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ABSTRACT

Time integration schemes for numerical weather prediction are sought
that each have the following properties: stability over the range of
complex frequencies characteristic of both dissipative and stable
oscillatory modes; a requirement for only a single evaluation of the
nonlinear forcing per time step; small truncation errors for slow modes.

From a preliminary examination of a small selection of explicit
methods, one, a hybrid comprising a leapfrog predictor and trapezoidal
corrector, appears especially promising for the integration of the
atmospheric (or oceanic) primitive equations, being accurate and stable for
slow, neutrally stable or slightly dissipative, quasi-geostrophic motions,
while generalising very naturally to a semi-implicit method to accommodate
modes whose oscillatory or dissipative time scales are significantly
shorter than the time scale appropriate for accurate representation of the
quasi-geostrophic evolution. A version of this generalisation is shown to
be robust to minor mis-specifications of the projection of the system-

Jacobian assumed for those components treated implicitly.



1, INTRODUCTION

A system as complicated as a numerical weather prediction (NWP) model,
linearised about a state of well developed realistically balanced motion,
includes among its modes many of a chiefly oscillatory character, some that
are to varying degrees dissipative, and a few that are mildly unstable.
Numerical integration schemes able to do justice to the variety of modes
present in such a system must either comprise a number of effectively
distinct and specialised parts, as is commonly the case for many
operational forecasting models, or else they must be robust to the broad
range of characteristic frequencies of the linearised excitations that

realistic motions of the system can engender.

The present note initially examines simple schemes that attempt to
fulfil the latter criterion, that is, stability to a set of intrinsic
frequencies (which are in general complex). An additional criterion greatly
reducing the number of schemes considered here is that each one should
involve only a single nonlinear function evaluation for the forcing of the

system per timestep

The motivation for focusing attention on schemes involving a single
new evaluation of the forcing per time step stems from the recognition
that, in present day models that incorporate a thorough parametrisation of
many complicated physical processes and whose dynamics may be represented
using relatively costly high-order spatial differencing, the attainment of
numerical efficiency tends to preclude iterative evaluation of the forcings

unless compelling extenuating reasons supervene.




Since it is assumed that the typical evolution of the system is too
highly nonlinear to make possible the exact inversion of the ever-changing
Jacobian associated with a fully implicit scheme, a further criterion of
the basic schemes tested in section 2 is that all should be explicit
methods. While this study makes no pretence to be as comprehensive as the
previous investigations of time integration techniques due to Kurihara
(1965) and Young (1968), the few candidate schemes that satisfy the
restrictive terms of reference of my investigation include simple, yet

viable, methods not discussed by the aforementioned authors

All the schemes defined in section 2 are isomorphic to linear
“multistep” methods (for a general introduction of these and other methods
in the context of ordinary differential equations see Gear, 1971). Two of
these are the Adams-Bashforth methods of orders two and three. One subset
of the schemes described consists of the leapfrog method augmented (as is
the usual practice) with the Robert-Asselin time-filter (Robert, 1966;
Asselin, 1972). Each value of the filter parameter o implies a particular
integration scheme with its own unique stability and accuracy
characteristics. A larger parameter ¢ yields a scheme more robust to the
presence of dissipation, but at the expense of a larger coefficient of the
assymptotic first order truncation error. One method that I shall refer to
as the "leapfrog-trapezoidal® scheme (although it is slightly different
from the scheme of the same name included in the study of Kurihara), does
not correspond exactly to any standard multistep formula, but it is a close
relative of the third-order Adams-Bashforth method. Like the third-order
Adams-Bashforth method, it requires storage sufficient for four fields of

data (compared to three required for the time-filtered leapfrog), yet it
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can boast only second-order accuracy and has a marginally more restrictive
stability domain than the Adams-Bashforth method. Despite these apparently
disqualifying attributes, the algorithmic structure of the leapfrog-
trapezoidal method naturally lends itself, in the context of a primitive
equations model, to a generalisation in the form of an efficient, stable,
and uniformly accurate, semi-implicit scheme that, in contrast to any
corresponding semi-implicit generalisation of the Adams-Bashforth method,
requires practically no additional storage. The robustness of this implicit
leapfrog-trapezoidal scheme is explored in section 3 and potential

applications are discussed in section 4.

ri ANALYSIS OF SIMPLE EXPLICIT INTEGRATION SCHEMES REQUIRING A SINGLE

FUNCTION EVALUATION PER TIME STEP

A prototype for linearised unforced dynamical systems is the one-mode

sytem,

W= vy 2. 1)

dt

with "frequency" v a complex constant. Much of the sensitivity of a more

general dynamical system, for example, one governed by a coupled vector

equation,

ii= F ey, t) : (2.2)
dt et



where F is a nonlinear function of both y and time t, can be adequately
simulated for the purpose of testing numerical schemes, by appeal to a
number of simple systems of the form (2.1) with appropriate values for v.
Further generalisation is achieved by augmenting (2.1) with a periodic
forcing, or by prescribing a time variation of v, but such extensions will

not be used here.

For systems describing large-scale meteorological motion, in which
quasi-uniform advection plays a prominent role, the appropriate
idealisation (2.1) of modes of the system involves frequencies v that are
purely imaginary. Other terms, especially those associated with dissipative
boundary layer processes, are more appropriately modelled with negative
real values, v. In any case, when the dynamical or physical processes
themselves are intrinsically stable (equivalent to the real part of the
appropriate v being non-positive), it is desirable that the numerical
representation of them by the time-integration scheme is correspondingly
stable. Pertinent to questions of stability and accuracy are the results
for multistep methods summarised in the classic study of Dahlquist (1963):
no explicit method, nor any implicit multistep method of order greater than
two, is stable for all stable v; of the second-order accurate schemes that
are stable for all stable v, the one with smallest coefficient of
asymptotic truncation error is the implicit trapezoidal scheme. For NWP, a
second order time integration scheme (such as the unfiltered leapfrog or
implicit trapezoidal) is invariably considered sufficiently accurate, and
even a first-order method (such as the time-filtered leapfrog) might be
acceptable provided the principal coefficient of error is sufficiently

small. While not expecting stability at large absolute values of v, &
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viable scheme for a system that possesses both neutral and damped waves

must at least be stable for a region of complex v that includes a proper

rectangle bounded to the right by the imaginary axis, that is, a set:

G s Rely) e [ i=ary 0 Qg ImCvaas B e I e e ), (2337

for some positive a and b.

Below, a number of schemes are introduced, the choice restricted by

the criteria listed in the introduction. In each case the state of the

dynamical system at a time, t = t 8t, after the start of the integration,

is denoted by y*, where 8t is the time step. The forcing corresponding to

this state is denoted F*. y* refers to a preliminary estimate of the

quantity, vy, with F* computed from to y”. In general, both y and F are

multi-component vectors, the Jacobian of F with respect to y being some

time-dependent matrix,

b (F) : 2. 4)

b (PR i i e

b (y)

But, in the context of each idealised single mode homogeneous sSys

v reduces to a constant complex scalar [an eigenvalue of the typical

instantaneous Jacobian of (2.4)1.

tem (2.1)



This scheme superf

Definitions of basic schemes

1). Scheme 1
W«v,-u = w« + F¥r 5t ; (2 5a)
WI.'\ = w’l‘ 4 F'\ll 61- { (25,:)

icially resembles the Euler-backward method (Kurihara,

1965). However, the function evaluation to obtain F* is not jterated in the

present met hod.

2). Scheme 2
Replacing the corrector of (2.5) with the more accurate trapezoidal
form, one obtains the "forward-trapezoidal” scheme (like the "Heun" scheme,

but without the jterated function evaluation):

\v\"'l,vl = ‘v-n + Fa'r 6t 5

gl = W' + %(Ft\»c! + qu.) ‘St :

(o]

In the appendix this method is shown to be isomorphic t

Adams-Bashforth method

2

3y. Scheme 2

Scneme o
The third-order Adamz-Bashforth scheme (for example, Gear, 1971 is:



4). Scheme 4

Replacing the first-order forward predictor formula of (2.6) by a

P

n

second-order leapfrog step might be expected to improve accuracy, if not

stability. The resulting leapfrog-trapezoidal scheme is:

YrEEER = gy 4+ 2F%Tel 8t (2. 88a)

Y 2 = gl 4 R(FEET 4 FreeE) 8t (2. 8b)

Again, the fact that the nonlinear forcing F remains uniterated means this
scheme is not quite identical to the superficially similar leapfrog-
trapezoidal scheme discussed by Kurihara. At first sight this scheme bears
no obvious resemblance to the third-order Adams-Bashforth method (2.7) but
in the appendix it is shown that, considering y* to be the final variable
instead of y, an equivalent representation of (2.8) takes the same basic
form as (2.7) except with coefficients that are numerically slighily

different.

5). Scheme 5

WETER T w4 2wl anit s (2. 9a)

wn*l = wlm+1 + %G(th+u o wam+! + wm) g (z_gb)

The corrector formula, (2.9b), may be expressed equivalently,

wm*l = wrmol + U(Wﬁmwﬂ et WWT‘) < Flmkl Bt) : (2.9C}




This scheme is familiar as the leapfrog, generalised by the application of

the Robert-Asselin time-filter with parameter o (Robert, 1966; Asselin,

1972). For the special choice, ¢ = 0, it reduces to the pure leapfrog

met hod.

b. Accuracy

In each case assume the forcing F* takes the form,

F* = v y* . (2.10)

Assume each preliminary estimate y** to be related to the final estimate y=

by a factor, a, and let F*" be related to y* by a factor v*:

b 3
#
4
1

a y” '

o
=
d

]

vE oy = v oy¥ ¢ 6211

Also, for each homogeneous mode of the numerical representation, let the
factor by which the solution changes over one time step be written simply

as y, that is,

y o= gy (2,122
Solutions for which, |yl > 1, are numerically unstable. To depict the
region in the complex v-plane for which each scheme is stable it is
therefore sufficient to plot the locus of v as y traces out the unit

circle, centred at the origin, in the complex y-plane, that is,
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In order to simplify the analysis of the remainder of this sec

time step 8t is taken to be unity.
1> Scheme 1
From (2.5):
SHLeT i e e ;
\g_( et RS 2 \/’,"j
Thus,
8= 2yi=1
= Enlaean B 0eviiey
A =G e DR B B AR S TS
a 2w-1
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error is not
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not be considered for applicat
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s
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(2. 14)
25159
(2. 167

is only first-order accurate and the leading coefficient of

particularly small. On the basis of its poor accuracy, this

ions in NWP,




2)., Scheme 2

W= d
207
\ SR L JE e e B A g
implying,
S e |
82— - - w2+ O ) , (2. 18)
w(y+1)
TR T ek S e i W N il 0 S : (2519
a 3y—-1 12

The accuracy of the method for free modes in the vicinity of v = 0 is
second-order with coefficient of error (=5/12) five times larger in
absolute magnitude that of the corresponding coefficient of error (= -1/12)
for the implicit trapezoidal method. For forced motion at limitingly small
frequencies the final estimate y is likewise five times as accurate as the

oreliminary estimate y™.

IE (2.20)

e A A et ) T BE e SRR VLRSS S 0 TGV (2212
23y Loy +4b 8
Thus, the coefficient of third-order error for this Adams-Bashforth method
is 3/8.
_,11_



y =1 + % Nl 6T R ).

So,
a = 4y* - 3y 1 Sl gy g goytiagr | (2.2
y=Cy + 1)
+ 2l — ' TP Ay =3
SENI o GNEN Tl L B2 y / .
G i 2y=( 1) A it \Y e T VIS 5 e (2. 24)
a dy=i= 3y .+l 12

The scheme is therefore second-order accurate with error coefficient

(= -1/12) equal to that of the trapezoidal method. Since the predictor and
corrector solutions differ only to third order in v', both estimates are
essentially of equivalent accuracy. Note the similarity in the form of the

expressions for v in terms of y for (2.21) and (2.24).

5. Scheme 5

- 1 L 3
Gt R (2.25)

SRR T (R o (TR G B B D o g

Hence,
2y - ¢ (4 = oIt 0 R)
8= yyo #2 -20) G 2 - o ’ &
veyvts (- +1-g)=vI1¢~ TV ESE r 0 TOT G Y 2. 27)
a 2y - © 2(2-0) it £

which implies a first-order scheme for ¢ > 0, with coefficient of error
roughly proportional to o for the typical small values of this parameter.

In the case of the pure leapfrog scheme, ¢ = 0, then,

(2.28)




which therefore implies a scheme accurate to second-order
truncation error twice as large (and opposite in sign’) to that of the

trapezoidal method and scheme 4.

c. Stability

Using (2.16), (2.19), (2.21) and ¢2.24) with y allowed to trace out
all complex values of unit magnitude, the loci of v are found corresponding
to neutrally stable cases of the respective schemes 1, 025 3-and 4y These
curves in the complex v-plane are plotted in figure 1. Only the upper half
of the full diagram is shown, the lower half being merely a mirror
reflection of it. Scheme 1, although already disqualified because of its
poor truncation error, does at least satisfy the stability criterion (2.3)
with b as large as 1//3 . Scheme 2 (equivalent to the second-order Adams-
Bashforth method), although more accurate and with a larger overall region
of stability, does not satisfy the requirements of stability for pure-
oscillatory modes and thus, it is not a practical contender for
applications in NWP. Scheme 3 is the third-order Adams-Bashforih method,

and enjoys both excellent accuracy, as was shown in the previous

subsection, together with the best stability characteristics of these first
four schemes. For oscillatory modes the stability limits are v = ()
where b.,... exceeds 0.7 . The leapfrog~irapezoidal method, scheme 4, has &

similar, though marginally smaller, stability region, the limits on the

imaginary axis in this case being given by v=%i2/3

o
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ot
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o
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=
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s
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09
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o
ot

For the pure leapfrog method, i.e., with o = 0,

collapses to a segment on the imaginary axis between v=:i, the
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computational mode being the unstable one for values of v to the left of
this segment. The unfiitered leapfrog scheme clearly has nc robusfness to
the presence of damping and must be combined with some method tc control
the computational mode. Because of the free parameter for the filtered
leapfrog scheme, the stability limits for v have been traced out for three
separate choices: a) ¢ = 0.1 ; b) o = 0.2 ; ¢) 0 =0.5. These curves are
indicated in figure 2. It is evident from these curves that, in order to
incorporate enough time-filtering to make the scheme robust to relatively
significant amounts of dissipation, a correspondingly large filter
parameter o must be used. The penalty paid for this is a concomitantly

large first-order itruncation error.

d. Discussion

Among the simple explicit integration schemes considered, the filtered
leapfrog, the third-order Adams-Bashforth and the leapfrog-trapezoidal all
merit use in systems, such as NWP models, which contains both oscillatory
and dissipative modes. Of these, the filtered leapfrog method requires
storage equivalent to three fields of data at one time while the two other
contenders require storage for four fields. Thus, the gains in formal
accuracy and stability acquired by using the third-order Adams-Bashforth or
leapfrog-trapezoidal schemes are paid for by an increase in the space
needed. From the results obtained so far the leapfrog-trapezoidal scheme is
inferior in every respect when measured against the Adams-Bashforth scheme;
it would hardly merit further attention were it not for the fortuitous fact
that its algorithmic structure leads to a useful semi-implicit
generalisation applicable to the case of governing equations which support

iatent or actual fast modes which, without an implicit treatment, would




force the adoption of unduly small timesteps. Moreover, the implementation
of the semi-implicit leapfrog-trapezoidal scheme can be achieved with
essentially no additional storage penalty and in this respect it cannot be
conveniently matched by any corresponding implicit generalisation of the
Adams-Bashforth technique. The folleowing section pays particular attention

to the stability of the semi-implicit leapfrog-trapezoidal method.

3 SEMI-IMPLICIT LEAPFROG-TRAPEZOIDAL METHOD

The implicit trapezoidal method is shown by Dahlquist (1963) to be the
most accurate linear multistep method stable for all frequencies v lying in
the half plane: Re(v) ¢ O . The corrector formula (2.8b) is sufficiently
similar to the true implicit trapezoidal method that it requires only a
minor modification to form the semi-implicit procedure. The predictor,
(2.8a), then formally becomes redundant for those modes treated implicitly,
provided v, exactly equals v. In practice only very few deepest vertical
gravity modes of an NWP model need the benefits of an implicit treatment
(Burridge, 1975) and it is easier to accommodate the relevant adjustments
after the existing corrector step (2.8b) has been executed for all modes.
The steps of such an algorithm are set out as follows:

{ A} ‘y* L 2

y* + 2F*terIst (3. 1a)

[B] F*®+2 = F(y***7) (3. 1b)

[D] R'Lr:‘.’. — W‘#"\H 2 - w'l."‘ - 1/3( Fr-v.»tl + F.4'~r,+-:;-' ) : (3. 1C)

LAl ‘yuo'--,-;'- - Wo v+ 2




(DI AF*"2 = = v, U1 = #ve 8t )71 - Re*2 (3. 1e)
[A] y™* = = y¥*we2 4+ BAF? 5t (3. 1f)
[B] Ft=+2 = Pr=+2 4 AF®2 | (3. 1g)
[C] y*=+® = y=*1 + QF*=+2§t (3. 1a*)

The bracketed labels, [Al, [Bl, [Cl], [Dl, preceeding each of (3.1) signify
one of the four blocks of storage set aside to hold the new field computed
in that equation. In this case, it is assumed that, prior to evaluation of
(3.1a), [A) contains y~, [C] contains y=**', [D] contains F=+'. The last
evaluation, (3.1a'), merely begins the cycle for the next time step, but
with [C] and [D] substituted for [A] and [B] and vice-versa. Operator v,
appearing in (3. 1le) denotes the approximated projection of Jacobian (2.4)
into the space of those fast modes receiving the implicif treatment - for
all remaining modes this operator effectively vanishes making (3. le),

(3. 1f) and (3.1g) superfluous. In the context of the hydrostatic primitive
equations with the linearisation to yield v, being about a balanced state
of rest, (3.1e) involves the inversion of one or mecre elliptic equations
for a grid point model, as in other semi-implicit procedures (eg., Kwizak
and Robert, 1971). With the availability of fast (spectral or multigrid)
elliptic solvers, this stage need not be inordinately expensive. The main
burden of computation, as in the explicit schemes, continues to fall upon

the single nonlinear step, (3.1b), representing the function evaluation
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While the stability of the numerical procedure (3.1) is guaranteed
when the presumed Jacobian v, exactly equals the actual one, v, for all
stable v (i.e., for all its eigenvalues on or to the left of the imaginary
axis), the practical stability question concerns the case when v, is an
imperfect approximation. For example, the frequencies of gravity waves can
be raised or lowered by Doppler shifting due to the ambient flow but it is
practically impossible to vary v, directly to allow for this. It is
therefore appropriate to consider the idealised system of a single mode
implied by (3.1) when v, is fixed but v remains free to vary. The analysis
proceeds as in section 2 and, as before, it will be convenient to assume
5t = 1. Let the relationship of R™ and F** to y~ for the free homogeneous

numerical modes be,

RE=rw®
(3.:2)
ErEs = ooy
Then proceding as in subsection 2(c), the steps of (3.1) imply:

ay* = 1 + 2 v'y ’
' G lh - et Gumit \GRLI LE T L0 T

sl bl (3:3
=g = =

&~ Vo
N —avar .

from which is obtained (2.23) as before together with a new formula
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relating v to y:

-

RS ‘:'_\../_ Q== 1) = ‘/‘._./';- - 1) (3
a ANy SNy R

The scheme trivially retains second-order accuracy for asymptotically
small v'. The stability for v in the neighbourhood of v, is more
interesting, particularly for the neutrally stable oscillatory modes ( v,
on the imaginary axis). Figures 3{(a), (b) and {(c) show the stability curves
in the v-plane for Vo = 1, 21 and 3i respectively. In each case only the
interior and boundary of the upper lobe corresponds to values v that yield
a numerically stable scheme. It is observed that any neighbourhood of v
on the imaginary axis contains v for which the scheme is slightly
unstable; for small values v, the instability may be imperceptible but it
cannot be ignored for larger v, that also differ significantly from the
true system frequency, v. The stability range on the imaginary axis in
these examples has limits at v = v, and v = 2{v, + 13/3. By augmenting
v, with a small positive real part, stability is recovered on both sides
of the intended frequency. This is seen in each of figures 4¢a), (b) and

(c), which correspond to figures 3(a), (b) and (c) respactively except for

the addition of an increment of 0.1 to each of the corresponding values of

4, SUMMARY

Among some efficient and simple time integration schemes one, a
“leapfrog-trapezoidal" method, stands out as being attractive for accurate
numerical simulation of atmospheric or oceanic systems that contain both

oscillatory and damped modes, being stable without modification, to these
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modes when their time scales are well resolved by the time sfep chosen,
while permitting the necessary semi-implicit modification to be made in a
particularly straightforward way when some of their time scales are short
enough to require an implicit treatment. While it is recognized that the
cost of reserving four times the storage needed for a single model field
remains too high a price for many existing operational or experimental
models whose success or competiveness relies on achieving the maximum
spatial resolution possible, the increasing availability of computers with
large amounts of central memory together with a perceptible trend towards
parallel integrations of ensembles of NWP models to accommodate the needs
of medium-range prediction, means that in future models, a greater stress
may be placed on efficiency and accuracy of the computations rather than on

the attainment of maximum achievable resolution.

Historically, truncation errors in primitive equations models have
been mainly a problem involving the spatial differencing; temporal
differencing having been immune by virtue of the excessively small time
steps employed for stabilty (not accuracy) reasons. Improvements in spatial
accuracy brought about by developments of spectral and finite-element
techniques, or by the adoption of high-order differencing, together with
the recent resurgence of interest in semi-Lagrangian methods that open the
way to the use of longer time steps, all serve to highlight the need to
ensure that time discretisations, just as much as their spatial
counterparts, preserve comparably high standards of numerical accuracy and
stability. In this note I have drawn attention to the merits of one
particular timé integration scheme which is simple to apply, frugal on

function evaluations, virtually as accurate as the pure trapezoidal method,
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he, stable to an extensive

range of both ocscillatory and dissipative modes

APPENDIX

Multistep methods equivalent to the first four schemes of section 2.

Using (2.53) to eliminate y* and y™"' from (2.5b) yields a single

explicit multistep formula for the preliminary value:

W:Q b o " 2 W‘f’x»t 1+ 2F T o P F.s'm i (A 1)

The same substitution into (2.6b) yields

\yir«.“ = ],?':"r.-*—! + §F1-3,~| —
5]
z

which is just the second-order Adams-Bashforth method. Using (2.8a) to

eliminate y***' and y***“ from (2.8b) leads to:

Pier

which approximates the form of the Adams-Bashforth method (2.7).

Vo2 4 B(AF¥THR — 3ZEFTED G i) ; (A. 22
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CURRENT SHORT - RANGE FORECASTING RESEARCH SCIENTIFIC NOTES (AUGUST 1990)

The Short- Range Forecasting Research Branch (formerly Met O 11) Scientific
Notes which contain information of current use are listed below. The complete
set of Scientific Notes is available from the National Meteorological Library on
loan, if required. ‘

1. The theory of periodic solutions of the semi-geostrophic equations.
R.J. Purser
October 1987

2. Properties of the partial differential equations governing various
types of atmospheric motions and implications for numerical methods.
M.J.P. Cullen
December 1987

3. A geometric model of balanced, axisymmetric flows with embedded
penetrative convection.
G.J. Shutts, M. Booth and J. Norbury
February 1988

4. Implicit finite difference methods for computing discontinuous
atmospheric flows.
M.J.P. Cullen
March 1988

De Variational aspects of semi-geostrophic theory.
R.J. Purser
August 1988

6. On the incorporation of atmospheric boundary layer effects into a
balanced model.
M.J.P. Cullen
July 1988

7 Implicit finite difference methods for modelling discontinuous
atmospheric flows.
M.J.P. Cullen
June 1988

8. An analytical model of the growth of a frontal intrusion.
M.W. Holt and G.J. Shutts
November 1988

2k Planetary semi-geostrophic equations derived from Hamilton's
principle.
G.J. Shutts
July 1588

10. Semi-geostrophic moist frontogenesis in a Lagrangian model.
M.W. Holt
September 1988

11, Generalised Lagrangian solutions for atmospheric and ocean flows.
M.J.P. Cullen, J. Norbury and R.J. Purser
November 1988
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12, Properties of the Lagrangian semi-geostrophic equations.
M.J.P. Cullen and R.J. Purser
January 1989

13, A simple two phase precipitation scheme for use in numerical
weather prediction models.
B.W. Golding
June 1988

14. A test of a semi-implicit integration technique for a fully
compressible non-hydrostatic model.
M.J.P. Cullen
September 1989

15. Dynamical aspects of the October storm 1987 : A study of a
successful Fine-mesh simulation
G.J. Shutts
September 1989

16. A conservative split-explicit integration scheme suitable for forecast
and climate models.
M.J.P. Cullen and T. Davis
January 1830

17. The dynamical structure of some North Atlantic depressions simulated
by the fine-mesh model.
G.J.Shutts
January 1980

18. An Idealised Simulation of the Indian Monsoon using Primitive
Equation and Quasi - Equilibrium models.
M.H. Mawson and M.J.P. Cullen
August 1990

49 Time - Integration Schemes for meteorological simulations involving
oscillatory and dissipative modes.
R.J. Purser
July 1990




