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SUMMARY

The mixing of air between clouds and their environment is investigated with the help of a simplified
model problem that contains only a small number of dynamically relevant parameters, whose influence
can be systematically explored. The classical model of a buoyant thermal, extensively studied in labor-
atory experiments, is generalised to include the key moist processes of condensation and reevaporation
of cloud water. We consider the evolution of an isolated thermal initiated from a spherical warm and
moist bubble at rest in a moist neutral sounding. The moist thermal loses buoyancy through mixing with
the unsaturated environmental air, and finally collapses. The effect of moist physics on the thermal is
shown to be represented by only three scale-independent parameters. As is expected for real clouds, these
thermals do depend on their initial conditions, and therefore are not self-similar. However, we present
large eddy simulations that exhibit an approximate dynamical similarity, in that the loss of buoyancy
resulting from the mixing process is mainly described by a single scale-invariant parameter which we
call the effective buoyancy, B.y . In order for the thermal to ascend a distance significantly larger than
its initial diameter, B, ;s must be much greater than unity. This implies that the environment must be
close to saturation if the bubble has an initial buoyancy that is typical of real clouds. It is also shown
that the stratification of the environment induces a length scale, Ly,,,, for a thermal with a given buoy-
ancy excess. The resulting scale-independent parameter L.ss = L/Lyyo (where L is the initial bubble
radius) is shown to affect the geometry of the thermal. Indeed, the thermal may break up if L.y is
too large. These geometrical effects can be explained by relating Ly, to the depth reached by forced
downdrafts, which corresponds to the vertical extent of the largest eddies that entrain unsaturated air
into the thermal.

KEYWORDS: convection thermal similarity theory

1. INTRODUCTION

One of the most important unsolved problems of cumulus convection is that of mixing
of the buoyant cloudy air with the dry air of the cloud’s environment. This mixing leads
to re-evaporation of cloud water, reducing the buoyancy of the cloudy air, and altering
the microphysical processes that determine the fate of the hydrometers within the cloud.
The bulk properties of the convective cloud, that must be ascertained to determine its
effects on larger scales of motion in the atmosphere, are also strongly affected by mixing.
These properties include the cloud top height, and indeed the entire vertical profile of
mass transport by the cloud, as well as the precipitation and the vertical transport of
moisture and heat.

Early theories of convective mixing were based on an assumption of self-similarity,
where the mixing was a result of a fully-developed turbulent field with no intrinsic length
or time scales, apart from those provided by the constraints of the initial volume of buoy-
ant air (Morton et al. 1956). These ideas were tested against laboratory experiments in
which buoyant fluid was introduced into a neutrally stratified environment. Two exper-
imental configurations have been widely employed (e.g. Morton 1997). The first is the
thermal, where a discrete bubble with a known volume of buoyant fluid is released sud-
denly at the initial time. The second is the plume, where a continuous stream of buoyant
fluid is released from a pipe, giving a known buoyancy flux. In each case the size of
the initial bubble or pipe is designed to be small in comparison to the eventual size of
the thermal or plume. When the fluid has moved a sufficient distance from the source,
the turbulence has developed to the point where the initial conditions at the source are
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forgotten. Environmental fluid is then entrained at a constant rate, leading to a linear
increase in size of the thermal or plume with distance from the source, but no change
in shape or structure. In other words, the flow is self-similar. The linear spread is the
natural result of the absence of any intrinsic length scales in the experiment, other that
the distance from the source.

Self-similarity in these problems is equivalent to the entrainment hypothesis intro-
duced by Morton et al. (1956), and discussed further by Turner (1986). It is hypothesised
that the rate of entrainment of environmental fluid is determined by the local vertical
velocity averaged over the rising fluid within the thermal or plume. The entrainment
hypothesis appears to work well even in situations where self-similarity does not occur.
A prime example is the injection of a thermal or plume into a stably stratified fluid. In
this problem the entity may spread linearly for some time, but eventually the self-similar
structure breaks down, on a length scale proportional to the level of zero buoyancy of the
injected fluid in the absence of mixing. As it loses buoyancy, the injected fluid spreads
horizontally. The level at which this spreading occurs is accurately predicted by the en-
trainment hypothesis (Turner 1973), although the reasons for its success remain obscure
(Morton 1997). Presumably, at any given level, the turbulence must have a self-similar
structure. This appears reasonable in the experiments discussed above, where the dis-
tance from the source to the level of zero buoyancy is large compared to the dimensions
of the initial source (which must be forgotten). However, the constant of proportional-
ity between the entrainment rate and mean vertical velocity (the entrainment constant)
depends on the experimental configuration and is different for thermals and plumes.

The success of the entrainment hypothesis for laboratory flows prompted its applic-
ation to cumulus convection in the atmosphere (Ludlam and Scorer 1953, Malkus and
Scorer 1955). A moisture conservation equation was added to the dynamical equations,
and mixing was parameterised using an entrainment constant obtained from the experi-
ments on idealised laboratory flows (Morton 1956, Squires and Turner 1962). The further
progress of these attempts is reviewed by Turner (1973), Blyth (1993), and Bretherton
(1997) and will not be discussed in detail here, except to quote the conclusion of Turner
(1973): “In retrospect, it seems clear that clouds (which are typically nearly as broad as
they are tall) will not achieve a fully developed state, and are poor candidates for the
application of similarity theories which describe the steady flow many diameters above
a small source.” The failure of cumulus clouds to reach a fully developed, self-similar
state is apparent in the observation that some subcloud air is often observed to reach
the cloud top level without significant dilution, while observations of liquid water con-
tent show that most of the cloud air has been significantly diluted (Warner 1970). If the
entrainment parameter in a thermal or plume model of a cloud is chosen to be large, the
cloud air will be strongly diluted and will lose buoyancy rapidly. The cloud top height
will then be underpredicted. If the entrainment rate is chosen to be small enough to
predict a reasonable cloud top height, too little mixing and re-evaporation will occur and
the liquid water content will be overestimated.

Recent research has studied the inhomogeneous structures in clouds, including bubbles
of buoyant air and penetrative downdraughts that are often observed (Blyth 1993, Breth-
erton 1997). The study of these structures has prompted the development of mixing
models based on discrete entities, upward and downward moving parcels of air that mix
in various proportions with their environments. However, these theories lack the rigorous
theoretical basis of the earlier entrainment models and contain many ad hoc parameters
relating to number and properties of entities, proportions of mixing, and precipitation
efficiency. In the absence of firm understanding of the mixing process, it is perhaps not
surprising that the entrainment hypothesis, with all its flaws, is still often employed in
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cumulus parameterisation schemes (e.g. Arakawa and Schubert 1974, Tiedtke 1989, Kain
and Fritsch 1990).

While the failure of the entrainment hypothesis is consistent with a breakdown of
self-similarity on the scale of the cloud itself, there is some evidence that fully developed
turbulence exists on smaller scales within clouds. Fine-scale aircraft and balloon observa-
tions of small convective clouds show power-law scaling of the vertical velocity variance,
which would be expected in a self-similar turbulent cascade (Kitchen and Caughey 1981,
Smith and Jonas 1995). While these authors found that there is sometimes a suggestion
of a peak at small (10-20 m) scales, there is no compelling evidence of a significant input
of energy on scales much smaller than the cloud itself. However, because of the small
number of clouds sampled, the results have little statistical significance at the largest
scales. Baker (1992) finds evidence of inhomogeneity in droplet concentrations on scales
of 5-10 em, but homogeneity on larger scales up to the cloud turret size of 100-1000
m. It has also been suggested, on the basis of two-dimensional numerical experiments
(Klaassen and Clark 1985), that there is an instability that might take place on cloud
boundaries, introducing energy on a preferred scale that is smaller that the cloud itself,
but it is difficult to determine what that scale should be. The growth of a cumulus cloud
as a number of bubbles or turrets is sometimes observed (French et al. 1999), but not al-
ways (Barnes et al. 1996). This might be due to multiple releases of buoyant air from the
boundary layer, or might result from an instability of a single initial burst. It remains an
open question whether there is an intrinsic scale that determines the size of the entities
involved in mixing, other than the scale of the cloud itself.

Abandoning temporarily the goal of understanding the entire cumulus cloud, a num-
ber of studies have explored the mixing process in idealised flows that capture certain
aspects of the convective problem. It is difficult to examine the near-field behaviour of
a thermal in the laboratory, because of the difficulty of precisely reproducing the initial
conditions on which the behaviour now depends. This problem was addressed by Sanchez
et al. (1989), who devised a method for releasing bubbles of buoyant fluid from a motion-
less initial state. The resulting thermals exhibited a reproducible vortex ring structure,
resulting in a smaller entrainment rate than found for fully-developed turbulence. To
examine the effects of latent heat release on mixing, Venkatakrishnan et al. (1999) have
studied the effect on a buoyant plume of electrically heating the plume fluid. They found
that the heating disrupted the turbulent structures and reduced the rate of mixing in the
plume, although the mass flux was not greatly changed, since the velocity of the plume
accelerated. Johari (1992), following the pioneering work of Turner and Yang (1963), con-
sidered the effects of the buoyancy reversal that occurs when re-evaporating liquid water
cools the buoyant air. Buoyant thermals were released, using an alcohol-water mixture
that became negatively buoyant when mixed with the environmental fluid. Surprisingly,
it was found that the small-scale mixing seemed largely unaffected by buoyancy reversal,
even though the trajectory of the thermal was quite different. Baker and Breidenthal
(1984) examined the turbulent structure on microscopic scales, applying a model based
on chemically reacting shear layers, in order to explain the microphysical variability in
clouds. While each of these studies captures important aspects of a convective cloud,
the authors have prudently limited themselves to systems that can be reproduced in the
laboratory, giving confidence that the results are correct, although the applicability to
the atmosphere requires further investigation.

A more speculative approach to the study of convective mixing involves the use
of numerical models as proxies for unobtainable laboratory or observational data. Most
practical simulations depend on the large eddy modelling hypothesis (Mason 1994): that
it is sufficient to explicitly model the large, energy-containing eddies in a turbulent flow.
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It is hoped that the smaller eddies will be controlled by a turbulent cascade from the
larger scales, and the bulk behaviour of the fluid will be independent of the details of
the small-scale flow. This assumption has proved useful in simulating a great variety of
turbulent flows (e.g. Lesieur 1997). Circumstantial support for the application to cloud
modelling is provided by observational studies that indicate a homogeneous turbulent
structure on scales from 1-100 m (Smith and Jonas 1995, Baker 1992). Indeed recent
simulations of shallow cumuli using 50 m resolution (Carpenter et al. 1998) show a
remarkable qualitative resemblance to real clouds. One advantage of numerical models
is that the physics of the model can be modified and simplified to gain insight into the
effects of individual physical processes. This approach was taken by Grabowski (1993,
1995) who carried out an elegant series of numerical experiments that demonstrated the
role of buoyancy reversal in creating inhomogeneous structures in the simulated clouds.
Importantly the simulations agreed with the laboratory experiments of Johari (1992) in
showing that buoyancy reversal had little effect on the rate of fine-scale mixing between
the cloud and environment. It is clear that numerical models offer a powerful tool for
the study of entrainment and mixing in convective clouds, but it must be acknowledged
that the parameterisations of subgrid mixing are largely untested where phase changes
of water are involved, and the results can only be regarded as hypotheses for testing in
the laboratory and in the outside world.

The investigation described in this paper is a preliminary attempt to address some
of the key questions of mixing in convective clouds. In the absence of a simple self-
symmetry, it is important to identify what scales of motion are present in the problem,
and how they are produced. To this end, we present a systematic analysis of a model
problem that includes the effects of latent heat release, buoyancy reversal due to re-
evaporation, and a simple removal of precipitation that ignores most of the complexity
associated with cloud microphysics. The problem chosen is a generalisation of the classical
buoyant thermal, namely a spherical bubble of saturated air released from rest into an
unsaturated atmosphere that is stratified at the moist adiabatic lapse rate. Because both
latent heat release and buoyancy reversal are included, this is a more realistic system than
available laboratory analogues. We test our theoretical understanding against numerical
simulations using a large eddy model. Unfortunately this gives us less confidence in our
results than can be obtained in the laboratory, due the the parameterisations employed
in the model.

It should be emphasised that this is a study of the mixing process, rather than an
attempt to simulate a realistic cloud. As discussed in the conclusions, it is possible to
relate certain aspects of the simulations to the behaviour of entities such as bubbles
or turrets within clouds, but the extent of this analogy is limited. What we hope to
show is that the model problem can be characterised by a small number of parameters,
including characteristic length and time scales. These will correspond to a small number
of nondimensional parameters and the thermal will then exhibit dynamical similarity,
i.e. different realisations of the flow with very different dimensional parameter values
evolve in a similar way, provided that they share the same values of the nondimensional
parameters. This dynamical similarity is a much weaker result than the self-similarity
of the classical thermal in the far field, where the structure of the thermal at any given
time is similar to itself at all other times. However, it is still an important result, if it can
be shown that some of the nondimensional parameters are more important than others
in controlling the evolution of the flow. The dominant parameter, or parameters, will
correspond to the essential physical processes involved in the flow, allowing their role to
be unambiguously and quantitatively identified.
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2. 'THE SIMPLIFIED MODEL EQUATIONS

We take as a starting point the anelastic equations of motion for momentum and
for conserved, linearly mixing scalar variables W

D b ug e S p e "

e [ps]+5:sl3+p, 0, [psvSij] (1)
D

0¥ = O [pwd: Y] 2)

where Einstein’s summation convention of summation over any index repeated once (in
a product or similar expression) has been used. The partial derivative with respect to
the space variable z; is written as d,,. Similarly we use 0, for the partial time derivative
so that the total time derivative of a fluid parcel can be written as

% =0 + ui0y, . (3)
The theoretical conclusions developed in this paper will be tested against numerical sim-
ulations using a large-eddy model that uses a first order closure to represent unresolved
turbulent motions. The turbulence parameterisation introduces a Richardson number
dependent eddy viscosity v, as seen in the last terms on the rhs of Egs. (1,2) where
Sij = Oz,uj + Oz, u;. The details of the parameterisation are given by Shutts and Gray
(1994). Formally this closure introduces, as part of v, a scale-dependent parameter A,
the subgrid mixing length. However, in this work, it is assumed that subgrid turbulence
has lost its scale dependence and thus the results should be essentially independent of A.
This assumption is also the justification for the use of large-eddy model (Mason 1994),
and is therefore not tested when the theory is compared to simulations.

As usual p’ in Eq. (1) is the pressure difference from the reference pressure p, of the
environment which is in hydrostatic balance. In this article profiles of the environmental
sounding are generally referred to by the subscript s (e.g. ps, 8, or T for density, potential
temperature and temperature). Equation (1) results from a linearisation in pressure and
potential temperature around the reference profiles which yields for the buoyancy force
(water loading effects are neglected)

A6 AT
il

(4)

where g is the gravitational acceleration, A0 =0 — 0, and AT =T — Tj. In the last step
we used the definition of potential temperature with p & p; which neglects temperature
dependence of the pressure as well as the dynamic pressure.

The thermodynamic scalars (¥ in Eq. (2)) used in our numerical model are the total
water mixing ratio ¢, and moist static energy h with

h=cpT+ g2+ Lyqu (5)

where ¢, and L, are the heat capacity of air at constant pressure and the latent heat
of vapourisation. Both are assumed to be constant. The temperature is denoted by T,
while ¢, is the water vapour mixing ratio. The total water mixing ratio ¢, is governed
by Eq. (2) with the restriction that water is taken out irreversibly from the system
if ¢/ = max (¢ — ¢sat, 0) surpasses a threshold value ¢, .., where g4 is the saturation
mixing ratio. The value of ¢;,,,. can be chosen independently and serves to investigate
the impact of the cloud water content on the mixing process. The buoyancy variable
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AT (see Eq. 4) is most conveniently expressed in terms of deviations from the reference
profiles, namely the water vapour deficit q4ey = qsat — quv, and moist static energy excess
Ah = h — h% which is the difference of h from its environmental saturation value h7 =
epTs + 92 + Ly@sar- One has

Ah = AT —Lyqaes (6)
}
or B = g_A__l'szT:l]dej_. (7)

The saturation value of water vapour g4 is assumed to be a linear function of height
in our simplified model. We write

d
a—qsat TSy (8)

-
<

where s, is a positive constant. Using this, the equation of motion for Ah can be written
as

D
—D—tAh = (—cpAT + Lysq) w  + diffusive mixing (9)
where
_ dT; g
ML=rrd i (10)

is the difference of the lapse rate from that of a dry adiabatic sounding. Turbulent
diffusive mixing is clearly essential for the loss of buoyancy of a parcel of air, but since
it is assumed that subgrid turbulence has lost its scale dependence, no scale-dependent
parameter is introduced by the last term in Eq. (9).

In the next subsection we discuss how mixing affects the thermodynamic properties
of a parcel. As mentioned in the introduction, we will restrict attention to the case of
a moist neutral environment. For such a moist adiabat Ah is conserved under adiabatic
motion since h} = const. The lapse rate is then determined by the saturation curve (or
vice versa):

_ﬁdqsat

11
AT = (11)

so that the first term on the rhs in Eq. (9) vanishes, and the buoyancy of a saturated
parcel will only be changed by mixing (and the slow variations of 7;7(z) in Eq. 7).

(a) Properties of mized air

Figure 1 shows the effect the mixing process has on the thermodynamic properties of
cloudy air. The degree of mixing is labeled by the fraction o of environmental air in the
mixture. One of the most important properties of the air parcel is the moist static energy
excess, Ah, of a mixture (grey solid line in Fig. 1, I, IT). If the environmental sounding is
a moist adiabat (as for the experiments presented in this article), Ah largely determines
the the long-term destiny of a mixed parcel. Only parcels with Ah > 0 may rise with the
cloud for long distances. If parcels with Ah < 0 happen to be positively buoyant they
are according to Eq. (7) unsaturated, (i.e. g4ey > 0), and therefore lose their buoyancy
as they rise. The value of Ah for undilute cloud air is denoted Ahcioug- Since Ah is
the difference between the moist static energy of the parcel and the saturation value at
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the environmental temperature, its value for undilute environment air is —Lyqg4es. The
mixing curve of Ah is a straight line and the value a.,; where this line crosses the o
axis is determined by Ahgoud/Lyqdey, the ratio of Ah at =0 and a = 1. One has

erst 0 Ahcioud 3 C])ATcloud
L — acrit Lv‘]dej Lu(hiej

= Beyy . (12)

(One way to see this is by noting that the two triangles formed when the Ah line and
the a axis cross the two vertical lines at « =0 and o =1 are geometrically similar so
that the ratios of all corresponding sides have the same value.) In the last step of Eq.(12)
we have introduced a dimensionless parameter which we call effective buoyancy Besy =
epATetoud/ (Lvqdes). According to Eq. (12) Beyy gives the ratio of the range of a values
with Ah > 0 divided by that with Ah < 0. It is a measure for the heat excess of the updraft
compared to the reevaporative cooling that can result from mixing with environmental
air.

The dark solid lines in Fig. 1 Ia,b are ¢, AT, which according to Eq.(4) is a dir-
ect measure of buoyancy. For large values of a, where the parcel is saturated, ¢, AT
is identical to Ah. Once sufficient environmental air has been mixed into the parcel to
evaporate all the liquid water, ¢, AT leaves the Ah line and mixes linearly to the envir-
onmental value AT =0 at a = 1. The value a4 at which the “buoyancy curve” leaves
the “Ah line” is entirely determined by the ratio ¢;/qges. One finds

Qmaz QI

1 — amax & Qdef

(13)

To see this it is convenient to consider the Ah; line (dotted line in Fig. 1, LII). Ah; =
hy — hy 5 is the difference of the liquid water static energy hy =c,T + gz — Lyqi from
its environmental value h; ; = c,Ts + gz. In the unsaturated case ¢, AT is identical to
Ahy = ¢, AT — Lyq and g, is therefore given by the intersection of the Ah with the
Ahy line. The first equality in Eq. (13) follows from the similarity of the triangles which
are formed by the Ah and the Ah lines with the vertical axes at « =0 and a = 1.

Buoyancy reversal through mixing requires that the cloud water content ¢ is large
enough to compensate the cloud’s buoyancy excess, i.e. Lyq > Aheioud- Figure 1 Ib gives
an example where ¢ is too small, so that all mixtures are positively buoyant. But dry
parcels lose buoyancy as they rise, and the conservation of Ah = AT — L,qgey directly
implies that only those mixtures with a < a.ri¢ remain buoyant when lifted to their
condensation level. Consequently a.,i; is expected to be more important than ama., and
thus g4 should play a more crucial role than ¢ for the cloud’s loss of buoyancy through
mixing.

The liquid cloud water has, however, a strong influence on the level at which mixtures
that leave the cloud (i.e. those with Ah < 0) become neutrally buoyant. As shown below,
the distance Lgown which a detrained parcel descends from the level zg to its level of
neutral buoyancy zj,; is given by *

1

vSgq

Lowin =20 Zinb &= = Al (14)
The fact that the downdraft length is proportional to Ah; for a > avepie is illustrated by
the dark solid line in Fig. 1 II. For a positively buoyant cloud Lgown is always smaller than

* The name Lgoun should not obscure the fact that Eq. 14 actually also holds for Lygl < cp AT (as in
Fig. 1 1b) for which Ly, becomes negative (i.e. the z;,, is above z). The only assumption in deriving
Eq. (14) is that q; = 0 at z;,,p which is identical to o > acrit-
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the downdraft length Limaz = q1/54 of a neutrally buoyant parcel for which Ah; = —L, ¢;.
(The expression Limaz = Lyqu,,,./cp AT used in table 2 is obtained by applying the above
definition to the case ¢ = q,,,. and using s, = ¢, AI'/L, - see Eq. 11.)

Equation (14) is obtained by noting that Ah; is related to Ah by Ah; = Ah —
Ly (gt — qsat) so that (adiabatic) changes of Ah; are entirely determined by changes of
the saturation curve, i.e.

Ah,(z) = Ah[(ZO) + L, (q,at(z) - qsa,(zo)) e (15)

The level of neutral buoyancy is characterised by both AT = 0 and ¢; = 0, since the case
where AT =0 and ¢; # 0 is unstable to small perturbations in AT. Therefore Ah; =
¢pAT — Lyq =0 is a necessary condition, which together with gsat(2ins) — ¢sat(20) =
5q(20 — zinp) (see Eq. 8) leads to Eq. (14). By using the criterion Ah; =0 we assume
that a level of neutral buoyancy with ¢; = 0 would exist. This is of course only true if the
parcel actually is detrained or equivalently a > a.,i; (see discussion above).

3. THE EXPERIMENTAL SET UP

In the experiments discussed in this article we have initialised a warm and moist
(i.e. saturated) bubble in a sounding which is neutral to moist adiabatic ascent. The
bubble we are considering in this first study has the form of a sphere with a radius L
and constant buoyancy. In the numerical simulations, the buoyancy is decreased linearly
to the environmental value in a shell of thickness L/6 to avoid extreme temperature
gradients. To characterise the initial buoyancy excess of the bubble we will use AT®
which is the initial temperature excess in the middle of the bubble.

A further key parameter is the water vapour deficit g4ey = ¢sat — qu of the surround-
ing air (environment), which in our experiments has an uniform initial value of qgef. If no
mixing occurred, Ah would be conserved and the buoyant air would remain buoyant and
rise forever. If the environment were saturated, the mixing process would not affect the
total buoyancy flux which would remain positive and vary only very slowly as a function
of height. The loss of buoyancy (or moist static energy), which finally stops the rising
motion, results from the water vapour deficit of the surrounding air that mixes with the
saturated bubble air.

Table 1 lists the parameters in our system which can be used to label each experi-
ment. Parameters are listed according to whether they are related to the initial conditions
of bubble and environment or whether they are part of the “model physics”. Note that
some of these parameters are not independent for the particular choice of experiments
conducted in this study. The horizontal and vertical length scales are the same, i.e.
L = H, for the spherical bubble used in all the simulations presented here. Furthermore,
since the environmental sounding is a moist adiabat, its lapse rate is determined by the
gradient of the saturation curve (or vice versa), yielding AT' = %:sq (Eq. 11).

(a) Scale independent parameters

The model has been designed to minimise the number of parameters while rep-
resenting some essential features of moist convection. This subsection is denoted to the
enumeration of the scale-independent parameters occuring in this system. Since the phys-
ics may not depend on the units we are using to measure it, it is clear that only these
scale-independent parameters can determine the behaviour of the bubble. The simple dry
thermals (investigated in earlier studies) could successfully be described with the help of
similarity theory since they depended upon only a very small number of scale-independent
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parameters. The moist bubbles considered here have some additional parameters related
to moisture which makes a scaling hypothesis less straight forward. The principle ques-
tions we ask in this article are; which are the scale-independent parameters in this system
and in what way does the mixing process and the dynamics of the bubble depend on
them?

A complete set of scale-independent parameters may be constructed by taking
products of the scale-dependent parameters listed in Table 1. Let us first note that
the mixing ratios of different water substances, qgef, q and ¢sq¢, enter the equa-
tions of motion only through the corresponding latent heat, qugej, Lyq,,,. and Lyqsat.-
Therefore, even though mixing ratios are dimensionless, they are not scale-independent
parameters that are relevant for the dynamics of the system. Table 2 lists a complete
set of scale-independent parameters constructed from the parameters in Table 1. This
set of parameters is not uniquely defined; for example, either a relative downdraft depth
or an effective negative buoyancy could be employed. However, the number of independ-
ent parameters s uniquely determined. Note that we do not investigate the influence of
any purely geometrical parameter, such as the aspect ratio of the initial bubble, as the
current study is restricted to spherical bubbles. Thus we are left with three moisture-
related scale-independent parameters to label our numerical experiments. The physical
significance of these parameters will be discussed in detail below.

max

TABLE 1. MODEL PARAMETERS

environment bubble physics
lapse rate diff. temperature 0 maximal
(dry stability) ar excess AT cloud water Nmax
water vapour 0 gazlett;y: Lo gradient of 8
deficit Qe g bl e etc. saturation curve gz dsat
Height, etc.

Table 1: List of parameters in the system. Parameters are divided into three groups, depending
on whether they result from the initial conditions of the environment, of the bubble, or from
the “model physics”.

TABLE 2. SCALE-INDEPENDENT MODEL PARAMETERS.

0
1) effective buoyancy excess Bafr= {%TT
3
: : FENEET 5,
2) effective bubble size Legy = } T
(buoyancy length scale:) (Loua= AA’I;‘ )
Lamaz
relative downdraft depth L, y
3) (maximum downdraft depth) (s = —l’c-;'-glr%‘-)
alternatively: 3
effective negative buoyancy vlimey _ L
¥ cpAT ~ Lyue
geometry related:
aspect ratio, etc. £, etc.

(b) The dominant time scale

A good order of magnitude estimate for a scale dependent quantity can often be
obtained by using the appropriate scales which are dominant for the quantity’s evolution.
To obtain the dominant time scale we look at the equations of motion and neglect the
effect of mixing. Then, for a moist rising bubble, Ah = ¢, AT' is conserved at its initial
value ¢, AT". Assuming further that the bubble radius L is the only relevant length scale,
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Figure 1. Mixing diagrams for moist static energy excess Ah (grey solid line) and liquid water static

energy excess Ay (dotted line) as function of the fraction of entrained environmental air a. In figures
Ia) and Ib) the dark solid line indicates cp AT (a more direct measure for buoyancy). In figure II) the
dark solid line is proportional to the downdraft length Lgoun-

the momentum equation

D P AT
Rig=tns; [p_] +diag o (16)
posses only one time scale
LT, L
Thuo = ;Z‘TI% <\ X70 (17)

where we choose a fixed reference value of 7. For dry air AT is not conserved (even in the
absence of mixing) and a similar analysis yields the Brunt-Vaisala time scale Tpy (the
inverse of the Brunt-Vaisala frequency) which is obtained by replacing 3—17‘76- by (AT)~!
in Eq. (17). The Brunt-Vaisala time scale is the scale at which the environment trys to
restore the stratification (which is perturbed by the rising bubble) while T3y, is the time

scale responsible for the bubble’s ascent. Note that the effective bubble size L.y = %@

can (alternatively) be written as the ratio of the two time scales, Legy = [Tbuo/Tav]z. For
the evolution of the bubble T}y, is the dominant time scale and when comparing data from
different runs in the next section all scale-dependent variables will be nondimensionalised
using the following scales: Thy, for time, L for space and AT for temperature (7% for
velocity, etc.). This has the advantage that data from different runs with different orders
of magnitude of temperature, humidity (given by gges), etc. assume the same order of
magnitude, so that the effects of the scale independent parameters (which by definition
can not be scaled away) become visible.

4, RESULTS OF SIMULATIONS
|
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In this section we present results from nine numerical experiments with parameter
values listed in Table 3. The initial bubble radius in all experiments is L = 720 meters,
and the effective down draft length Lgmnar 1s kept constant at a value of Lgmar = 0.52,
which corresponds to ¢lyar = 0.75g9/kg. The effect which changes in Lgmar have on the
bubble dynamics will be investigated in a future study.

Quantitative simulation data will be presented in two different ways: (a) as time
series and (b) as (time and area integrated) fluxes plotted against physical height. While
the time series illustrate the temporal evolution of the updraft, the flux/height plots show
the effect of the bubble on the atmosphere, integrated over its lifetime. All the data will
be scaled in the manner discussed in section 3. It will be seen that this indeed turns out
to be the appropriate scaling, as data which would differ in their order of magnitudes
when viewed in their “original scales” are of comparable magnitude when rescaled. This
allows the control of the mixing process by the scale-independent parameters introduced
in section 3 to be clearly identified. It will be seen that B.s; is indeed the dominant
parameter determining the effect of the mixing on the bubble, as suggested by our theor-
etical considerations above. Further we offer a physical interpretation for the buoyancy
length Lgy, (see table 2) which yields an upper limit for the size of the entraining eddies,
with interesting consequences for the geometry of the cloud.

(@) The time evolution of the updraft

Snapshots of a bubble as it develops from the initial simple sphere to a finer structure
are given in Fig. 2. Plotted is Ah (left panels), which illustrates the buoyancy distribution,
and cloud water (right panels), which gives an impression of the visual appearance of the
cloud. From the Ah graphs entrainment is seen to erode the buoyancy in the middle of the
updraft while the most buoyant air remains in a vortex ring structure which drifts apart
as the cloud rises and fades away. At ¢t =4.7 the cloud liquid water shows a mushroom
shape, whereas at t = 9.4 it has developed a much finer structure somewhat closer to the
familiar cauliflower shape of real clouds.

For a more quantitative description, the temporal evolution of some quantities is
given in Fig. 3, where different line thicknesses correspond to different (initial) values of
Besy. The dimensional values of initial buoyancy in these runs varies by more than an
order of magnitude (Table 3). The similar magnitudes of the different curves demonstrates
that the chosen time, space and temperature scales are appropriate.

As seen from the top graph, the maximal vertical velocity wpq., exhibits an al-
most constant acceleration during the first time unit. Here bubbles with the same initial
buoyancy, and hence the same L.y, fall on the same curve indicating that they are not
affected by mixing at this stage. Correspondingly, at the time of the earliest snapshot
(t =1.2) in Fig. 2, the bubble retains a smooth ellipsoidal shape. The fact that the more
buoyant bubbles (larger AT implying smaller L.sy) initially accelerate slightly faster
than the weaker ones (see wyq, in Fig. 3) may be attributed to the stratification of the
environment. This is apparent since L.y; can also interpreted as Lesy = [Tbuo/TBv]2,
that is, as the square of the ratio of the time scale of the moist bubble ascent to the
Brunt-Vaisala time scale Tgy of the stratified environment. At approximately ¢ = 1.3,
Wpmar has arelatively sharp peak, after which it decreases and begins to fluctuate strongly.
At the same time, the curves with the same buoyancy, but different g4.; and thus By,
begin to separate, showing the first influence of the mixing process. Correspondingly, the
first signs of entrainment of air from below are also visible in the second snapshot at
t=2.4inFig. 2.

The second plot in Fig. 3 shows Tjh4z, the maximum of AT within the “active
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cloud” (defined as the region where Ah > 0). As with wp,q, the scaled values of T}y, are
similar at first, but at about ¢t = 2.5 they separate and begin to decrease. Again similarly
t0 Wmar, the curves fluctuate considerably once mixing has started to influence their
evolution.

In contrast to this, fluctuations appear to be less chaotic for the volume-integrated
quantities shown in the lower two graphs of Fig. 3, which illustrate the loss of buoyancy
of the updraft more systematically. The decay of the bubble is seen to depend most
sensitively on the effective buoyancy Besy, and varies relatively weakly with the actual
buoyancy. The volume of the active cloud, shown in the third plot of Fig. 3, increases
when B,y is sufficiently large, stays roughly constant when By is of order unity, and
decreases for Besy small. This is in good qualitative agreement with the mixing diagrams
discussed in section 2, where it was shown that Besy = acrit/(1 — crit), implying that
Beyy is the ratio of the range of mixtures that are “actively buoyant” (i.e. Ah > 0) to
those that are nonbuoyant when lifted to their condensation level. Of course the effective
buoyancy decreases with time (the indicated value of B,y in Fig. 3 corresponds only to
the initial conditions) and the volume of buoyant air in all updrafts eventually decreases
to zero. This steady decrease of buoyancy is clearly seen in the bottom graph of Fig. 3
which shows the (density weighted) integral of Ah over the active cloud where Ah > 0.

TABLE 3.
[ATY/IK] T qaes/Ta/ka]l Il Begs | Legs ||
4.3 0.55 3.15 0.83
1.24 1.4
2.48 0.7
0.48 0.061 3.15 7.5
0.138 1.4
0.275 0.7
0.12 0.015 3.15 30
0.034 1.4
0.069 0.7
Parameters of runs corresponding to the data

in Figs. 3 and 4

(b) The spatial structure of vertical fluzes

In Figure 4 we show the height dependence of vertical fluxes which are integrated
over time and over the horizontal area of the system. The plotted data correspond to the
same runs as in the time series in Fig. 3, and use the same line styles. As with the time
series in the last section, it is seen from Fig. 4 that By is also the dominant parameter
with respect to the time-integrated vertical fluxes. Although the actual buoyancy, and
hence L.yy varies by a factor of 36 among the simulations, the fluxes depend more on
the much smaller changes in By .

The fluxes are scaled with respect to the initial conditions in a way that the dif-
ferences between the plotted curves are due only to differences in mixing behaviour.
Therefore the curves coincide at low heights where mixing has not yet had a strong
influence. Such a scaling is straight forward since time and area integrated fluxes of a
conserved quantity at a given height are identical to the total amount of that quantity
that has passed through that level. Accordingly the mass flux in the upper graph has
been scaled by the volume * of the initial bubble (i.e. the volume where Ah > 0). The
second graph shows the Ah flux of the updraft which is the Ah flux integrated over the

* Since the average density of the initial bubble is the same for all runs, scaling by the volume is
proportional to scaling by the mass of the initial bubble.

=
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area where Ah > (. This quantity is scaled by the initial bubble volume times the initial
maximum of Ah. The total & flux in the last graph is scaled by the the initial bubble
volume times the largest h difference occuring in the system at the initial time, i.e. the
highest cloud value minus the environmental value of h. ! This provides a different scale
than the maximum of Ah, which was defined as the difference between the cloud value
of h and the saturation value for the environment.

The initial bubble in Fig. 4 is located between z = —1 and z =1, since height is
scaled with respect to the bubble radius. While the h fluxes (lower graphs) monotonically
decrease with height for z > 1, the slope of the mass flux curves (upper graph) can have
either sign. In a finite region above z = 1 the mass flux curves are seen to increase, decrease
or to stay roughly constant, depending on the initial value of B.y. This behaviour is
consistent with the early-time evolution of the volume of the active cloud (third graph
in Fig. 3) which was discussed above in terms of the mixing diagrams (Fig. 1) in section
2

Probably more surprising than the initial slope above z = 1 is the abrupt change in
regimes of these curves. While in the first region above z = 1 the respective slope of the
mass flux curves varies only slowly, the end of this region is marked by a sharp transition
to a region where the mass flux decreases more rapidly. The observed change of regimes
is also reflected in a similar behaviour of the moist static energy fluxes. Generally the
flux curves in Fig. 4 can be roughly divided into three parts with height: (i) The region
between z = —1 and z = 1 where the initial bubble is located, (ii) a region of only slowly
varying slope, and (iii) a “collapse region” where the fluxes vanish in a more rapid and
generally less regular fashion. For the mass and Ah flux (upper graphs) the slope and
the height of the second region appears to be largely determined by the respective value
of Besy. This is different for the total A flux, whose slope in this region depends more
strongly on the actual buoyancy. For the strong bubbles (AT large, or L.y; small) the
total-h flux decays very little in region (ii). This indicates that, in this region, the strong
bubbles drag along most of the initially buoyant air even if it has become nonbuoyant
through mixing. A strictly constant ‘total h flux’ above z = 1 would indicate that all the
air which is initially buoyant rises to the top, as happens in the absence of reevaporation
in which case all the initially buoyant fluid remains buoyant. Finally, of course, the
negatively buoyant fluid is left behind, even for the strong updrafts which collapse roughly
in the same region as the less buoyant ones with the same B.y;. This illustrates that
the loss of buoyancy which causes the collapse of the cloud is better represented by the
Ah flux shown in the middle graph than by the ‘total A flux’ which also involves the
nonbuoyant air that cannot rise with the updraft for a very long time.

(¢) The influence of the buoyancy length scale

An interesting difference between moist and dry convection is the stratification of
the environment which, as explained above, introduces a length scale Ly,, = AT/AT.
This leads to scale independent parameter L.ys = L/Lpyo. In the preceding sections we
showed that L.s; plays only a secondary role in the evolution of the updraft, which is
largely determined by the effective buoyancy B.;,. This length scale has, however, quite
interesting consequences for the geometry of the updraft which is illustrated in Fig. 5.
The figure shows snapshots of Ah (left panels) and potential temperature (right panels),

t Determining the total h flux related to the updraft in a strict sense requires extremely long simulation
until all the cloud water has been reevaporated and the whole domain is dry and stably stratified. In
this article we focus on the convective properties in the more active phase of the cloud. The total h flux
in the bottom graph of Fig. 4 therefore is integrated only until a time where this active phase is over,
and changes occur on a much slower time scale.
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taken at the same nondimensional time for three updrafts with the same By, and
the same physical length (i.e the same initial radius L = 720m) but a different effective
length Lesy < L/AT. One finds that the horizontal width of the updraft increases with
increasing buoyancy length Ly,, = AT/AT and for large Lpy, the h excess is increasingly
focussed in a vortex ring at the edge of the cloud (the cross section of the ring is given by
the two Ah maxima). Correspondingly, as Ly, decreases, (i.e. Lesy increases) the updraft
exhibits increasingly finer structures and the moist static energy excess is increasingly
more weighted towards the center. The weakest of the three updrafts (top graph) has
even developed smaller updrafts at the top (upper bright regions), which separated at
an earlier stage from the ringlike structure below.

To understand how Ly, influences the structure of the cloud, it is instructive to
study the velocity field shown by the vectors in the right panels of Fig. 5. The white
lines mark the boundary of the saturated (cloud) air. While for the weak cloud (top)
the velocity outside of the saturated area is very small and almost exclusively horizontal,
the strong cloud (bottom) has a strong circulation centered near the cloud edge, which
powerfully sweeps unsaturated air from below into the cloud. This different behaviour
for different AT is not surprising since vertical motion outside of the cloud requires work
against the stratification. This work is done by the pressure gradient resulting from the
ascent of the bubble which must push air away at its top and replace the air at its bottom.
Since Lpy, is the strength AT of the updraft divided by the stratification AT, it is related
to the vertical height across which the pressure difference built up by the buoyancy can
force unsaturated air. This yields an upper limit for the size of the large eddies that cross
the cloud boundary and are responsible for the entrainment of environmental air.

The difference in eddy size is also responsible for the different form of the updrafts
seen in Fig. 5. For the strong updraft (bottom panels), large entraining eddies have
strongly eroded the moist static energy excess in the center and pushed the most buoyant
regions further apart. They have also eroded the saturated region more effectively than
in the weak bubble for which cloud base remains near the initial bubble height. For the
weak cloud (top panel), the eddy size is not sufficient to erode the center, and it remained
positively buoyant for a longer time and developed smaller updrafts.

Since each thermal weakens (and finally collapses) during its ascent, Ly, decreases
continuously throughout the cloud’s lifetime. Correspondingly, the initially most buoy-
ant clouds eventually developed finer structures and broke up into increasingly smaller
turrets. In contrast to the initially weaker clouds, however, these smaller updrafts tend
to be distributed further around the edge of the originally stronger clouds where a core of
buoyant air was protected within the vortex ring. For initially stronger updrafts with the
same Beyy, the environment is dryer, and in these cases the smaller turrets that develop
later in the evolution of the cloud collapse sooner.

5. (CONCLUSIONS

In this paper we have introduced a simple model for a moist convective thermal. The
use of such a model problem was motivated by previous work with laboratory analogues,
but rather than be constrained by fluid systems that are available in the laboratory,
we have considered a problem that includes both of the principal effects of latent heat,
namely its release as the thermal rises and its consumption through reevaporation of
cloud water. Release of latent heat implies that, although we consider an atmosphere
that is neutrally stratified with respect to the saturated rising air, it is stably stratified
in the unsaturated environment. Not surprisingly this dynamics, sometimes referred to
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as moist up/dry down, has important consequences for the structure of the cloud, as
discussed below.

The current investigation also differs from the classical studies of buoyant thermals
in that we did not try to enter the self-similar regime where the dynamics become inde-
pendent of the initial geometry and size. As discussed in the introduction, such a regime
is not generally believed to be of great relevance for real clouds. The question remains
whether updrafts exhibit some kind of self-similar structure in the smaller-scale tur-
bulence, which might justify the entrainment hypothesis discussed in the introduction.
While quite regular behaviour of the fluxes over a certain range of heights (regime 2 in
section 4.b) might be an indicator of some degree of self-similarity at these levels, the
current data do not allow the test of a particular self-similarity hypothesis, nor is it clear
that such an hypothesis would apply over large enough region to make it useful in the
description of clouds.

Our data however reveal an approximate dynamical similarity in that the effect of the
mixing process on certain quantities is largely determined by a single scale-independent
parameter (which we called the effective buoyancy Bes;) and is relatively insensitive
to other parameters. This property appears to be quite robust for time series and flux-
height plots of mass and moist static energy integrated over the “active cloud” region
where Ah > 0. Interestingly it does not work very well for the total A flux, which is the
integral over the whole domain, including negatively buoyant air. This indicates that the
transport by air with Ah < 0 does not exhibit the same degree of dynamic similarity, i.e.
it cannot be (approximately) described by B.;s alone.

In the presence of buoyancy reversal due to re-evaporation, it is less straight forward
to define the boundary of a thermal across which entrainment and detrainment occurs,
and different definitions are used in the convection literature. Our results suggest that
Ah >0 is a useful choice when seeking similarity properties for the mixing behaviour.
This definition is particularly convenient for analysing the decay and the final collapse of
the updraft as it involves all the “active cloud air” (i.e. the air which remains positively
buoyant when lifted to its condensation level).

An interesting result of this work, which appears to be consistent with the exper-
iments of Johari (1992), is that B.s; must be much larger than 1 for the bubble to
rise significantly more than one diameter. This implies that for a bubble with a realistic
buoyancy excess the environment must be extremely moist (almost saturated - see table
3). Isolated buoyant thermals therefore appear to be diluted by entrainment quite vig-
orously and require an extremely moist environment to remain buoyant for a reasonably
long time. The air that reaches cloud top in deep convecting clouds must therefore have
risen predominantly into air premoistened by previous updraft air. This may occur in a
more continous fashion (similar to a plume) or in distinct bubbles. Observations suggest
that both possibilities occur in nature (Barnes et al. 1996, French et al. 1999).

It is worth noting that B.ys = ¢, AT/(Lyqq4es) depends only on the water vapour
deficit gqes, and is independent of the actual water vapour content or the relative humid-
ity. Indeed neither the water vapour mixing ratio nor the saturation value g4 explicitly
occur in our model equations (only the z—derivative of ¢,q¢ and ggey). These quantities
enter the equations of motion for the real atmosphere only through the virtual temper-
ature effect, which is a second-order effect when compared to the effects of latent heat
release.

An important result of this study is that the stratification of the environment AT’
introduces a length scale Ly, = AT /AT for an updraft with a buoyancy excess A7'. The
resulting dimensionless parameter Lesy = L/Lpyo for a thermal with radius L has been
referred to as effective bubble length in this article. Increasing this effective bubble length
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(by decreasing Lpy, for constant L) we found that the radius of the thermal remained
smaller during its ascent. The thermal expanded less in the horizontal and exhibited
increasingly finer structures for smaller values of Lyy,. For sufficiently large L.s; the
thermal broke up at an early stage of its evolution by developing smaller turrets at its top.
Since Lesy o< L/AT decreases as a thermal spreads out and reduces its buoyancy through
mixing, every thermal finally broke up into smaller turrets (which however collapsed quite
rapidly if the environment was sufficiently dry).

This effect of Lesy = L/ Lyuo on the bubble’s geometry was explained by relating Ly,
to the maximal depth of forced downdrafts, which yields an upper limit for the vertical
extent of the largest eddies. If L.s; is small these eddies are of the size of the thermal.
They play a crucial role for mass conservation as they transport fluid from its top to its
bottom as the thermal rises. If Ly is large this transport is suppressed and the thermal
breaks up in order to rise. This behaviour suggests the existence of a characteristic length
scale for the largest eddies involved in entrainment. For typical atmospheric conditions,
Liuo has a value of a few hundred meters. Since this is not necessarily small in comparison
to the size of the cloud, this scale will be difficult to observe. However, forced downdrafts
are often seen (Yuter and Houze 1995) and their characteristic scale may help to explain
observations that some cumulus clouds appear to develop as a single entity, while others
are better described as a series of bubbles.

While L.y seemed to have little effect on the final height reached by a bubble (which
was largely determined by Besy), it could still have a significant influence on the net
transport and latent heat release. Decreasing L.y led to an enhanced upward transport
of negatively buoyant air with the thermal, causing a larger moist static energy flux.
For understanding this enhanced lifting of negatively buoyant air an alternative (but
equivalent) interpretation for L.;; may be useful. One has Lesy = [Tg,u,,/TBV]2 where
Tgyv is the Brunt-Vaisala time scale on which the stratification of the environment is
restored. Thus small L.y, indicates that the bubble perturbs the buoyancy on a time
scale too fast for the restoring forces to counter it, while large L.;; means that the
bubble’s motion is strongly constrained by the stratification.

In this initial investigation of the model we concentrated on two aspects: the effect
which the dryness of the environment has on the thermal’s mass and energy budgets
(which is largely determined by B.ss) and secondly the consequences which the strati-
fication has for the thermal’s geometry (as governed by Less). We did not consider the
effects of the cloud water content, and the threshold value ¢lymq. was kept constant (at
0.75g9/kg) for all the data presented here. Preliminary studies with increased values of
qlmar indicated that the mixing is slightly increased in these cases (though Besy remains
the dominant parameter). Simulations with ¢lmar =0 were still found to exhibit the
breakup of the bubble (which confirms that this phenomenon is indeed related to Ly,
as the downdraft length is zero in this case). A more comprehensive understanding of
the role of the cloud water content however will require further study.

For the simple model problem posed here, it has been possible to identify the domin-
ant physical process controlling entrainment. This identification was made by observing
an approximate dynamical similarity where a single parameter, Besy, largely controlled
the behaviour of the system. It remains to be seen whether the process measured by B.;y,
i.e. the loss of buoyancy of cloud air due to mixing with unsaturated environmental air,
also controls entrainment in real clouds, but at a minimum this provides an hypothesis
to be tested in future studies with observations and more realistic models. The existence
of an approximate dynamical similarity in no way implies that the self-similarity of the
dry thermal is present in the moist problem studied here. Indeed, both of the controlling
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nondimensional parameters, Besy and Lesy, depend on properties of the initial bubble.
Similarly, it may be expected that the behaviour of real clouds will be strongly influenced
by the properties of the boundary layer air at the time of initiation. At present, little
is known: it is virtually impossible to make observations at the precise location where a
cloud is about to form, while modelling studies must specify initial conditions of some
sort.
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APPENDIX

Numerical Details

The simulations were performed using the numerical model described by Shutts and
Gray (1994), which is based on the Arakawa C-grid, and uses the total variation dimin-
ishing advection scheme of Leonard (1991), which is less diffusive than most compar-
able schemes. The domain was square with (72 x 72 x 150) grid points, corresponding
to a physical size of (40km x 40km x 12.25km). The vertical resolution was constant
(DZ = T5meters) and stretched coordinate system was used in the horizontal directions
with a square central region of size 3.6 km and 75 meter resolution. Beyond that region
the grid spacing increased approximately exponentially with the distance from the center.
Initially this increase was very slow, leading roughly to a doubling of DX over the first
kilometer. After this we used a larger exponent fitted to the overall domain size of 40km.
This large domain was used to ensure that subsidence would not significantly alter the
environmental sounding. (A visual impression of the model’s resolution near the center
may be obtained from Fig. 5 where velocity vectors are given at every second horizontal
and vertical grid point.)

The horizontal boundary conditions were periodic while zero flux (insulating) bound-
aries were applied at the top and bottom of the domain. A Newtonian damping layer was
employed over the upper kilometer at the domain top in order to damp gravity waves.

The initial bubble had its center 3 km above the surface, which was found to be
sufficient to make results independent of the lower surface. Tests were also carried out
to ensure that the particular choice of the stretched grid did not significantly influence
the results.

Figure Captions:
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Figure 1
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Figure 3
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Figure 5
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Mixing diagrams for moist static energy excess Ah (grey solid line) and li-
quid water static energy excess Ah; (dotted line) as function of the fraction
of entrained environmental air o. In figures Ia) and Ib) the dark solid line
indicates cp AT (a more direct measure for buoyancy). In figure II) the dark
solid line is proportional to the downdraft length Lg,yn.

Snapshotsof Ah (left panels) and cloud water (right panels) for different times
given above each panel (¢ in units of T}, see text) At the top left of each
Ah plot “max” indicates the maximum of Ah/cp[units: K| (corresponding
to the brightest shading of the respective graph). The brightest shading for
all cloud-water plots corresponds to qlmaz = 0.75g/kg.

Time series from experiments with different values of B,y ; and L, for (from
top to bottom) a) wmaz: maximal vertical velocity, b) Tmaz: maximal value
of AT of the region where Ak >0 , c) integrated mass of air with Ah >0
and d) Ah (weighted by density) integrated over the volume with Ah > 0. All
data are scaled in the units discussed in section 3.

Vertical fluxes integrated over time and horizontal area as a function of height
for the experiments with different values of B,y and L.y as in Fig. 3. From
top to bottom a) mass flux integrated over the region where Ah > 0, b) Ah
flux integrated over the region where Ah > 0, c) h flux integrated over the
entire domain. All fluxes are scaled as described in the text.

Snapshots at t = 9.4T},,, for experiments with B, ;¢ = 3.15 and different val-
ues of L.gs (30 top, 7.5, middle, 0.83, bottom). Plotted are Ak (left) and
potential temperature (right). White contours mark the boundary between
saturated and unsaturated air. Vectors indicate the velocity field. The cross
sections are taken approximately 400 meters away from the thermal’s center
where the weakest of the plotted thermals (top panels) has developed two
smaller turrets at its top.
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Figure 2. Snapshots of Ah (left panels) and cloud water (right panels) for different times given above

cach panel (¢t in units of T}, see text) At the top left of each Ah plot “*max" indicates the maximum of

A/A/v,,[uml.s . /\'] (corresponding to the brightest shading of the respective graph). The brightest shading
for all cloud-water plots corresponds to glypar = 0.75g/kg.
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Figure 3. Time series from experiments with different values of B. ;¢ and L.y for (from top to bottom)

a) wmaz: maximal vertical velocity, b) Tymaz: maximal value of AT of the region where Ah >0 , c)

integrated mass of air with Ah > 0 and d) Ah (weighted by density) integrated over the volume with
Ah > 0. All data are scaled in the units discussed in section 3.
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Figure 4. Vertical fluxes integrated over time and horizontal area as a function of height for the exper-

iments with different values of B,y and L. as in Fig. 3. From top to bottom a) mass flux integrated

over the region where Ah > 0, b) Ah flux integrated over the region where Ah > 0, ¢) h flux integrated
over the entire domain. All fluxes are scaled as described in the text.
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Figure 5. Snapshots at t = 9.47},,,, for experiments with B, = 3.15 and different values of Legy (30

top, 7.5, middle, 0.83, bottom). Plotted are Ah (left) and potential temperature (right). White contours

mark the boundary between saturated and unsaturated air. Vectors indicate the velocity field. The cross

s sections are taken approximately 400 meters away from the thermal’s center where the weakest of the
plotted thermals (top panels) has developed two smaller turrets at its top.



