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THE CORIOLIS FORCE IN GLOBAL ATMOSPHERIC MODELS:

IT. DYNAMICALLY CONSISTENT QUASI-HYDROSTATIC EQUATIONS

A. A. White and R. A. Bromley

Summarz

Global, quasi-hydrostatic models having a complete representation
of the Coriolis force are proposed. The vertical component of the
momentum equation remains in diagnostic form in each case. The
simplest proposed models conserve energy but do not imply exact axial
angular momentum principles or analogues of Ertel’s potential
vorticity conservation law. Conservation of axial angular momentum
and potential vorticity (as well as energy) is achieved by a more
elaborate formulation in which all metric terms are retained and the
shallow atmosphere approximation is relaxed. Distance from the centre

of the Earth is replaced by a pseudo-radius which is a function of

pressure only. This model is put forward as a more accurate
alternative to the traditional hydrostatic primitive equations; it
preserves the desired conservation laws and may be integrated by
broadly similar methods (although its implementation in an existing
0-coordinate spectral model would not be straightforward). Various

possible extensions are discussed, including a global,
acoustically-filtered model which retains a prognostic form of the
vertical momentum equation. Isomorphisms with certain Boussinesq

forms of the equations of motion are noted and exploited.



a5 Introduction

Coriolis terms proportional to the cosine of the latitude, ¢,
occur in the =zonal and vertical components of the Navier-Stokes
equation when the motion is referred to a frame rotating about the

polar axis. The importance of these cos® Coriolis terms, which are

neglected in the familiar hydrostatic primitive equations, was
examined in part I of this study (White, Bromley and Hoskins 199x,
here cited as paper I). It was concluded that the cos¢ Coriolis terms
may play a small but not negligible rgle in the dynamical balances of
diabatically-driven, synoptic-scale motion, especially in the tropics.
Their inclusion in global numerical models was therefore advocated,
but a review of the conservation properties of the hydrostatic
primitive equations (HPEs) demonstrated the high standards of
dynamical consistency against which any more accurate approximation to

the Navier-Stokes equations should be judged.

In this paper we propose various ways of including the cos®
Coriolis terms in acoustically-filtered models of a global,
compressible atmosphere. Varying degrees of dynamical consistency are
achieved. Each proposed model involves relaxation of the hydrostatic
approximation in the sense that certain terms other than those
representing gravity and the vertical pressure gradient are retained
in the vertical component of the momentum equation. This is
accomplished (when pressure is used as vertical coordinate) through an
adaptation of the procedure used by Miller (1974) to formulate a

nonhydrostatic convection model in pressure coordinates.



Pressure coordinate forms of the HPEs, and their conservation
properties, are briefly recalled in section 2. In section 3, modified
HPE systems which include the cos¢ Coriolis terms within the usual
shallow atmosphere framework are proposed. Good energy conservation
properties are implied, but precise axial angular momentum and
potential vorticity conservation principles are lacking. In section
4, by a partial relaxation of the shallow atmosphere approximation and
the inclusion of all metric terms, we obtain pressure and sigma
coordinate formulations which include the cos$ Coriolis terms and
possess good analogue forms of the conservation laws for axial angular
momentum and potential vorticity, as well as energy. Possible
extensions of these acoustically-filtered formulations, and various

other issues, are discussed in the concluding section 5.

Unless otherwise stated, symbols have the same meanings as in
paper 1I. A simplifying notation for differential operators in

different vertical coordinate systems is adopted; details are given

below, in section 2.




2. Pressure coordinate forms of the HPEs

The most important of the quasi-hydrostatic models proposed in
sections 3 and 4 are those which use pressure (rather than height) as
vertical coordinate. For comparison we lay out in this section the
well-known pressure coordinate forms of the HPEs and note the
corresponding versions of the various conservation properties. The
pressure coordinate HPEs are of course precise transforms of the

height coordinate equations (see Eqs (3.14)-(3.20) of paper I).

The zonal and meridional components of the HPE momentum balance

may be written as
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Here @ = Dp/Dt , ® = gz and the derivatives 9/t , 8/dx , 0/0¢ are

each taken at constant pressure.

The continuity equation is

f6.0)
Vp.! + a_p =0 (2.4)
in which
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and the thermodynamic equation may be written as

DL RTW

cp Dt 5 = Q (2.6)

(with D/Dt given by (2.3)).

For many purposes it 1is helpful to work in terms of the

pressure-based but height-like coordinate Zs(p) defined by

P RTS(p')dp'
zs(p) = Jp oo (2.7)

in which TS = Ts(p) is some reference temperature profile and po is a
constant reference surface pressure. In terms of Zg» Eqs (2.3) and

(2.4) become

S e T e
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1 0 ~
v v ey (P W) =10 (2‘9)
p Ps azs s
- Dzs wRTS
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Eq (2.9) is isomorphic to the continuity equation of an incompressible
fluid having a mean density profile ps(z), where z is geometric
height. The formal resemblance of the HPEs in pressure coordinates to
quasi-Boussinesq equations in height coordinates is particularly clear
when the transformation to zs(p) is made. Isomorphisms of this sort

will be exploited in later sections.



The HPE conservation laws (3.21)-(3.23) of paper I take the
following forms in pressure coordinates:

Axial angular momentum

%E ((u + Qacos®P)acosP) = ancos¢ - gg (2412
Energy

D ] b 3 i

R e R cpT ) + Vp.(1¢) ¥igs (0d) = Q + v.Fy (2.13)

Potential vorticity

c.ve
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Since p is here held constant in the horizontal derivatives, the
operators V and Vx - and hence T - are differently defined than in the
height-coordinate case (see Eqs(3.24) - (3.26) of paper I). We do not
consider it desirable to introduce a special notation to emphasize
this; both definitions will be used in later sections but it should be

clear in each case which is appropriate.



3 Energy conserving extensions of the HPEs

As noted in paper I the term 2Qwcos® in the zonal component of the
Navier-Stokes equation ((3.2) of paper 1) represents the rate of
change of zonal velocity required purely by conservation of angular
momentum when a particle is displaced vertically at latitude ¢. It is
not possible to include the cos® Coriolis terms in the shallow
atmosphere HPEs whilst retaining full dynamical consistency. This
section is motivated by the fact that energy consistency is readily
achieved, and by the observation that some authoritative texts
(e.g.Holton 1972, Gill 1982) cite shallow atmosphere forms of the
components of the Navier-Stokes equation in which both of the cos®
Coriolis terms and all of the metric terms are retained. The analysis
also serves to introduce the technique for representing the necessary

nonhydrostatic effects within a pressure coordinate framework.

(a) Height coordinate forms

If the cos® Coriolis terms are included, but no other changes are

made, the height coordinate HPEs assume the following modified forms:
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where
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Egs (3.1) - (3.5) imply the energy equation
D =2
p i 2 v = !
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(3.5)
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which is the same as the original HPE form (see (3.22) of paper I).

From the zonal component, (3.1), it is readily shown that

@ 3
p%z (u + Qacos®)acos| = pFlacos¢ - g% - ZQpawcosz¢
\ J
and
( 3
D 5 . x o
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(3.8)

(3.9)

(D/Dt is defined by (3.6)). Neither (3.8) nor (3.9) constitutes an

acceptable angular momentum principle: Eq (3.8) does not reproduce the

HPE form ((3.21) of paper I) and Eq (3.9) does not reproduce the

Navier-Stokes form ((3.8) of paper I1). However, at least some of the

extra terms are expected to be small for motion in a shallow

atmosphere; see Veronis (1968).
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Eqs (3.1)-(3.5) imply the following law for the rate of

change of potential vorticity in free, adiabatic motion:

.
o 2 [g :’6] 2 ﬂzi_'ﬁ' (u.90) (3.10)
in which
s [_%, %+ZQCOS¢,
2Qsin® + 23%35 ( g% - ga (ucos®))

x
The scalar quantity C .V0/p is thus a Lagrangian conserved quantity of
the formulation (given free, adiabatic motion) only in steady flow.
Eq (3.10) may be derived by an extension of the method outlined in the

Appendix of paper I.

There are several other energetically consistent extensions of
the HPEs which include the cos® Coriolis terms. Inclusion of —uz/a in
the vertical component (3.3) gives the HPE energy equation (3.7) if
uw/a is included in the zonal component (3.1). This extension retains
the quantity (22 + u/acos®) wherever (22 + u/rcos®) appears in the
components of the Navier-Stokes equation (see (3.2)-(3.4) of paper I).
The further inclusion of —vz/a in the vertical component (3.3) is
energetically consistent if vw/a is included in the meridional
component (3.2). Shallow atmosphere versions of the components of the
Navier-Stokes equations have been discussed by Veronis (1968), Holton

(1972) and Gill (1982); these too are energetically consistent. None



of the possible extensions noted here gives satisfactory angular

momentum and potential vorticity conservation laws.

(b) Pressure coordinate forms

Since Eq (3.3) is a nonhydrostatic form, it might be expected
that pressure coordinate transforms of the equations considered in

section 3(a) would not be useful. However, the hydrostatic

approximation remains an accurate statement except where horizontal

variations of the balance represented by (3.3) are relevant, and

progress can be made using the technique applied by Miller (1974) to
develop a pressure coordinate model of nonhydrostatic convective
motion. (See Miller and White (1984) and White (1989a) for further
justification and discussion of this technique.) A procedure similar
to that described below could be applied to any of the extensions of

the HPEs noted in the previous subsection.

We define
e Zngos¢ (3.11)

(Scale values of € are equal to the quantity E defined by Eq (4.5) of

paper 1.) Transformation to pressure coordinates of Egs (3.1)-(3.5)

gives
' 3
Du _ u : Dz (1-2). 00
= 20 + acos¢J vsin® + 29 Dt cos® + v i e % (3.12)
\

Dv 100 4 2 usin® + {1-€) o8 =F
a 0¢

Dt acos® (3.13)

¢
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and all differentiations w.r.t. t, A or ¢ are taken at constant p.

Eqs (3.12)-(3.16) are exact transforms of the height coordinate
equations and thus imply the same conservation properties. They
could, in principle, be used in numerical integrations, but simpler
forms may be derived by exploiting the smallness of € - as represented

by the scale value E; see Eq (4.5) of paper I.

In addition to E, relevant non-dimensional quantities are a
Froude number (F), a Rossby number (Ro) and an inverse Richardson
number (Ri_l). Table 1 gives their definitions and lists typical
values for synoptic scale motion in the tropical and middle latitude
tropospheres. These values will be assumed repeatedly in the
following scale analysis. For both the tropics and middle latitudes,
| o s Ri_1 and Ro obey the key order-of-magnitude inequalities

E«F«Ri!«Ro (3.17)

11
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Consider first the continuity equation (3.15). The horizontal
divergence term is of order % Ro and so it dominates the material
derivative term if

E « Ro (3.18)

which is typically very well satisfied at all latitudes, and
especially in the tropics (see Eq (3.17) or Table 1). This argument
applies to middle-latitude synoptic-scale systems and to low-latitude
systems in which diabatic forcing is dominant (and Ro . 1). In
quasi-adiabatic, synoptic-scale motion in low latitudes the horizontal
divergence is of order % (RiRo)_1 (Charney 1963). The condition for

the neglect of the material derivative term in Eq (3.15) is therefore

E « Ri !

(3:19)
(since Ro .~ 1) which is typically well satisfied, according to
Eq (3.17) or Table 1. In summary, neglect of the material derivative
term in Eq (3.15) is justified for synoptic scale motion at any

latitude. The remnant continuity equation is of course the HPE form

(2:4).

The € terms in Eqs (3.12) and (3.13) may be neglected by
comparison with Du/Dt or Dv/Dt to the extent that (3.17) is satisfied.
A more demanding condition for the neglect of the € term in Eq (3.12)
is that it should be small compared with 2Qcos¢ %%. (This is the
first comparison which distinguishes the present case from that of the
HPEs themselves.) It is readily shown that the relevant conditions

are

12



i for tropical diabatic systems

and F « Ri_1 for adiabatic systems.

F « 1 is very well satisfied. F « Ri"1 is satisfied to one order of
magnitude at least (see Table 1) but is the most marginal of the
conditions so far obtained. Note, however, that the term 2Qwcos¢ is
itself negligible in adiabatic, synoptic-scale motion (see section

4(a) of paper I).

To retain energy consistency it is necessary to make further
approximations in Egs (3.12) and (3.14). There are several ways to
proceed, each of which exploits a form of the familiar approximation

Bz O
pE " Be (3.20)

2
(which is valid if EEE €« 1 - a condition equivalent to F « Ri 1; see Eq

(3.17) and Table 1). Here we choose the simplest such approach,
following that used by Miller (1974) in his nonhydrostatic convection
problem. Reference profiles of temperature and geopotential, Ts(p)
and ¢s(p), are introduced; these profiles represent a horizontally
averaged, hydrostatically balanced mean state as a function of
pressure. Eq (3.20) is applied in the form

Dz wRTs
n (3.51)

(cf Eq (2.10), in which Ts(p) was any chosen reference temperature

profile). In the vertical component (3.14), € g? is replaced by
d®_ RT_ P
[3 55_ = —'E —E—' After incorporating all these approximations the set

of pressure coordinate equations (3.12)-(3.16) becomes

13
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with w defined by Eq (3.21).

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

The energy equation implied by (3.22) - (3.26) is the same as the

HPE, p-coordinate form (2.13). It is readily shown, however,

satisfactory angular momentum principle is not produced.

that a

Furthermore,

even for free, adiabatic flow the potential vorticity law takes the

non-conservative form

~
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Lagrangian conservation of the quantity g'.ve/ps is thus achieved only
in free, diabatic steady flow. The conservation properties of Egs
(3.22)-(3.26) evidently parallel those of the height coordinate

equations discussed in section 3(a).

The pressure coordinate equations (3.22) - (3.26) may be
transformed to 0-coordinates ( ¢ = p/p*, where Dy = surface pressure)
without approximation. The resulting system could be integrated in
time essentially as the 0-coordinate HPEs are treated. Details will

not be given here.

15



4, Energy, angular momentum and potential vorticity conserving

extensions of the HPEs

The modifications of the HPEs which were proposed in section 3
retain the cos® Coriolis terms and imply consistent energetics. They
do not possess exact angular momentum principles or analogues of
Ertel’s potential vorticity theorem. Although the inconsistencies in
both respects may be quantitatively small, it is desirable that any
proposed extension of the HPEs should possess comparably good
conservation laws for angular momentum and potential vorticity as well
as energy. Also, the conservation of angular momentum governs the
form invariance of thé energetics to transformation between
co-rotating frames; it can be shown that energy conservation laws are
frame-independent only if an appropriate angular momentum principle

exists (White 1989b).

(a) A height coordinate model

Consider an approximation of the Navier-Stokes equation in which
the horizontal components are retained unchanged but the material

derivative and friction terms are omitted from the vertical component:

( \

Du _ u o o
s 20 + e (vsin® - wcos®) + Sreoe Fy (4.1)
\ )
¢ \
Dv u ; ool Op
S 20 + s usin¢ + s S F¢ (4.2)
\ J
u v2 1 Jp
- (29 + cos(b)ucos(b =tee ¥ B Bl 0 (4.3)
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where
D a u a v 0 a

Dt "t trcosd At raetYar il
(cf Egqs (3.2) - (3.5) of paper 1).

Eqs (4.1) - (4.3) may be written in vector form as

o Dw 1

o k bt t 2Q x u + gk + o gradp = Eh (4.5)
in which Eh = (FX,F¢,O) represents the horizontal components of the

external force per unit mass. Eq (4.5) implies conservation of axial
angular momentum because its zonal component (4.1) is the

unapproximated Navier-Stokes form.

The unapproximated continuity and thermodynamic equations are

Dp

ﬁ+pdivg=0 (4.6)
I
Dt - [Tcp] Q (4.7)

(given as Egqs (3.6) and (3.7) in paper I). Egqs (4.5)-(4.7) imply the
energy conservation law

2

Pe=( v '+ 9+ c,T ) + div (pu) = p(Q + v.F (4.8)

D
Dt

DO =

B
which differs from the unapproximated form (Eq (3.9) of paper I) only
in the absence of the contribution of %wz to the specific kinetic

energy and of the contribution of prr to the rate of working of the

external force F.

The potential vorticity properties of the model (Eqs (4.5)-(4.7))

17




may be established by noting that

DE
LB e i o
curl[ k ot } =5t € div u - (E.grad) u (4.9)
e
where r& = i g—; =0 -(%'s(p 5;' (4.10)

(i and j are unit vectors in the zonal and meridional directions.) Eq
(4.9) reflects the special symmetry of the spherical polar coordinate

system; a sketch proof is given in Appendix A.

Using Eqs (4.9), (4.10) and the known properties of the
Navier-Stokes equation it follows that Eq (4.5) implies the vorticity
equation

DZ’

=— + Z'div u - (Z'.grad)u + curl(% gradp) = curl F

Dt (4.11)

h

Here 2 = Z - £ 1is the absolute vorticity (cf Eq (3.11) of paper 1)

stripped of all terms involving w:

oot 1 D - |
ZX > e Op (rv)
7' = 2Qcosd + g (ru) > 4,12)
e o pfp (4.

&N
"

r rcos®

2Qsin® + 1 [ g% - ga(ucos¢) ]

If the motion is frictionless and adiabatic it then follows from

Eqs (4.6), (4.7) and (4.11) that

18



D Z’ .grad®
Thus Eqs (4.5) - (4.7) imply an analogue of Ertel’s potential

vorticity theorem.

Miller and Gall (1982) used a form similar to (4.5) in a numerical
study of zonally symmetric motion of a Boussinesq fluid. They noted
its consistent energetics but did not discuss the angular momentum or

potential vorticity properties.

(b) A pressure coordinate model

The height-coordinate model discussed in section 4(a) may be
transformed to pressure coordinates, and a tractable and consistent
set of equations obtained by an extension of the method used in
section 3. In the interests of brevity we omit the detailed steps,
and simply present the proposed equations. Apart from the retention of
all metric terms, the only new feature is that the shallow atmosphere
approximation is not applied. Rather, r 1is replaced by the

pseudo-radius rs(p) defined as

Po RT_ (p~)
r‘s(p) = a+ . —g—p'j— dp-’ (4.14)

Hence rs(p) is the mean radius of the Earth plus the height zs(p)
defined by Eq (2.7). Ts(p) is to be interpreted as a profile
representing the horizontally averaged, hydrostatically balanced state

of the atmosphere (see section 3). According to Eq (4.14)

19
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(cf.(3.21)) which is a key element in the dynamical consistency of the

new model.
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In (4.15), and below, it is assumed that

u

+

a

r cosd OA
s

+ +

"<
8l®

S

Q)IQ)
T

The proposed p-coordinate equations are:
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In the vertical component equation (4.19),

u= (ZQurScos¢ + u2 + Vz)/PSg

which is an extension of the quantity

= F

P

(4.16)

A and ¢ being taken at

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

introduced in section 3 (see Eq

(3.11)). In the continuity equation (4.20),

vV v =
p'=

; [
r cos®
s

du

ar

+ 26 (vcos¢)]

20
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Scale analysis similar to that used in section 3 may be applied to
Jjustify the neglect of terms involving M in deriving (4.17) and
(4.18). The simultaneous inclusion of small metric terms
(such as v;/rs in (4.18)) cannot be justified by scale analysis,
however. Their retention is to be regarded as a consistency
requirement, since the angular momentum and potential vorticity
conservation principles noted below are lost if these small terms are

omitted.

By using (4.15) it is easily seen that the zonal component (4.17)

implies the axial angular momentum principle

D E ad
Dt (u + Qrscos¢)rscos¢ = Flrscos¢ - (4.24)

This is evidently a good analogue of the Navier-Stokes form (Eq (3.8)
of paper 1I), though the omission of the very small term

—(u/rscos¢)(8¢/al) during the derivation of (4.24) should be noted.

The energy equation implied by Eqs (4.17)-(4.21) is

2

Y. 2e T )N 19
o p

(v.®) + 2 3p (r§w¢) =Q + v.F

i
s

which is reminiscent of the HPE form (2.13).

( (4.25)

UIU
ct
DO =

p h

The potential vorticity properties of the new model may be
established by noting an isomorphism to the height coordinate model

described in section 4(a). From (4.14) and (4.15) it follows that

21



9 e a0
dp gp Or
ad 0
and (t)a—p -w¥.
s
Hence
D 3 i d v O )
bt "5t *rcosb A ' r_ 38tV ar (4.26)
(cf (2.8)) and the vertical component (4.19) may be written as
2 2
oty - Lt X EE B C o (4.27)
r T Or
s s s
The inertial, metric and Coriolis terms in Eqs (4.17) - (4.19) are

thus isomorphic to the corresponding terms in the height coordinate
forms (see section 4(a)). Further, the isomorphism extends to the
commutation properties of the relevant operators. For frictionless,
adiabatic flow Eqs (4.17)-(4.21) imply the potential vorticity

conservation law.

2.90
D_ [— } 0 (4.28)

Here P = p/RTS (as in (2.11)) ,

- 1. -0 1 o
e [ r cosbA ' r 0¢ ' Or } (4.29)
s s s
and
24! d d
Z= [ - %— 5—— (vrs) y 2Qcosd + %— o (urs) s
s s
: 1 dv..ad
2Qsin® + rscos¢ [ " % (ucos®) ] ] (4.30)

22



Vertically propagating acoustic modes are not implied by the new
system. This follows from either the omission of Dw/Dt in the vertical
component equation or the isomorphism of the continuity equation
(4.20) to an incompressible fluid form. Horizontally propagating
acoustic modes - the Lamb modes - will be present (as in the HPEs)
unless the boundary condition ® = O is applied on appropriate pressure

levels (see, for example, Miller and White (1984)).

(c) o-coordinate forms

Transformation of the pressure coordinate equations (4.17)-(4.22)

to 0-coordinates ( 0 = p/p*, D= surface pressure) gives:

Du u : &
Dt - [ZQ + rscos(p](vsm(b - wcos®)

R(T+UT )
SOr L L e o e
: rscos¢[ at Dy 81* ] e e
LA e B R Rl
Dt r cos® r
s s
R(T+UT )
L1000 ey e Gpunl
+ rS[ 3 * s atb* ] L (4.32)
ob R =
op O 2 % a e
5%* 50 on b e oV (D v 2 Dy 2 (P2 0) =00 (4.34)
DT RT® _
GonE i Q (4.35)
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All differentiations with respect to t, A and ¢ are carried out at

constant O,

D a u o v _a— . .a_
Dt - ot | rscos¢ I BY a * O 0 (4.36)
and
~ a a
vo'(p* v) = E‘l"_ Y (p*urs) + 3 (p*vrscos¢) . (4.37)
rscos¢

The quantity M which appears in Eqs (4.31)-(4.33) is defined by Eq
(4.22). b= rs(p) is defined by Eq (4.14) (and so multiplication by
rs(p) does not commute with the operators 8/3t, 9/0A, 3/39 taken at

constant 0; hence the form of the divergence operator in (4.37)). w

is defined by Eq (4.15), with

Numerical time integration of (4.31)-(4.35) may be carried out

ol
QIQ-e
-+
UIH
2l

*

essentially as for the HPEs. The continuity equation (4.34) is used
in the integrated forms

1 ~

2. %

¥ (D, d 50F = ‘[0 r. Vo-(p, ¥) do (4.38)

. £ 8p 4 o

Tz = -p— o 5 I rs Vo,(p* \_/) do (4.39)
* Pyl 0

to find ap*/at and then 0. The vertical component (4.33) is then used
to find ® (knowing u, v and T from the previous time-step) in the same
way as the hydrostatic relation is used to find ® from T (and ¢*) when

integrating the HPEs.
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Equations (4.31), (4.32) and (4.35) may be converted to a flux
formulation through the application of the continuity equation,
(4.34). Integration of the O-coordinate equations in either
formulation poses no special difficulties in a grid-point numerical
model. However, the variation of rs(p) over sigma surfaces means that
spectral methods could not be applied in the same way as in HPE
models; indeed, it appears that substantial reformulation of an
existing spectral HPE model would be needed. (The pressure coordinate
forms given in the previous subsection are readily amenable to
spectral representation, given the approximate lower boundary
condition W = 0 at p = po. All the shallow atmosphere formulations
discussed in section 3 are amenable to spectral representation using

spherical harmonics.)
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Ol Discussion

In this paper we have proposed dynamically consistent ways of
including the cos® Coriolis terms in quasi-hydrostatic,
acoustically-filtered models of the global atmosphere. The models
described in section 3 conserve energy, but not axial angular momentum
or potential vorticity. The pressure-coordinate model described in
section 4 reproduces all three conservation properties, and
incorporates a limited relaxation of the shallow atmosphere
approximation. This new model (which may be precisely transformed to
0-coordinates or other vertical coordinate systems) is put forward as
a more accurate alternative to the traditional hydrostatic primitive
equations. It has comparably good conservation properties and is as
easy to integrate numerically using grid-point methods. A number of
variants of the new model seem well worth exploring in future studies

and will now be briefly discussed.

(a) A nonhydrostatic global model

It is straightforward to extend the p-coordinate equations
(4.17)-(4.21) to include a prognostic form of the vertical component.

If (4.19) is replaced by

~

2 2
Dw _ S s SRR 00 e
Dt 2Qucos® r Ts + ars =0 (5.1)

(cf.(4.27)) then the three components (4.17), (4.18), (5.1) may be

written in vector form as

~

Du <

e S s
Dt + 2Q'x u k T + Vb = Eh (5.2)

0]
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~ ~

where u = (u,v,w). The implied axial angular momentum principle is
(4.24), as before. When taken together with Eqs (4.20) and (4.21), Eq
(5.2) gives consistent energetics and a potential vorticity

conservation law in terms of the vorticity

w1 e 1__ o
b o 5;; (vrs) y 20cos® + ;; ars (urs) - rscos¢ TR

: 1 dv a
2Qsing + r—sm [a - é(—b (ucoso) ] ]

~

- which is similar to Z (see (4.30)) but with w terms included

(cf.(3.11) of paper I).

This formulation incorporates the representation of the vertical
acceleration term Dw/Dt used in Miller’s (1974) p-coordinate model of
nonhydrostatic convection. Solution would proceed by time integration
for ; as well as for u,v and T, ® being determined by solving the
global 3D Poisson equation obtained by taking the divergence (6.) of

(5.2) and applying the continuity equation (4.20). A O-coordinate

version of this model may be envisaged (see Miller and White (1984)).

Nonhydrostatic, global models which retain the term Dw/Dt in the
vertical component of the momentum equation have been discussed by
Daley (1988), but his formulations allowed acoustic modes.
Nonhydrostatic, Boussinesq fluid models using spherical radius (r) as
vertical coordinate have been integrated numerically by Gilman (1975,
1977), Miller and Gall (1982) and others. The model proposed here is

nearly isomorphic to these Boussinesq models, the only difference
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being that the mean density is a function of the vertical coordinate

rs(= rs(p)) rather than being a constant: the continuity equation

(4.20) can be written in terms of 5 and w as

e o r‘2
0 r2 ars s s
S's

bleg (5.3)

V .v +
b

(et (2.9));

(b) A "local temperature" modification

Following Miller (1974), a reference temperature profile Ts(p) has
been used in sections 3 and 4 to define an approximate vertical
velocity (see Egqs (3.21) and (4.15)). It can be shown (White 1989)
that Miller’s nonhydrostatic convection model may be consistently
extended to use the approximate vertical velocity ; = - WRT/gp. The
appearance of the local temperature T (instead of Ts(p)) in this
expression allows a more accurate representation and does not impair
the energy and potential vorticity conservation properties of the
model. Such an extension is possible for the global model put forward
in section 4 (or for the modification discussed in section 5(a)) but
its properties remain to be established. Instead of rs(p), the

~

extended model would use r defined by

~

Dr RT®
N e

T gT (5.4)

Clearly it would be necessary to integrate (5.4) numerically in order
to obtain r as a function of time. Examination of the potential

~

vorticity properties would be complicated by the fact that r (unlike
rs(p)) does not commute with the operators 9/9t , 3/0\ , 3/3¢ taken at

constant pressure; hence the isomorphism exploited in section 4 could
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not be used. A further difficulty concerns the form of the continuity
equation. The height-coordinate form (see (3.6) of paper I) may be

transformed to p-coordinates as

g g, Sigilg. taly Bi. i
3t (r”) + e 5i(ur) + 56(vrcos¢) + 55(wr =70 (5.5)

(assuming constant g and the applicability of hydrostatic balance to
the mass budget). 1In (5.5) the temporal and horizontal derivatives
are taken at constant p, so that the term arz/at is in general
non-zero, and r cannot be taken through the 3/3A and 3/3% derivatives.
These disadvantages remain if r is replaced by ;, but they disappear
if r » rs(p) (in which case the simple form (4.20) is obtained). As

it stands, (5.5) is not convenient for finding surface pressure

tendencies. The 0-coordinate form is

1

a7y 3 F) g g -
3r(pyr’) + ot | FIlpur) + 3¢(Pxvrcos®) | + p, ==(r°0) = 0

from which Jp*/0t cannot be readily calculated because of the
accompanying rz factor. (Note, however, that (4.34) may be recovered
1 S rs(p).) These complications reflect the fate of the
relationship between total atmospheric mass and mean surface pressure
as the shallow atmosphere approximation is relaxed. In the shallow
atmosphere case, the total mass M of the atmosphere (assuming
hydrostatic balance) is (area mean surface pressure) x 4ﬂa2/g. When r

2

Py
is allowed to vary, M = (area mean value of I r dp) x 4naz/g; this
0

is expressible in terms of the surface pressure field if r = rs(p),
but not otherwise. Use of rs(p), as in section 4, represents a

natural first step away from the shallow atmosphere approximation, and
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it may be that anything more precise would be computationally

unwieldy.

(c) Variable gravity models

The shallow atmosphere approximation has been relaxed in this
study for reasons of dynamical consistency, and not because it is
considered to be a source of appreciable inaccuracy. Its relaxation
nevertheless prompts a suspicion that the radial variation of gravity
should be allowed for too. If the form g « l/ri is used as a crude
exploratory representation it is found that the p-coordinate form of

the continuity equation is

S e
rscos¢ ox

o 1 3 4 =
+ a¢(vcos¢) + r4 95 T ol =0
s

(As usual, hydrostatic balance is assumed to be applicable to the mass
budget. ) The r: variation in the J8/8p term arises because the
decrease of g with radial distance reinforces the accompanying
increase of spherical surface area. Its appearance suggests that the
usual shallow atmosphere, constant g representation of the HPEs may be

gquantitatively undesirable in stratospheric simulations quite apart

from the importance of the cos® Coriolis terms. The possibility of
including latitude variation of g - to take into account the varying
centrifugal contribution - should also be investigated. Indeed, it is
probably necessary to assume such a variation in order to take best
advantage of the angular momentum principle as it; governs the form

invariance of the energy conservation law.
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Table 1

Definitions and typical values of the nondimensional quantities

i B pi! and ms

Quantity E F Ri Ro

Definition 2QUcos®/g U~ /gH UZ/NZH2 U/fL

?ypical.value 10—4 10-3 10—2_10—1 1
in tropics

Typical value = o = .
in middle 1074 19" 10 ° 10

latitudes
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APPENDIX A

Sketch proof of Equation (4.9)

Upon use of the spherical polar expression of grad (see (3.13) of

paper I) it follows that

Du, _ by 4.9 o1 9 B
curl(k Pt T - kx grad(Dt == (i 3 ) Dt (A1)

d Cosd

because the radial unit vector k is irrotational. (Fig. 1 of paper I
illustrates the spherical polar coordinates A, ¢, r and the associated

velocity components u, v, w and unit vectors is .3 3).

It is readily shown that

i 0 1o . aowt g ald
r ‘23 "4 Cos¢ ' Dt "Dt r 3 Dt T Tcosd o Dt
> (A2)
. w Ow : 1 " Ow
t1i75 35 %3 (vtand-w) 5 ETY
r r cos¢ ;
3 : L, 0w - 1 W
B yhich, EM - (35 - J—23) (A3)
di i ai 3
Now 3% = 4 sin® - k cos¢ , a3 0, 5 0
9j 3j 9j
o B i sin¢ , 5" -k , 5 0 g (A4)
ak ak ak
(and i i cos? , 5 gty ol 0: ) |
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Di
Hence r o= = jutan¢ - ku (A5)
Dj
r ot = - iutand - kv (A6)

Using (A3)-(A5), and (3.12) of paper I for div u, (A2) becomes

\

DE
F R - TR RN e ;
r (i 3 ~ 4 Coso 5i) Dt ~ Dt T § div u
1 dw ,. Ou : dy
+2 a(lga-f-l(a—(b{-w)-l_(_v) > (A7)
r cos®

1 Jw |. 1 OSu : Iy

+ ;E 3 i(vtand - w - e ) — d(utand + s 55) + ku
J
But
Ow J o 2 :
- (E.grad) u = _5—1_— 5% e g% ) (ui + vj + wk)

r cos®

the right-hand side of which expands to give the terms in g¥ and g% on
the right-hand side of (A7), upon use of (A4). Hence, from (Al) and

(A7):

|

curl (k Dw/Dt) = + £ divu - (E.grad) u

o

t

which is (4.9).
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