interpolation. Fig 2(b) shows a two dimensional example. The function is
defined as linear in each triangle, requiring three parameters to define it. These
are the values at the three vertices. It is easy to see that this definition ensures

continuity of the function between adjacent triangles.

Finite element approximations are distinguishable from spectral approximations
in that they are not global but defined by local values. However, they are distinct
from grid-point approximations because the function is defined over the whole region
and not just at discrete foints. Simple finite element ideas are often assumed when
discussing grid-point methods. For instance, it is often assumed that functions vary
linearly between grid points, or alternatively that grid-point values are mean values

over ‘'boxes''.

A much more extensive description of finite elément approximation is given in
Strang and Fix (1973). We will only discuss a few important results here. The

basic theorem states that if all polynomials up to degree r are used to construct

r+1)

the approximation over an element, then the approximation error is o(h as h

tends to zero where h is a typical element size. Similarly the pth derivative of a



function is approximated to order hr+1-p. Thus piecewise linear approximation is

second order accurate for functions and first order for derivatives. The Hermite
cubics are fourth order accurate for functions and third order for derivatives. An

important extension is that an elliptic equation of the form

Lu= §&  on L
(1)
W or a“/d,\ given on Ol (the boundary of LL )

can be solved to order hr+1 using polynomials up to degree r.

To illustrate what this result may mean in practice consider the approximation
of a function expressed as a Fourier series S-O: QU'-) G:b‘ . For synoptic
scalesin the atmosphere a -3 power law is approximately observed for the energy
spectrum (Leith (1971)) so that the amplitude a(k) behaves like lkr&h'. Thus
a spectral approximation representing the function by its first N Fourier compoents
will have an error

T SR

N -00

which is O(N-%) for sufficiéntly large N. However, a finite element approximation
using rth degree polynomials will have an error O(Nt(r+1)) and a grid-point
representation an undefined error, if no assumption is made about the variation
between grid—points. We see from this argument that the finite element method is a
good way of representing functions. For reasons like this it is now a standard
technique in engineering (Zienkiewicz (1971)).

2. Use of finite element approximations to solve differential equations.

In this section we derive finite element approximations to  some very simple

differential equations of the same types as those met in atmospheric ‘models, first of all

steady-staté problems such as those met in initialisation or which form part of the
solution of balanced models; and then time dependent problems as met in forecasts.
In steady-state problems it is easy to appreciate the way finite element methods

behave. In time dependent problems it is more difficult, since we are usually

more concerned with the rate of change of fields rather than in the representation



of the fields at a fixed time.

2.1 Solution of elliptic equations

Consider first the solution of the elliptic problem

Lus S— iAo region £ . (2)

We seek to solve this in terms of a function iZ which is defined by a finite element
approximation. Substituting into (2) the error is

L&~ 2R -

~
We have to set R=0 in some sense. Suppose that W is defined by N parameters, so
N equations are required to determine them. Possible choices are:

a. Set R=0 at N points in JfL (point collocation).

b. Set S.‘;R"A: O for N functions 4’,\ (Galerkin method). The functions 4),~

are called test functions.

c. Minimise S (L:-})" over the N parameters (least squares).
o

Alternatively, if (2) can be written in variational form the finite element
functions can be used as trial functions in a Rayleigh-Ritz procedure. Thus if the
problem is . ‘ : .

I(u) = minimum over JL

we minimise I with respect to the N parameters defining t: .

A
In order to see how finite elements give a solution in practice write W

in the form ZQAXA where the values &, are called nodal values and the X,‘ are

.

functions on Jk called basis functions. Fig 3 illustrates the basis functions

approximation the functionx“ is piecewise linear, equal to 1 at the nth node and zero
at all other nodes. In one dimension it is a "hat" function (Fig 3(a)) and in two

dimensions a pyramid (Fig 3(d)). There are two types of basis function for the

-3-

associated with the finite element approximations shown in Figs 1 and 2. For linear |
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Hermite cubics, one associated with the value of the function at the node (Fig %2(b)) ;

and one associated with its first derivative (Fig.3(c)).

Now consider the finhite element solution of the simple problem

2
Tz O  ona —0.' ws 9(3.3) on 5L (&)
Suppose for definiteness that JL is a region in two-dimensional space with

co-ordinates (X,va ). Then the finite element representation of w takes the form
z“aXA x,a) . Consider solving the problem by the four techniques listed at the

beginning of the section.

2=
a. Point collocation This requires us to calculate Q h‘“'x'\"":f’) at

n points in terms of the W, . This can only be done if Xh(x‘a\ can be

differentiated twice, and thus requires complicated functions.

b. Galerkin Using the basis functions as test functions we have to calculate
-

integrals of the form
2
§ T Xulng) - Nulyy) 40 7
Using integration by parts and enforcing the boundary condition u=0 on the basis

functions this becomes

- § 0. UX, AL (6)

This can be evaluated if the Xn have first derivatives, and thus requires less
complicated functions. The linear functions illustrated above would be
sufficient. Consider a regular mesh with the numbering shown in Fig 3(d).

) : : .
Then VX'a /A’_L-i,z/ﬁ) in the triangle with vertices 1,2,k4; ‘/6»&(0"/&) in

the triangle with vertices 1, 2, 3 and zero on the other triangles shown. By

considering the product of VX‘ with the other gradients in turn we obtain thes

e P



scheme

(7)
c. Least squares We have to minimise
L
By, = 1
Ve R S, 3
» by varying the &, , giving the simultaneous equations
{ %, 5, w T, 41 =0 @)

These can only be solved if the )(A can be differentiated twice, and is

therefore a more difficult procedure to apply than the Galerkin procedure.

d. Variational The variational principle for (4) is to minimise

I' S(Vu)z afl

(9
: [ (20,9%,)" a0

We therefore have to solve the simultaneous equations

B 70 R et A

which are identical to those obtained from the Galerkin procedure and lead
to (7) if the )(“ are linear functions. However, the Galerkin procedure is
more generally applicable since it does not depend on the existence of a

variational principle.

The algorithm (7) obtained from the linear finite element approximation is very
similar to the simple five-point finite difference representation of the Laplacian.
It is true in general that the simplest finite element approximations lead to
| algorithms very similar to, or the same as, simple finite difference expressions.
However, higher order finite element approximations do not usually give anything like

the higher order finite difference schemes derived from Taylor expansions.
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2.2 Solutions of evolutionary equations ;

Now consider using finite element methods to solve the hyperbolic problem

du

-‘-ﬁ.: Lau L AT

as met in forecasts. It is usual to approximate W by an expression of the form
zu,\(h))('\(x‘.a) , for two space dimensions, leaving the time evolution to be computed ’
by finite differences. It is clearly desirable to separate space and time variation

in hyperbolic problems, e.g. by writing

)

Ga 2wy 4al6) Xoulry)

and in meteorological problems where the largest errors are believed to be due to
space differencing it seems more profitable to use finite element representations

in space only. We therefore solve (10) by setting

where W= Z“AXA(".a) is an expansion of the same form as e ZQ,,XA(X,63 80
that the addition Wy, + 20k W can be performed. Other finite-difference
methods in time can be used in a similar way. The problem is therefore to calculate
w,;. As with the elliptic problem we define the remainder R as (Q-L“) and

set it equal to zero using the four methods considered in section 2.1.

In order to derive examples of the algorithms obtained using finite elements
consider simple right-hand sides of (10), a first derivative Lus "“/g)g., and a
product L(u,v)-.- wvy . All the terms in the meteorological equations are
combinations of these simple expressions. We first derive approximations to these
using the linear one-dimensional finite element representation shown in Fig 1.
Subsequently we consider higher order finite element approximations. Assume for
simplicity that the W, . are values of W at equally spaced points X=X, with

spacing OAx . A variable mesh spacing is considered later. :




2.3

Linear finite element approximations to first derivatives

a. Point collocation Continuing with the notation of section 2.2, set

L):%‘;“ at n points. If W is represented as a linear function then é"‘/‘),‘
is piecewise constant over the intervals (%,,Xa,, ) and cannot.be defined
at the nodes X, . However, since W is required to be a linear function
defined by its values at ks, we are led to the system of simultaneous

equations

\ " il
-i(u" “aa) = Ase Cuna, = 4y) (11)

This system is singular and cannot be solved.

To use collocation at the nodes X, we have to calculate é“/ox at

points where it is discontinuous. Using the average value

008, . ()

we obtain the scheme

Upner = YUy (12)

W, = et

205

which is identical to the usual central difference approximation. However, in
general, using higher order finite element interpolation with collocation does

not give a higher order finite difference scheme.

b. Galerkin We set

g (w- %)X, =0 (13)

using the basis functions as test functions. To evaluate (13) we have to -
calculate integrals of the form f)(,XA afl . Using linear basis functions

gives

SXM,XAw lp) >\




SXAMXA " '/GA"

Ix} = %ox i

OX a2
g o >( 2.

[l o
Writing out Q:iﬁ&)‘ n;“’zm“»xn and substituting the values for the

integrals we find that
) 2
/‘Q“" = {3““* '/‘“Mt N /ZA Cu Urs “t\-ts (15)

This is an implicit scheme for the first derivative which has been discussed
in the literature on several occasions (e.g. Swartz and Wendroff (1974),
Hirsch (1975)) since an error analysis gives its truncation error as
..'/‘sou,),;)4 which is less by a factor of 6 than the error of the explicit
fourth order scheme

Tl . b gk
i 3 46&(“"‘“ “.AJL) 3° 2% (““"‘ -“A-t) (16)

However, the scheme (15) still gives a zero derivative if & is a two grid-
length wave, as will any symmetrical scheme. Therefore the usual difficulties
with reversed group velocities and stationary two grid-length "noise" are not

resolved.

2
c. Least squares We minimise S(“'é“/')?t) over the variables @, .

This gives SX (u-a /ax) Q for all n. This is exactly the same as (13).

In general, where the unknown field is not differentiated in space, the 1east

squares and Galerkin methods will be the same.




d. Variational For the simple problem discussed here there is a

variational principle which gives the same approximate scheme as the Galerkin
method. For general fluid flow it is not usually possible to find a
variational principle over the spatial domain, except the formal one

obtained by minimising the squares of the equations.

At this point we note three further properties of the Galerkin or least
squares method. It can be applied to an irregular mesh with no difficulty.
]

Writing h a little algebra gives

'y ° Xnai~ X

(I/Qu“-| + '/3 U.) l\ﬂ..,2 + ('/3 W, + ‘/‘QM,. ) l\,\.,./z : '/1(““. -~ u,., ) (17
Analysis of this scheme, however, shows that it is only first order accurate.
Practical tests with it on irregular grids show all the usual problems with
information being unable to propagate out of a fine part of the mesh into a coarse
part. The fourth order accuracy obtained with the scheme (15) is an accident._ It
is a case of '"superconvergence', which is found to occur in many problems solved by
numerical methods. Practical success with finite element methods seems to depend

on taking advantage of it.

The second property is that the symmetry of the inner products th X,\:P
forces the resulting scheme (15) to be symmetrical. This would indicate a lack of
flexibility in comparison with finite differences. However, it is possible to avoid
this restriction by using test functions 4»“ different from the functions X“ used

to derive the finite element interpolation. A very simple example is to consider

the test functicns

( ) 5 x -xA.,l
.¢I\ Xl % T, Kot £ X & Xa0s
: A=i
20 elsewhere

The scheme obtained using these is

1

| b



which is a difference approximation weighted towards a one-sided difference. This
has been recently explored by Zienkiewicz for engineering applications. The third
property is that of satisfying conservation laws. Multiply the nth member of the

system (13) byw, and sum over N giving
S (““ c)“/ox.> Zu Xy 2 0 (19)

so that I(u- 6“/9,;)% = 0 exactly. In many problems this equation expresses
conservation of energy or momentum. In general any conservation law which can be
expressed by multiplying the differential equation by one variable and integrating
will be satisfied exactly in the Galerkin scheme. This is not necessarily a good
thing, for instance Raymond and Garder (1976) find conservation to be a

disadvantage on irregular grids.

2.4 Approximation of products

Now consider the second example, L(“,V): Wy the simplest possiblé non-linear

expression. We will only consider the collocation and Galerkin methods.

a. Point collocation Using collocation at the points X, gives
Q.= K,V, (20)

In the particular case usve+l (.ﬂ ‘VM)'s-‘ ('\ OU) , this gives U,@'
for all n. (See Fig 4). This is the sort of scheme that leads to aliasing
(Vol.I.p.35) and non-linear instability.

b. Galerkin Using the basis functions as test functions we have to solve

S(“’ “"‘)XA = 0 (21)

The integrals required are .

=10-




(_____T—____"__—_—_____'—"_—_——_——_—_______———_—___________—_______________________________'*4747

Sxf;t xﬁ . S‘an‘ Xhz 2 ‘/0‘).
g )(: = '/1
s ¥ X% %o

The scheme is

| 2 l _
Q. + fa @ + /é Qrgy = /az( UnetVaay * %acyVq 4 U\Vaoy )

| )
s /2. l“"\va i ,ll. L UrVaqy + UnyVa “MlVMt) g

Applying this scheme to the two grid length wave case Ww=Vzz| gives
(AN Ml for all n, (Fig.4). Fourier analysis of this scheme, which is done

in detail in section 3, shows that (22) damps short wave interactions.

The difference between schemes (20) and (22) is related to the question of

aliasing in finite difference schemes. If grid point values are regarded purely

" as values at that point, then there is no error in scheme (20). However, this
assumption is not reasonable in a case where information propagates from point to
point. Therefore we must interpret the grid-point values either as defining
Fourier components or as defining something like a piecewise linear function. Then
the grid-point values of & defined by (20) will not be the best values to define
uv in general . For the piecewise linear assumption the scheme (22) is the most
accurate method being a best least-squares fit, for the Fourier assumption we have
to truncate at an arbitrary wavenumber. In a numerical method where a function is
defined over the whole domain, by finite elements or other means, there can be no
aliasing since there is no ambiguity. However there is still truncation error because
the square of a piecewise polynomial is a polynomial of higher order which has to be

approximated by a lower order one. This error will be analysed in section 3.

We can achieve greater economy in using (22) by rewriting it in the form

| -11-



| 2 | “
/‘ Opet * Sy 0p 4 fwpy, = ‘/3( L%")(V-?—"—Lx““ ) * ’/3 “Ava

=) l/J (Kl::;h-\ )( Vasd Vael

e

2.
This means that the product approximation can be built up by calculating a simple
product on a finer mesh (h-‘,h"/;, n, I\A'/z’ h..ﬂ) than the original one and z
taking a weighted mean over this mesh. This is exactly analogous to what happens.in
the spectral transform technique where spherical harmonics are transformed onto a
grid, the products calculated on this grid, and then transformed back. However,

in the case of (22), the time saved is only marginal.

2.5 Approximation of non-linear advective terms

Next consider the evaluation of a non-linear advective term of the form
W= &k%g . In finite difference calculations it is found that care must be taken to
X

prevent non-linear instability (Vol.I p.35). Thus the simple scheme

\

B 20 Un (Vagy = Vao, ) (23)
is found to be unstable and the alternative scheme .

w, = (2k)

I gt Sy 4 :
T L A LTI T ORI V)

used instead. It is interesting to see what kind of scheme can be
produced using finite element apﬁroximétions. We consider various possible methods

using linear basis functions.

a. Point collocation This suffers from the same difficulty as in the linear

case, the derivative is naturally calculated at the midpoint of the element,
while values of w are needed at the nodes. In order to get equations for w that

can be solved we have to estimate the derivative at tﬁe node, giving

Wp s '/25,‘ “A(Vlm ""’f\-o3

- - .

exactly as (2%). However, the right hand side of the equation at the midpoint

of the element is exactly one of the terms on the right hand side of (24),

-12-



2.6

the left-hand side contains terms like '4(«.:,‘-. uml) which cannot be inverted.

b. Galerkin Set S( We u%‘i)xﬁz O for all the test functions. We have
to evaluate integrals like YXA')BX-l XA and after some algebra we obtain the
N3

scheme

VG""A-\ . 2‘/.l B+ '/6 Wagr =
!
/Zﬁx{(vlu*-‘ " 2/3 “~)(vﬁ'va-|) "('IJ“AM":/; “AB(VM,-V,\\ 3 (25)

Since this is a Galerkin scheme it is conservative as we can write
S¢("""V‘dv/();3= 0 for any variable¢ . However, it is shown in section 3
that the error made by it is quite large, about ‘;"O(Ax)q- . The method is
illustrated in Fig 5. The problem is that év/ax is represented by a series
of constants, which is unsatisfactory near the nodes. When this profile

is multiplied by a non-constant u the inaccuracies of Av/dx can lead to

serious inaccuracies in the product. This suggests an alternative approach:

(1) Calculate S= ‘)V/A,g using (15)
(26)
(ii) Calculate the product W= W$ using (22)

This method is found to be more accurate in practice than (25). It has
errors of about (Axw )/Zq.g . However, it no longer conserves "energy';
(Cullen (1974a)). Therefore there is now a direct choice between accuracy and
conservation; while with the simple finite difference schemes (23) and (24)
conservation was essential to obtain stability. It is likely that this is because
the aliasing effect is removed in the finite element integrations and that

instability is made less likely. This scheme is also illustrated in Fig 5.

Use of higher order finite element schemes

Now consider one example of using a higher order finite element approximation,

the quadratic on line segments. There are two sorts of basis function, illustrated

in Fig 6. The nodal values are values at the endpoints and the midpoints of the

segments. One type of basis function is zero at the endpoints of each element, and

=15




unity at the midpoint. This function is only non-zero on one element. The other
type is non-zero on two elements and is zero at all midpoints and all except one

endpoint. The formulae for these functions are:

a) | 4 3 + 23? V% e
|
| [ = 3% 4 253 O % x &
b)
bx = dpx? 0O<xg |

Consider evaluating = a“/Ax using this representation:

a. Point collocation At endpoints of segments we get, using the average

derivative at the endpoint:

|
o /ZAx (au, » Py, = 3w, g™ "'l'“_,,‘ *3u°)

oy
y /ZAx (L"(“"a" “-‘I;) * W= ) (27)

At midpoints we get

u"l ¥ yAz ("\c'“o>

These are two different explicit schemes for the first derivative. Others can

be obtained by collocation at different points within the elements. Both
these schemes are second order accurate, by collocation at suitable special

" points we can make up a fourth order scheme.

b. Galerkin After considerable algebra the same techniques as were used
for linear elements give: n

. %“"a* =, L lo/Ax Cu - ug )
‘ (28)

- 1 ‘ -
W, lup_,“ + %"’o" 2u.,. -0 = 4&(2(“9‘—“,,, )—'/‘(u “ ))
£ (] -l

This is a pair of implicit schemes, both of second order accuracy. This time

the use of the Galerkin method does not gain accuracy.



Normally, when Galerkin methods are used with higher order finite elements,

we do not evaluate the integrals f)( XA y {X dx" exactly. They are evaluated by

numerical integration. Consider the effect of using Simpson's rule to solve

Ls a“’dx by the Galerkin method using quadratic functions. The two equations are:
iy ¥ X, aX 8, X,
- (i) S,‘yo(“o& 4 “"& _3:‘). & u-’_," _a_’_;':; + U, ;,_ + 4, ™ )

- ()
- S_.Xo( QOXO + Uulx"; * “".l,z)(_,,; o+ Q.X. - U..X_. 3

] -
Evaluating these integrals as 2 2.!._' -H.}'T

)

we obtain

l. (0 + buy, - Yuy, -U.‘-»u_‘) = W,

since )(o: O uk x=2Y) : *+ by definition.

) |
11) So X";(“oé'aéo + w, 6:('/, + 'C)_J)ﬁ\ ) Z So Xyz.( %X,. “"zx’l; ¥ ‘_,')(‘ )

Evaluating these integrals as ,(,(_‘.o +- '-0..‘.:,1 + .I, ) we obtain
e - U

since X\‘&: 0 ok =zl . Therefore the algorithm is exactly the

same as that obtained by point collocation (27).

The property that we obtain two different schemes, one for endpoints and one
for midpoints, is general with higher order elements. In general there are two wave
speeds instead of one. For a correct choice of i;litial data we may only get one
solution in a linear problem and this will be satisfactory. However, in a non-
linear problem the other solution will be excited and this can cause difficulty, it
may be necessary to discard the midpoint values and replace them with values inter-
polated from the endpoints. If this has to be done there is no point in using

. quadratics at all. We also note that the advection scheme obtained from the

quadratics is less accurate asymptotically than that obtained from linear functions.



237 Summary
In general it has been shown that applying finite element methods to hyperbolic

problems can either lead to the same simple explicit schemes as usually used from
finite difference arguments, or to implicit schemes which may be much more acburate
for advection and remove the aliasing problem. However, higher order finite element °
schemes do not necessarily give better approximation schemes for these problems.

The reason for this is discussed in the next section. For non-linear problems time;
can be saved by a téchnique parallel to the spectral transform technique for

evaluating products, and simpler schemes can be derived from higher order Galerkin

schemes by using numerical integration.

Be Analysis of the finite element method appliéd to differential equations.

el Introduction

We now illustrate the points made about different finite element methods by
carrying out a formal error analysis. The basic result, described by Strang and
Fix (1973), is that using polynomial interpolation with all polynomials up to
degree ™ gives an approximation error O(hr+1) where h is a typical element size. .
This result can be extended to the solution of elliptic equations. However, it
does not apply to the solution of first order hyperbolic equations using the Galerkin :
method. Lesaint (1975) shows that an error O(h') is obtained in this case, though

r+1 s s
) can be recovered. However, in solving

there are many circumstances in which O(h
evolutionary problems it is more important to know how well a method approximates
wave speeds, for instance, than how well it approximates the shape of the initial

data. We therefore perform an error analysis that reflects this.

3.2 General principles of error analysis for evolutionary problems

Consider the equation %‘-L ¢ Lbw . Suppose that initially Wzl and
we wish to integrate forward .in time. Then the exact solution is Ws ﬁow fLude
In order to get a numerical solution, by finite elements or any other method, we
first have to approximate Wy by grid-point or nodal values. This approximation is
represented by an operator p, so that the discrete initial data is written as pu,

~
The operator L must be replaced by an operator L. acting on discrete values. In



"~
the case of the Galerkin method L is simply ?L as we can see because we define p

o ~
by setting S(P“o' ug I¥a 20 and L by S(L(P’“)" Llpw) Y¥a = O .
The time integration is replaced by a finite difference, replacing Sal(:, by the |
summation ZJL‘, . Thus the numerical solution to the problem can be written as
. f“o*it(p“) At - This has to be compared with the discrete values derived from
the exact solution;[’(uo-u fLudb); we cannot compare discrete values with a

continuous solution directly. The error is thus

Z..'f("P“)oe - pllude (29)

it is illustrated in Fig 7.

To clarify how this error is built up write A for the operator advancing the
true solution from t to k+¢Ql and B for the operator advancing the numerical solution
fromlt to kbl Then the error (29) can be written as

() n
PA Wy = B P“o
(30)
a ﬁ— n=l A=) z A-z
= (pA"-BpA™ )u, + (BpA S L e DA
J .Ba-l B
+ ( PA B f)uo
Each term of (30) can be written as

neh R n=h k= e n-k a-h i
(8 pAT-2 BpA )"‘o z (8 aPA-B -g‘a)/\h '% (31)

i

n-k
The factor B cannot be taken out from (31) since B may be non-linear. This

expansion shows that the total error can be estimated if we can estimate

(i) The new error at each step fA —Br

(ii) The accumulation of error due to errors at previous steps, i.e.

given Jlu=v Il g €  we have to bound i Enu - an “

Requirement (ii) involves both the stability of the numerical scheme and the
predictability of the operator B. In fact we will want ”gnu— 8“\! U to grow

i A :
rapidly if " A - A vll does so. The error (i) is just a generalisation of the

17



truncation error calculated for finite difference schemes. In finite differences

the projection p is simply the selection of grid-point values. The error is the
difference between the exact solution at the grid-point and the numerical solution
there. This generalised analysis allows us to consider finite element and spéCtral
methods as well. In the next section we analyse the approximations to derivatives
and products derived in section 2 and also perform some stability analyses. However,
a complete estimation of the error (31) depends on a knowledge of the behaviour of

the non-linear problem being solved, and is usually not possible.

3.2 BError analysis for linear finite element approximations on a regular mesh.

We first of all analyse the error for linear finite element approximations in
one dimension on a regular mesh with periodic boundary conditions. Assume that
Oie= | . The Fourier method can be used for the error analysis in this case.
We analyse the behaviour of a single component W= Re (th“) . First of all,
consider the effect of the projection p. This is illustrated in Fig 8. We have to
represent u by a piecewise linear function. This is most naturally done by a least-
squares fit; as shown in curve A. However, it could also be done by reading off
the values of u at the nodes and interpolating, giving curve B. The first method

is a Galerkin approximation to u, the second is a point collocation. Some algebra

shows that the nodal values of u defining curves A and B are d(k)b‘kx“ where

12 |~ etk
gt e e o e b

(32)
e e 8
The maximum approximation error r;-u is 0('&') as k tends to zero for either
cas2. This illustrates the general result that the approximation error is 0(.k})

for polynomials of degree 1. .

Now consider the error in approximating W= Lu= a“/dx . The collocation

scheme (12) gives

‘0“ - '/3( “Mﬂ ol “A.‘)

"
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1 chx J . :
Given ks&'" we derive each term in the error (29) as

follows:
chxa
PU. = &

LM s .:kc.”’""

PLU\: \'.‘10,"‘“‘"
t (?"-) = 4 t‘.hx" (C‘hmt- Q-Ck°x> s Lsink c""‘“

, s Dse = |
The error (29) is therefore

t(?u) - pLK = t(stah-h) e,"k""

(33)

which is OU‘L\) as k=>0 . This analysis exactly parallels the finite difference

truncation error analysis of the same scheme.

Consider next the Galerkin scheme. Derive the initial data from (32) and
use (15) to approximate the derivative so that
o

! 2
/()“\" o /3 o '/(, Wapy = ',2 ( o | Uamt)

Gy ™ con aive
P .L(k) e."'h'.t-“
foa ke ™
plics ikatiyates

> 6
L g —
(P” Y 2ea e

The error is therefore L(P“‘) _rLu

itk alk) o e

falk) e fhxe [ Lsuk Lk ) G
G+2ash
wiiteh is . OCRY) ' as k:-> 0

(34)
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There are several things to note about this result. The increased wave
speeds mean that the maximum time step that can be taken with explicit time
differencing is reduced by :E' , compared to reductions of q/3 for explicit
fourth order differencing and v for the spectral method. The projéction factor
i(k) comes out as a factor so that the scheme would still be fourth order accurate
if it was used with interpolated initial data. This is the way that it is analysed
by Swartz and Wendroff (1974). The order of accuracy is much higher than would 5e
expected from standard finite element theory. In general we would only expect
first order accuracy using linear functions. The higher accuracy comes because t}u.
almost cancels PLtA . This turns out to be a general property of Galerkin schemes
using spline functions on a regular mesh (Thomee and Wendroff (1974)) and is not true
for the quadratic functions discussed in section 2.6 (A spline is a piecewise poly=-
nomial of degree r with r - 1 continuous derivatives between elements). The general
requirement for high accuracy seems to be that all the nodal values are associated
with the same discrete equation, e.g. (15), for approximating L. Thus the quadratic
scheme where there are two kinds of discrete equation (as (28)) or schemes on
irregular grids (17) where the discrete equation will be different at every node do
not give high accuracy but only the basic second and first order accuracy

respectively expected from the order of polynomial used.

3.3 Error analysis for higher order schemes and irregular meshes.

We follow up the statements of 3.2 by carrying out the analysis for the quadratic

case (28) and the irregular mesh (17). The analysis of (28) is complicated because the

ke :
wave €' has to be fitted by two'types of polynomial based on the endpoints and the

midpoints. Write

(pnd, = ALYl
t'k*o\

(P dpuy, = pll)e (35)
Then (PLu)A = 'ék&(k)tjkx‘ .
(Pladawny = chplh) ek :
Write (tpu)c\ E: aUl)alU'-) L‘.kx“ . :

(T P“)‘“"z’- SCk) @(k) LY
. S




Substituting (35) into (28) and expanding in powers of k gives

23.1(‘-'"’/8 ol RO 20 (" - hs’ue*'“)-t

(36)
yChakla ) ause(1- e ) e wo (=R g v ) B = toehyy, ).

We know that the quadratics will approximate M:Q'.h'"'

to third order accuracy,
so that ‘o(h)= \& OCh‘) i pUt) = |+ O(hz) . In addition derivatives
will be approximated at least to second order, so t‘hat JU!.): t"t(l-t OCLL"))
S(L): ch (14 0t k,‘)) . Substituting into (36) and considering terms in h3

shows that the second order errors a and b in the derivatives are non-zero,

satisfying

2k Tb 2 - Vz
(e + ¢S = '/3

Therefore (28) is only second order accurate. In addition there are two values of
the wave speed for the given wave e""" y this will lend to a distortion of the wave
representation (35) into a shape that can be advected at constant speed. This

scheme has been used with reasonable success in a linear problem by Gresho et al (1976).

The Fourier method cannot be used to analyse (17), because of the irregular

mesh. Instead we expand the functions in Taylor series. We recall the scheme

' :
(’6“4-. + ' u.)kd_.,‘ + (huaa Yo uig, )L.\w,, - 'lz(uh, - Uao, )

Expand in a Taylor series about X, . Then we obtain

TR : 2
| : 4““"’:“' + ' w, (l"ﬂ-'l;* kﬁ-t‘l;) + "(, k“u; (LAY

& ! / { 1
| = ,1“‘4\4'1;“ ek kn-c‘/; wlt - ‘\,\.q\_ w' - "z l\‘ T g )
A. " are
i a,z Ua(k«-'/ ok Yigi iyt 2 2 :
y A‘l[‘ <+ “\l (kﬁ"'ﬁ i I\“." ).’.' -
‘ . -

{
/zu'( k‘.q‘ + l‘ﬁ"l‘ ) 4 ‘/H» w!’ ( l\A.'l,‘ - ’\..o,‘)( h

Thus to zero order Wwaw’ as Adesired;‘« but the first order terms do not balance.

A-'l“‘ kd"l‘) & epne

. Therefore (17) is only first order accurate.

. In summary, the analysis of the last two sections shows that very accurate

schemes can sometimes be obtained using finite elements. However in general

| : ~21-



only the standard OU\') can be obtained. The error of the accurate scheme (15)
is illustrated in Fig 9 in comparison with the simple centred second and fourth order

finite difference schemes (12) and (16).

3.4 Error analysis of non-linear problems

Now consider non-linear problems. The projection factor A(h) will no
longer come out as a factor in the error analysis and therefore the result of the
analysis will be affected by the choice of projection. We illustrate this by
analysing the schemes (20) and (22) assuming first of all that the initial data is
interpolated and then that the initial data is generated by a least squares fit with
dlk) given by (32). This sort of distinction is exactly parallel to the finite
difference case where, considering only values at grid-points, a simple product
(20), has no error, while, re-interpreting the data as Fourier components, there

is an error.

Consider a single non-linear interaction Wzuy with us ﬂo__(.c,""*) and

v:ﬂq_(z,“l"‘) « Then the discrete values W, and V., are given by
.- .k,‘ .
Wos all)e™®e L (L) e iR
By periodicity the discrete values of w will be given by

Ges BUE) wlh) o(2) Che®) %

-where p(h,l-) depends on the algorithm used. For (20) 6()..),); \

For (22) Fourier analysis gives

B, &) = (34 eabs cads cm(less))

(37)
The exact solution for w is given by
by s alkal) e Chad)x,
so that the error is proportional to
‘ Alkal) - alh)a(h) @Ck L) .
| (38)



The errors using (20) and (22) are summarised in the table below.

Scheme (20) (22)

Initial Data

Interpolation 0 '/nz (lt’-‘ L Cha L)’ )4 (@] ((k\ + 4] )4.

Fitting AL s Ol ) -, (2030 3600 2g3) 4 o (1, 141)°

As might be expected the most accurate schemes are the natural pairings of (20) with‘
interpolated data and (22) with fitted data. To choose between the pairs consider
the short waves with k and 1 large. For interpolated data d(h)z| for all k but

for fitted data dl(k)s O(J/h}). Therefore fitting damps out the high wave number
noise. The associated product algorithm (22) damps out shortwave interactions. Thus
in practice we can hope that using (22) with fitting will be more stable than using
interpolation with (20), in exactly the same way that using a spectral truncation
with no aliasing is more stable than a simple product. This ié found to be true

in practice (Citllen (1974a)) and it is possible to produce more rigorous arguments

to justify it.

We finally analyse the schemes for non-linear advec.:tive terms set out in
section 2.5. Using the Fourier method and substituting we flg_(_e"l"") 3
Ve (Lg(v'l") gives
|
b 2ex(hat)

@Ut,l) s (HNAL + 2scalhet) - ZS&ks

The error, (38), is then

A(2RL-TRL QLS = %) [930 + OCIkl4 1410 o

using the values (32) for a(h) . Using the two-stage scheme (26) the error is the

product of the derivative error (34) and the product error (37). This gives

QS B 21 - 1¥) 120+ OLIK L4 (£))6 (40)
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The error (40) is usually less than (39) so that the two stage scheme should
be superior. This was found by Cullen (197ka). If (25) and (26) are analysed
without allowing for the fitting of the initial data it is difficult to see why

(26) is better in practice.

b, Practical application of finite element methods in forecasting problems

L.1. General considerations

A forecasting model describes the propagation of waves, both gravity waves and
Rossby waves. When a wave is propagated through a non-uniform medium internal
reflections and refractions take place. Thus when constructing a numerical model
to describe wave propagation we want the computational "medium" to be uniform. In

the finite element case this rules out the higher order schemes where some nodal

values are values at vertices of elements, some are values at midpoints of element

sides and some are derivatives. It also rules out schemes on irregular grids.

The error analysis of section 3 bears this out; schemes such as the linear scheme

k.
where all nodes are equivalent give much greater accuracy. Many of the error terms
which vanish do so by symmetry. Higher order finite element schemes are advantageous
for steady-state problems where the differences between the types of node do not matter.

e |

When forecasting for ; limited area it is natural to use a regular rectangular
mesh. However, when forecasting for the hemisphere it is impossible to use a
spatially regular mesh, though one can use a regular mesh in latitude and longitude
(see chapter » ). It is possible to generate a quasi-regular grid on a polyhedron,
usually an icosahedron. This has been done in finite difference models by
Sadourny (1972) and Williamson (1970). The triangular faces of the icosahedron
are divided into equilateral triangles and the finite element interpolation based
on these (Fig 10). On such a grid the finite element method gives a fully two-
dimensional scheme. For insténce, consider a patch of elements as shown in

Fig. 11. The scheme for W= d“A”L using linear elements is

|
'n'z(“’n“"z"":‘ Wyt Bt 00 ) 3 12 v, =

|
hoa b v & 2t Slny Cay- ) )

T




This allows for the y variation of a“/o” . This type of grid was used quite

successfully by Cullen (1974b).

Another problem concerns the staggering of the mesh often used in finifé
difference schemes (Vol.I chapter 4). This is difficult in a finite element scheme
because we need to define different elements for each variable and the overlappigg
would lead to awkward schemes if the Galerkin method were used. A scheme rather
similar in effect is shown in Fig 12. All scalar quantities such as pressure are

"defined to be linear on the triangles, all vectors such as velocities are constant
within the t¥iangles. This means that a separate co-ordinate system can be used
for each triangle. There is therefore no difficulty with the pole on a sphere.
Quantities such as divergence are scalars and are.evaluated at the vertices.

In order to calculate u'zv‘g_ with w constant on the triangles set
¥ Fe s TR, (42)

where the'x, are linear basis functions. Then we can integrate the right hand
side by parts to give"ju..vxA which can be calculated on each triangle if u is

constant, as VX,, is also constant on triangles.

It is of course possible to use vorticity and divergence, or velocity
potential and stream function as variables instead of velocity components. This
means that second order derivatives appear in the equations and Poisson equations
have to be solved. This approach is parallel to that used in spectral models
(see chapter 3) and has been used in finite elements by Staniforth and Mitchell
(1977). Using linear elements the scheme obtained for the Poisson equation is
very similar to the finite difference scheme and can be inverted by the same
techniques. However the algorithm is only second order accurate as is the usual

finite difference Laplacian.
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Semi-implicit time differencing can be used in finite element models exactly
as in other models. Finite elements could be used for vertical differencing though

this has not yet been done, global polynomial expansions being preferred.

4,2 Programming considerations

The major disadvantage of Galerkin methods like (16) and (22) is the implicit
nature of the schemes. The right hand sides will be cheaper to calculate on a
regular grid because most of the coefficients will be equal and the terms can be
grouped as in a Fast Fourier Transform. We still have to solve equations of the
form

'/‘ U‘\_, + 2/1 ‘\’4 + '/6 “’A-‘l - Qn
(43)

or more complicated ones, like (41), in two dimensions. (43) is tridiagonal and thus

easy to solve. (41) can be solved either by approximate direct inversion or by
relaxation using a similar procedure to the standard relaxation method for Poisson's

equation. Direct inversion of (43) gives

Gaz L32 Ro = 0438 (Rusys Ry ) 4 001204 (R +R4,,)

~00%33 (Ray # Rayz ) + 0:00899 (Raoy s Rpyy ) 4 ---

Therefore within 1% this series can be truncated at the terms in th.‘! « This

approach was used by Cullen (1973). When using the relaxation method for (41) we

have to under-relax to accelerate convergence. The iteration need only be continued

until the iteration error is less than the error in calculating Q“ . Taking
(43) as a simpler example, use as first guess &,z R . This is exact if w is a
constant. It is least accurate if w varies rapidly from point to point, which is

when R“ will also be least accurate. In practice 3 iterations with a coefficient

of % are sufficient.




Results using finite elements can be found in the literature (e.g. Carson and L:
Cullen (1977), Staniforth and Mitchell (1977), Wang et al (1972)). At present the
| results are similar to those from finite difference models with rather more points.

However, the finite eiemént models tend to be more expensive in computer time.




Figure Captions

Fig.1

Fig.h

Fig.6

The simplest linear finite element approximation.

Some other simple finite elements:

A

B

Cubic Hermite

Two dimensional linear element

Basis functions for simple finite element approximations.

A Original function u

B wl

C M"‘ using point collocation
D w', using Galérkin

A Linear element
B Cubic Hermite element, basis function for nodal value.
C Cubic Hermite element, basis function for nodal derivative

Calculation of the square of a piecewise linear function

Alternative schemes for non-linear advection

A - Function u
B Function v
c oﬂbx (1), and its best fit by a linear function (ii))

D kdwﬁx using (i) multiplication of curve A by curve
C (i) and,(ii), the best fit to it by a linear function.
(Equation (25))

E “OV/‘,,‘ ﬁsing (i) multiplication of curve A by curve C(ii)
and,(ii),the best fit to it by a linear function.
(Equation (26)). i
Quadratic basis functions
A Endpoint function
B Midpoint function
Error analysis for evolutionary problem
:
Different linear finite element approximations to a wave

A Best least squares fit

B Interpolated values

D8




Fig.9

Fig.10
Fig.11
Fig.12

Relative phase speeds of second and fourth order (A and B) and
linear finite element scheme (C). Exact solution represented
as unity.

Grid of triangles on sphere based on icosahedron.

Local patch of elements to define scheme (41).

Finite element scheme with scalars and vectors treated
separately.
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