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Executive summary

We report on recent developments in hybrid data assimilation (DA) that inform the global DA pack-

age choices for parallel suite 40 (PS40). The main components are the use of wavebands for

horizontal localisation, the use of Ménétrier’s vertical localisation scheme, time lagging and shift-

ing, alternative hybrid covariance weights and new covariance statistics mainly based on Met Office

Global and Regional Ensemble Prediction System - Global (MOGREPS-G) ensemble training data.

Two package recommendations are made for PS40, one using the new covariance statistics and

the other based on the existing covariance statistics calibrated using European Centre for Medium-

Range Weather Forecasting (ECMWF) training data, evolved using the Unified Model (MetUM).

1 Introduction

Hybrid four-dimensional variational data assimilation (4DVar) blends two descriptions of the forecast

error statistics to generate an optimal analysis of atmospheric conditions used as initial conditions

for each cycle’s forecast. The stationary covariances are generated using the Covariances and VAR

Transforms (CVT) software that is part of the VAR code repository. These are produced by applying

a covariance model whose parameters are fitted from ensemble training data representing typical

forecast errors over a calendar year. The stationary covariance statistics are blended with ensemble

forecasts from the two preceding forecast cycles valid at the start of the current cycle’s assimilation

window to add a flow-dependent element to the description of the forecast error statistics. The

current results are linked to the effort to replace the current ensemble initialisation technique that

uses an Ensemble Transform Kalman Filter (ETKF) (Bishop et al., 2001; Bowler et al., 2008) with an

ensemble of four-dimensional ensemble variational data assimilations (En-4DEnVar) (Bowler et al.,

2017a,b).

Five distinct enhancements are reported on:

1. waveband scale-dependent horizontal localisation (Buehner, 2012);

2. Ménétrier vertical localisation (Ménétrier and Auligné, 2015; Ménétrier et al., 2015a,b);

3. using time lagging and shifting to increase the effective size of the ensemble (Lorenc, 2017);

4. adjusting the hybrid covariance weights βc and βe used to blend the static and ensemble

covariance components (Bc and Be, respectively) to give B = β2
cBc + β2

eBe;

5. calibrating static covariance statistics using training data generated by the Met Office En-

4DEnVar ensemble initialisation system under development (Bowler et al., 2017b).

These are described in Sections 2–6, respectively. The two packages of combined changes pro-

posed for PS40 and the aspects that were subsequently implemented operationally are described

in Sections 7 and 8, respectively, while future work is described in Section 9.
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Figure 1: Spectral filters defining wavebands (Lorenc, 2017). The left figure shows the wavebands
used in the experiments reported here while the right figure shows the wavebands that were imple-
mented in PS40, and subsequently operational suite OS40, due to a setup error.

Figure 2: Zonal mean cross-section of ensemble spread in zonal wind at 0900 UTC on 25 Septem-
ber 2015 for a 44-member ensemble similar to the operational MOGREPS-G. Results are shown for
the raw ensemble (left) and the waveband-filtered ensemble, consisting of the sum of the waveband
components in Figure 3 (right).

2 Waveband horizontal localisation

Waveband localisation increases the effective number of degrees of freedom of the ensemble com-

ponent of the background-error covariances, allows us to remove the high-pass filter currently

applied to the ensemble forecast perturbations and, most importantly, introduces some scale-

dependence into the ensemble component of the background-error covariances. We used the same

four wavebands as Lorenc (2017) (Figure 1), which were chosen to roughly partition the ensemble

variance (Figures 2–3). The direct effect of the waveband localisation is a slight smoothing; this is

more visible in the variance maps (not shown). Neither the waveband localisation nor time lagging

and shifting (section 4) had a significant effect on the variances — their main effect is to reduce

sampling noise in the covariances.

Introducing wavebands allows us to apply a range of horizontal localisation lengthscales when
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Figure 3: The contributions from wavebands 1 (top left), 2 (top right), 3 (bottom left) and 4 (bottom
right) to the right plot of Figure 2. Pressure has more spread in waveband 1 while moisture has
more spread in waveband 4 (not shown).

filtering the ensemble covariances. We use a Gaussian-shaped function for horizontal localisation,

specified by a horizontal scale. Lorenc (2017) developed a simple method for choosing the relative

scales for different bands in an idealised model then applied it to the full forecast model. The

localisation scales used in this report are given in row 2 of Table 1, noting that the value used for

the first waveband is actually 6241 km following a transcription error.

This scale-dependent localisation brings some other benefits:

• Because less localisation is applied to large scales, there is no need for the high-pass fil-

ter, which was introduced by Clayton et al. (2013) to avoid aliasing of global-scale ensem-

ble perturbations. This means that the ensemble covariance should be closer to the actual

background-error covariance, allowing it to be given a greater weight (β2
e ).

• The ensemble perturbations project onto different bands in different regions (Figures 2–3)

and each band can have different localisation and other settings. This captures much of the

spatial variation of optimal hybrid weight choices; Lorenc (2017) found much more consistency

between different regions in experiments using scale-dependent localisation.

It would be impossible to test all combinations of horizontal localisation for each band (Ta-
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Method WB1 WB2 WB3 WB4
Idealised model & judgment (Lorenc, 2017) 8115 665 230 120
Original hybrid-diag 6214 919 389 256
Revised hybrid-diag 3039 1091 548 339

Table 1: Horizontal localisation scales (km) for a 44-member ensemble used in the trials for each
waveband (WB). Note that large scales imply less localisation, with less modification to the raw
ensemble covariances. The values in row 2 were calculated for each control variable on each model
level, after which a weighted mean was taken over all control variables and every tenth model level
starting from level 1 for each waveband.

ble 1), vertical localisation (Section 3) and hybrid weights (Section 5) individually. Ménétrier and

Auligné (2015) and Ménétrier et al. (2015a,b) have proposed a method for diagnosing these and

have provided hybrid diag software for implementing it, which we have implemented and tested.

hybrid diag promises to be very useful, with the caveat that it is based on some theoretical as-

sumptions and there are practical difficulties:

1. The method calculates a filtering (e.g., localisation) of the ensemble covariance such that it

gives the best fit to the covariance from a similar infinite ensemble, so it is assuming that the

ensemble is perfect. In practice the optimal filtering may compensate for deficiencies in the

ensemble but the method cannot allow for this. It cannot be applied to our high-pass filtered

ensemble, for example.

2. The fit is measured using the Frobenius norm (the root mean square (RMS) of a matrix’s

elements) applied to the difference between two matrices. This may not be a good measure

of how well the estimated covariances perform in data assimilation applications.

3. The method relies on the ensemble members being independent. It gives incorrect results for

a lag/shift ensemble, with localisations not tending to zero at large distances (e.g., Figure 5).

4. The software calculates different values for each variable and level, whereas our data assim-

ilation software currently needs one value for each waveband. The values can differ widely

(Figure 4) and some results are expected to be unreliable (e.g., moisture near the top of the

model).

5. The software does not allow for waveband localisation. We have to diagnose localisation set-

tings for each waveband in isolation and assume that they are still valid when the wavebands

are used together.

6. Although the software can diagnose hybrid weights, these only apply in a simple case with a

perfect ensemble; it does not work for wavebands.

Because of point 3 we gave up applying hybrid diag to lag/shift ensembles after running some

early experiments. Similarly, based on point 2 we did not use horizontal localisations estimated

for streamfunction or velocity potential. Finally, to overcome point 4 we took median values when

estimating the “average” horizontal localisation scales shown in row 3 of Table 1.
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Figure 4: Raw horizontal localisation curves deduced by hybrid diag from each level and variable.
The heavy dots indicate the median — this ignores extreme values. The different control variables
are: unbalanced pressure (aP), velocity potential (CHI), humidity (MU), streamfunction (PSI), pres-
sure (P), total specific humidity (QT), potential temperature (THETA), zonal wind (U) and meridional
wind (V).

Optimal scales are expected to increase with ensemble size. This perhaps explains why the

original row 2 lengthscales perform slightly better than the revised row 3 lengthscales when we are

applying 44-member results to a larger lag/shift ensemble because we expect lengthscales to then

be underestimated.

3 Ménétrier vertical localisation

The current operational vertical localisation scheme uses the vertical covariance of the streamfunc-

tion from the static covariance model, converts it into a correlation matrix and then calculates the

leading vertical modes that explain the most variance, which are then used as vertical basis func-

tions for the alpha control variable. Smoothing is applied to the modes to avoid spurious spikes in

implied temperatures. An alternative Gaspari-Cohn vertical localisation (Gaspari and Cohn, 1999)

scheme, which is a Gaussian-like vertical localisation using the logarithm of pressure as its vertical

coordinate (Clayton, 2014), was used in the experiments of Bowler et al. (2017a).

At the moment the vertical localisation used is the same for all control variables. The experiments

of Section 7 use seven or eight modes while Bowler et al. (2017a) used 16 modes with Gaspari-

Cohn vertical localisation. Increasing the number of vertical modes increases the effective number

of degrees of freedom of the ensemble part of the background-error covariance matrix. However,

it also increases the size of the control vector used in the minimisation, which has an associated

input/output cost when reading and writing these vectors for Hessian preconditioning (Payne, 2011).
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(a) Early version. (b) Recommended version.

Figure 5: Mean vertical localisation matrix derived by hybrid diag, truncated to the number of
eigenmodes that account for 90% of the variance. (a) Early version from a lag/shift ensemble and
stored in file Lv old.nc. Subsequent work showed that this gave erroneously large values at long
separations. (b) Currently recommended version from a normal ensemble, taking the mean from
all available variables stored in file Lv ar329n216nHnV 20170506.nc (“Mv2” in Tables 6–7). There
is relatively little localisation within the troposphere but strong localisation across and above the
tropopause (near level 50).

Ménétrier vertical localisation uses a vertical localisation matrix stored in NetCDF format that

is derived using a method that identifies the degree of sampling error present in an ensemble

(Ménétrier and Auligné, 2015; Ménétrier et al., 2015a,b). The hybrid diag results currently consid-

ered as the best estimates are shown in Figure 5(b).

4 Time lagging and shifting

Time-lagged ensembles (i.e., valid at the correct time, from an earlier forecast) have been used in

our ensemble post-processing. Time-shifted ensemble perturbations (i.e., valid at a different time)

are used in climatological covariance estimation. Time shifting also has the advantage of allowing

a larger range of phase differences to be present in the forecast perturbations, which can be helpful

in the presence of timing errors in the propagation of weather systems.

The lag/shift scheme introduced by Lorenc (2017) for 4DEnVar becomes simpler for hybrid-

4DVar. We want to represent the forecast error over a single assimilation window (which is currently

six hours long). We take ensemble perturbations from the previous cycle’s ensemble forecasts,

stored every three hours, and use the perturbations valid at the start of the current assimilation

window, together with those shifted forwards by three and six hours (two time shifts). This set

of ensemble forecast perturbations is then augmented by an equivalent set from the last-but-one

cycle (so each forecast is six hours longer) valid at the start of the assimilation window and shifted

backwards by three and six hours (one lag). This arrangement gives a symmetrical distribution of

offset validity times, ranging from six hours in the past to six hours in the future (see Figure 12 of

Lorenc (2017)) and multiplies the number of forecast perturbations by six. The extra perturbations
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Figure 6: As for Figure 2 but showing the additional impact of time lagging and shifting on the
waveband filtered results.

are not truly independent, though; Lorenc (2017) found it was only as effective as a real factor of

two in independent members. Figure 6 shows the impact of this lag/shift configuration when used

in addition to the waveband localisation of Figure 2.

The lag/shift system is cost effective by virtue of being significantly cheaper than running a larger

ensemble. However, in early July it was found that the one lag and two shift setup was too slow

for operational implementation due to slow input/output of the control vectors used to store the per-

turbation information so lagging and shifting was ruled out as a candidate for PS40. Nevertheless,

subsequent recoding has substantially increased the speed to make this a viable option for a future

parallel suite. Results of this configuration have therefore been included in Section 7 to show the

potential benefit of time lagging and shifting.

5 Hybrid covariance weights

The localisation changes of Sections 2–3 have been particularly beneficial in the tropics. The opera-

tional hybrid covariance weights have been β2
c = 0.9 and β2

e = 0.0 in the upper atmosphere, β2
c = 0.7

and β2
e = 0.3 in the lower atmosphere’s extratropics and β2

c = 0.6 and β2
e = 0.3 in the tropics since

operational suite 37 (OS37), which ran from 15 March until 8 November 2016. The improvements

in the localisation settings and also in MOGREPS-G since OS37 motivate a re-examination of the

appropriate weights to apply.

In this section we seek the optimal weights using the operational static covariance statistics

introduced in OS37 together with various horizontal and vertical localisation options. The experi-

ments use the OS37-based low-resolution global research suite u-ag802 as a control, running in

an uncoupled configuration that takes the ensemble perturbation forecasts used in the ensemble

covariance component of the hybrid covariances from a stored archive (Table 2). The results are

summarised in Table 3.

Giving dominant weight to the ensemble with β2
c = 0.3 and β2

e = 0.7 everywhere without making
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Table 2: Experimental setup for low-resolution boreal winter 2015 uncoupled trials, running from
25 December 2015 to 25 March 2016. For vertical localisation, ψ refers to the operational scheme
based on streamfunction, while GC refers to the Gaspari-Cohn approach used by Bowler et al.
(2017a).

Suite ID
Hybrid weights Vert. loc. Horiz. loc.

Extratropics Tropics Upper atmos. #
β2
c β2

e β2
c β2

e β2
c β2

e Type modes Type Scale (km)
u-ag802 0.7 0.3 0.6 0.3 0.9 0.0 ψ 8 high pass 1200
u-ah979 0.3 0.7 0.3 0.7 0.3 0.7 ψ 8 high pass 1200
u-ai514 0.3 0.7 0.3 0.7 0.3 0.7 GC 16 high pass 600
u-ai729 0.3 0.7 0.5 0.5 0.3 0.7 GC 16 high pass 600
u-ai840 0.3 0.7 0.3 0.7 0.5 0.5 GC 16 high pass 600
u-aj444 0.7 0.3 0.6 0.3 0.9 0.0 GC 16 high pass 600
u-aj446 0.3 0.7 0.7 0.3 0.7 0.2 GC 16 high pass 600

Table 3: Results for the uncoupled boreal winter experiments described in Table 2. The absolute
changes in the NWP index measured against observations and own analyses are shown together
with breakdowns of the percentage RMS difference change for the northern hemisphere (NH), trop-
ics (TR) and southern hemisphere (SH).

Suite ID
Observation index Analysis index

# Index RMS Diff (%) Index RMS Diff (%)
days change NH TR SH change NH TR SH

u-ah979 37 −0.52 0.5 1.1 0.0 −0.18 −0.1 2.1 −1.3
u-ai514 37 0.36 0.0 −2.0 0.3 1.72 −1.6 −0.9 −3.7
u-ai729 37 0.41 −0.3 0.7 −0.4 1.03 −1.4 0.7 −3.0
u-ai840 37 0.44 −0.3 0.7 −0.6 1.76 −1.7 −1.5 −3.5
u-aj444 37 0.17 −0.3 0.0 −0.3 0.65 −0.7 −0.8 −0.8
u-aj446 31 0.74 −0.4 0.1 −0.7 1.03 −1.3 0.8 −3.1

other changes is seen to be detrimental (u-ah979). On the other hand, the benefit of changing to

the Gaspari-Cohn localisation with more vertical modes and also halving the horizontal localisation

lengthscale is apparent from experiment u-aj444 so further experiments use this configuration.

With this change, using β2
c = 0.3 and β2

e = 0.7 everywhere now gives overall benefit (u-ai514). The

remaining experiments explore the benefits of varying the hybrid weights in the three regions.

6 New covariance statistics

6.1 Training data sets

CVT is used to calibrate VAR’s underlying covariance model based on training data chosen to rep-

resent typical six-hour forecast errors over the calendar year. The latter point is important because

there are seasonal differences in the weather and hence different forecast error characteristics in

each hemisphere, with the different behaviour of the southern hemisphere storm tracks in summer

and winter being a key example. The choice of training data is consequently an important consider-

ation. We have therefore reprocessed the training data used to produce the operational covariance

statistics using a recent version of CVT and also used data produced by ETKF and En-4DEnVar
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ensembles. For the new training data we have used 880 samples in each case to ensure that

the sampling errors are comparable, using T+3 ensemble forecasts from each of the 44 ensem-

ble members and subtracting the ensemble mean on each cycle to obtain the ensemble forecast

perturbations read into CVT.

ECMWF The training data for the operational covariance model come from an old ECMWF training

data set from 2006 produced by a ten member ensemble of 4DVars. Further details of this

training data set are given in Piccolo (2011).

ETKFSummer Data are taken from the 0000 and 1200 UTC cycles from 8–17 June 2015 produced

by ETKF suite mi-aq520.

ETKFAllYear Data from the 0000 UTC cycles between 1–10 June 2015 produced by suite u-ad369

are combined with data from the 0000 UTC cycles between 1–10 December 2013 produced

by suite u-ad839.

EnVarSummer Data are taken from En-4DEnVar suite mi-aq897, using the same cycles as ETK-

FSummer.

EnVarAllYear The 0000 UTC training data used to calibrate EnVarSummer are combined with

0000 UTC training data from 21–30 January 2016 produced by suite mi-as462.

6.2 Latitude-banded Gp regression development

The operational covariance file uses a single geostrophic pressure (Gp) vertical regression matrix

to make the unbalanced pressure on average uncorrelated with the streamfunction. It does this by

adjusting the geostrophic pressure field slightly so that the updated balanced pressure is statisti-

cally uncorrelated with the difference between the hydrostatic pressure and the updated balanced

pressure, which we call unbalanced ageostrophic pressure.

The problem with using a single Gp vertical regression matrix is that there is a degree of

geostrophic balance that is strongly dependent on latitude, with far less geostrophy near the equa-

tor than near the poles (Figure 7). A single vertical covariance matrix cannot take account of this

variability.

The unbalanced pressure increment is currently defined as

δpu = δph − Fδpg, (1)

where δph and δpg are vertical columns of perturbations to hydrostatic pressure and geostrophically

balanced pressure and the vertical regression matrix is

F = B
hg
v (B

gg
v )−1, (2)
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Figure 7: The degree of balance, measured as the difference between the unbalanced and hy-
drostatic pressure variances scaled by the variance of the hydrostatic pressure, in ETKFAllYear
training data at the equator (left) and 60 degrees north (right). Zero indicates that the pressure is
entirely unbalanced while one represents balanced pressure.

written in terms of the balanced pressure vertical covariance matrix B
gg
v and the vertical cross-

covariance between hydrostatic pressure and balanced pressure B
hg
v .

The latitude-banded Gp regression uses N vertical regression matrices calculated using over-

lapping latitude-banded weighting functions wi. In this case, equation (1) becomes

δpu = δph −
∑N

i=1 wiFiδp
g∑N

i=1 wi

, Fi = (B
hg
v )i(B

gg
v )−1

i . (3)

This latitude-banded Gp regression has been designed to be smooth and slowly varying in latitude

(by multiplying a triangular function by the cosine of latitude) using 18 overlapping bands.

This approach was first applied in a non-hybrid 4DVar context using ETKFAllYear training data

(Section 6.1). A number of key points came out of these experiments:

1. Latitude-banded Gp regression is needed when the training data have a significant multivariate

component (as seen in ETKF and En-4DEnVar training data). Note that the ECMWF training

data set did not really need this as it was predominantly unbalanced.

2. It is possible to use an ensemble training data set to generate a covariance file with latitude-

banded Gp regression that is comparable in terms of verification to that of the current opera-

tional covariance file in a non-hybrid uncoupled context (Figure 8).

3. ETKF training data have shorter horizontal length scales, much more multivariate coupling

and broader vertical correlations compared to the ECMWF training data. Running VAR with

the static covariance file leads to significantly larger condition numbers (and hence more min-

imisation iterations) compared to running with the operational ECWMF-based covariance file.
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Figure 8: The top row shows the improved forecast verification versus observations when using
latitude-banded Gp regression compared to the standard Gp regression technique, generating co-
variance files from ETKFAllYear training data. The bottom row shows that the covariance file using
latitude-banded Gp regression is comparable to the performance obtained using the operational
ECMWF based covariance file. The graphs show the contribution to the NWP index from pressure
at mean sea level (PMSL), geopotential height (H) and wind (W) at 850, 500, 250 hPa altitudes in
the Northern Hemisphere (NH), Tropics (Trop) and Southern Hemisphere (SH) for lead times given
on the horizontal axis. A hollow grey square denotes a 2% difference while the biggest difference
that can be plotted is 5% when fully coloured. The squares are green if the first experiment is better
and red if the second experiment is better. The figure captions show the combined NWP index
changes across all components.
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Table 4: Comparison of consistent experiments where the same ensemble source is used to cali-
brate the static covariance file and provide the flow-dependent ensemble forecast perturbations for
hybrid 4DVar. Performance is measured relative to the enhanced control mi-ar938. The “EnVar
aP0” data source refers to an experiment where the wavenumber zero unbalanced pressure verti-
cal covariance matrix is transplanted from the operational ECMWF derived covariance file into the
EnVarSummer derived covariance file (Section 6.4).

Suite ID Data source
Observation index Analysis index

# Index RMS Diff (%) Index RMS Diff (%)
days change NH TR SH change NH TR SH

mi-ar781 ETKFSummer 43 −0.22 −0.2 0.5 −0.1 1.68 −2.3 −4.3 −2.6
mi-ar796 EnVarSummer 43 0.28 −0.3 0.9 −0.3 2.37 −3.2 −5.5 −3.7
mi-as248 EnVar aP0 43 0.76 −0.6 −0.1 −0.8 2.87 −3.6 −5.8 −4.2

6.3 ETKF versus En-4DEnVar training data

In this section we concentrate on “consistent experiments” where the same ensemble setup is used

to calibrate the static covariance file and provide the flow-dependent ensemble perturbations used

in hybrid VAR. One way to do this is to use the forecast perturbations midway through an ensemble

experiment to calibrate the static covariance file. By using this approach we can identify which

aspects of the ensemble provide benefit.

The control suite mi-ar938 is based on the OS37 suite but using Gaspari-Cohn vertical locali-

sation with 16 empirical vertical modes for the alpha control variable and a horizontal localisation

length scale of 600 km following Bowler et al. (2017a). The experiments use the same localisa-

tion scheme and beta weights (the same as suite u-aj444 in Table 2); only the ensemble forecast

perturbations and the static covariance files differ.

We see in Table 4 that the experiment based on EnVarSummer training data (suite mi-ar796)

performs better overall in terms of the overall NWP index score compared to our enhanced control

and a trial based on ETKFSummer training data (suite mi-ar781). Almost all the observations have

smaller innovations and the increments are substantially more balanced, as measured by the final

value of the Jc gravity wave penalty term (not shown). Nevertheless, Figures 9–10 show that there

are still regions where the performance is degraded, particularly in the tropics, compared to the

enhanced control. This is addressed in Section 6.4.

The ETKF derived covariance statistics led to a much more poorly conditioned VAR configu-

ration, as measured by the leading Hessian eigenvalue on each cycle (not shown). The broader

vertical correlations of the ETKF derived covariances are believed to be responsible for this effect.

This problem will only get worse when running with the operational N144 / N320 VAR grids rather

than the N108 / N216 grids used in mi-ar781, increasing the computational cost and further in-

creasing the risk of VAR minimisation failures. Suite mi-ar781 also suffered a UM forecast failure

(bi-conjugate-gradient convergence failure) on the 1800 UTC cycle of 15 June 2015.
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Figure 9: Verification versus observations for En-4DEnVar experiment mi-ar796 compared to the
enhanced control mi-ar938 for the northern (top) and southern (bottom) hemisphere extratropics.
The figures follow the same format as Figure 8 with the addition of fields at 700, 100 and 50 hPa
together with temperature (T) and relative humidity (RH).
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Figure 10: As for Figure 9 but in the tropics.

6.4 Constraining variational bias correction

In this section we further examine the weaker performance of the En-4DEnVar consistent experi-

ment compared to the enhanced control as shown by Figures 9–10. Temperature, wind and surface

pressure show signs of improvement in the extratropics but the geopotential height is notably de-

graded, suggesting a problem with the pressure covariance structure. Further study of the final

mean values of the first Ap segment of the control vector in VAR job.out files (not shown) shows that

the analysis increments in minimisation space are trying to correct a bias in the lowest wavenumbers

of the unbalanced pressure.

The structure of the unbalanced pressure horizontal wavenumber zero vertical covariance matrix

in the covariance file derived from EnVarSummer training data is fundamentally different to that

of the ECMWF derived operational covariance file (Figure 11). The vertical covariance from the

ECMWF training data peaks at the surface, while the EnVarSummer training data set peaks near

model level 30. This motivated an experiment where the vertical covariance matrix for this mode

was replaced by the corresponding matrix in the ECMWF derived covariance file — this file surgery

is easily done with the nco tools for manipulating NetCDF files. The benefits of making this change

are evident in Table 4 and Figures 12–13. Innovations and residuals are generally smaller, as well

as Jc and variational bias correction (VarBC, Lorenc (2012)) penalties (not shown).

Variational bias correction is designed to distinguish between different sources of bias. Different
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Figure 11: The vertical covariance matrices for the horizontal wavenumber zero component of the
unbalanced pressure, where the horizontal and vertical axes are labelled in terms of model levels.
The top plot shows vertical covariances from the operational ECMWF derived covariance file while
the bottom plot shows the vertical covariance from the EnVarSummer derived covariance file. Note
the different legend ranges.
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Figure 12: As for Figure 9 but after replacing the unbalanced pressure wavenumber zero vertical
covariance matrix in the EnVarSummer derived covariance file with the corresponding matrix from
the operational ECMWF derived covariance file.
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Figure 13: As for Figure 10 but after replacing the unbalanced pressure wavenumber zero vertical
covariance matrix in the EnVarSummer derived covariance file with the corresponding matrix from
the operational ECMWF derived covariance file.

reference observation types are used to establish whether a bias is in the model or the observation

under consideration. For instance, if a consistent bias is seen for different types of observations

then it could be considered as a model bias. However, this can only be corrected if the background-

error covariance matrix allows the increment to have a sufficiently large value in the region of in-

terest, which will not happen if the scaled innovation lies in the null-space of the background-error

covariance matrix. For this reason anchor observations are key and need to be given sufficient

weight in preference to observations whose bias is controlled by VarBC. The ECMWF derived co-

variance file for the unbalanced pressure in wavenumber zero achieves this by virtue of having larger

background-error variances near the surface, where most anchor observations reside, compared to

the EnVarSummer derived covariance file.

6.5 Surface temperature impacts

The impacts of the combined changes of horizontal waveband localisation, Ménétrier vertical lo-

calisation and varying hybrid weights (Sections 2, 3 and 5) have been combined with the modified

EnVarSummer covariance file tested in Section 6.4 for a winter experiment using the hybrid weights

β2
c = β2

e = 0.5 everywhere (suite u-al830). The control is the OS39-based low-resolution coupled

suite u-al877, described in Table 6.

Despite the impressive scores in Table 5, the degradation in verification of surface temperatures,
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Table 5: The “EnVar aP0” covariance file is the modified EnVarSummer covariance file of Sec-
tion 6.4. The winter control suite u-al877 ran for 66 days.

Suite ID Data source
Observation index Analysis index

# Index RMS Diff (%) Index RMS Diff (%)
days change NH TR SH change NH TR SH

u-al830 EnVar aP0 66 1.46 −0.6 −0.2 −1.2 3.64 −3.8 −2.9 −4.5

Figure 14: The average vertical profiles for the specific humidity analysis increment (left) and the
potential temperature analysis increment (right). The dotted lines show the mean values of the
increments, while the full lines are the RMS values. The red lines describe the trial using the
modified EnVarSummer file of Section 6.4 and the black lines denote the standard winter control
using the operational ECMWF derived covariance file.

especially over land, is too large to be a viable contender. For instance, the UK index: Northern

Hemisphere Land (10111) results (not shown) indicate that the RMS error of surface temperatures

verified against observations is 8.4% higher. Figure 14 shows that the averaged mean specific

humidity analysis increment is twice as large in the experiment as in the control near the surface

while the averaged RMS potential temperature increment is much smaller in the stratosphere.

The EnVarAllYear training data were used to create a new covariance file with the unbalanced

pressure wavenumber zero vertical covariance matrix taken from the ECMWF covariance file in

order to make the covariances more applicable all year round. Having done this, we compared

the humidity wavenumber zero vertical covariance matrix from the resulting covariance file with that

of the operational ECMWF derived covariance file (Figures 15–16). The EnVarAllYear covariance

file has a much stronger coupling from the troposphere to the surface in wavenumber zero than

the ECMWF derived covariance statistics, which are more dominated by stratospheric error. This

allows mid-tropospheric observations to influence surface temperature and specific humidity. To

counter this, the humidity wavenumber zero vertical covariance matrix was also replaced with the

corresponding matrix from the operational covariance ECMWF derived covariance file to produce a

new covariance file, which is tested in Section 7.
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Figure 15: Vertical covariances (top) and correlations (bottom) for the horizontal wavenumber zero
component of the humidity control variable taken from the operational ECMWF derived covariance
file.
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Figure 16: As for Figure 15 but using the EnVarAllYear covariance file (Section 6.5). Note the
different legend range in the top figure compared to Figure 15.
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7 Component trials

After some initial experiments two component trial configurations have been chosen. The first is

based on the operational covariance file introduced in OS37, calibrated using ECMWF training

data, while the other uses the covariance file of Section 6.5, calibrated using the EnVarAllYear

training data with the wavenumber zero vertical covariance matrices for unbalanced pressure and

humidity taken from the OS37 covariance file. The control suites used for these trials were u-al877

(15 November 2016 to 20 February 2017, 67 days) and u-al878 (1 July to 30 September 2016,

92 days). Both controls are run in coupled mode, running both the deterministic data assimilation

and the ETKF MOGREPS-G ensemble, but at low resolution (N320 deterministic forecast, N216

ensemble forecasts, N108 VAR preconditioning step and N216 VAR update step). Faced with the

need to provide evidence for a 4 July meeting to decide on the PS40 package trials two compro-

mises were made. Firstly, only short ensemble forecasts to T+9 were run for the purpose of cycling

the data assimilation. Secondly, an early version of the OS39-based global research suite u-ak375

was used. The controls and experiments described in Tables 6–7 have then been updated while

they have been running to incorporate later changes to the research suite as it evolved to its final

configuration. This has meant that changes have been applied to the controls and experiments on

different cycles, depending on how far they have progressed. An exception to this was a decision

to keep the same station lists in the controls and experiments throughout the trials. Another issue

adversely affected the running of the control and experiments. The global research suite is con-

figured to trigger a short step forecast whenever an ensemble forecast fails, for whatever reason.

The low-resolution configuration’s execution times had not been tuned when we started running our

suites so several short step forecasts have run purely as a result of the execution time being set

too low. Even when an optimal setting had been found, however, slow running on the Cray meant

that more short step forecasts were subsequently triggered. Finally, some experiments had to be

stopped early in order to release computing resources for the PS40 package trials.

Tables 6–7 show an overview of the main winter and summer low-resolution coupled trials that

have been run over the PS40 trialling periods, with verification results summarised in Tables 8– 9.

As alluded to in Section 2 it takes too long and is too computationally expensive to exhaustively

tune all the options in Tables 6–7. An initial attempt (experiment OperCov1) was made to see

whether the horizontal and vertical localisation choices used by Bowler et al. (2017a) together with

the operational covariance file would allow more weight to be given to the ensemble in the lower

atmosphere — some weight was given to the ensemble in the upper atmosphere but experience

suggested that it would unwise to allow it to be the dominant component there. The results of

Tables 8–9 show that this is indeed beneficial, although the detailed verification plots (not shown)

indicate some detrimental impact in the tropics, particularly when verifying against own analyses.

The remaining experiments adopted the horizontal waveband localisation and Ménétrier vertical

localisation choices of Sections 2–3, noting that two different vertical localisation matrices (labelled
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“Mv1” and “Mv2”) have been used.

We start by discussing the experiments without time lagging and shifting, namely OperCov4 and

EnVarCov3, both configurations using the Mv2 vertical localisation matrix recommended in Sec-

tion 3. The OperCov4 configuration seeks to take advantage of the improved consistency obtained

when using wavebands (Section 2) to adopt the same hybrid weights in all regions. Only a single

set of weights, giving equal emphasis to the static and ensemble covariance components, has been

tested and the number of vertical eigenmodes was kept at seven for consistency with the lagging

and shifting experiments, where the number of modes was reduced to keep the computational cost

lower. Even with these judicious choices and compromises, Tables 8–9 show that this configuration

is still beneficial, although Figures 17–18 indicate some drop in performance at longer lead times.

The new covariance file of Section 6.5 has benefited from some hybrid weight tuning, as a result

of which it was decided to stay close to the operational weights by giving greater emphasis to the

static covariances. Having said this, it was found that adopting slightly reduced static covariance

weights in the upper atmosphere was beneficial. Nevertheless, this set of weights is a large step

towards the ambition of having more-consistent weights in all regions. The remaining settings are

the same as those of the OperCov4 configuration. Tables 8–9 show that the EnVarCov3 configura-

tion produces the best overall performance for the experiments without lagging and shifting. This is

further reinforced by Figures 19–20.

The remaining experiments have been included to show the potential benefit that might be ex-

pected from a future implementation of time lagging and shifting. Configurations OperCov2 and

EnVarCov1 both outperform configurations OperCov4 and EnVarCov3, respectively, although it is

worth noting that the performance change with and without lagging and shifting is lower when using

the En-4DEnVar derived covariance file. Configurations OperCov3 and EnVarCov2, which use one

lag and no shifting and so only double the size of the effective ensemble compared to the factor six

increase of configurations OperCov2 and EnVarCov1, were included as a less costly setup but are

still delivering levels of performance close to their more costly counterparts.

Based on these experiments, the OperCov4 and EnVarCov3 configurations were chosen as

candidates for PS40 package trials.

8 Operational implementation

Following parallel suite trialling, PS40 went operational as OS40 on 13 February 2018. All aspects

of the EnVarCov3 data assimilation package described in Table 6 were implemented without lagging

and shifting. Unfortunately, due to a setup error the wavebands were implemented incorrectly, with

Figure 1 showing the difference between the intended and implemented wavebands.
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Figure 17: Verification against observations (top) and own analyses (bottom) for configuration Op-
erCov4 in boreal winter.
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Figure 18: As for Figure 17 but in boreal summer.
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Figure 19: Verification against observations (top) and own analyses (bottom) for configuration En-
VarCov3 in boreal winter.
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Figure 20: As for Figure 19 but in boreal summer.
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9 Future work

The approach of taking the unbalanced pressure and humidity wavenumber zero vertical covariance

matrices from the ECMWF derived covariance file is expedient in the short-term. In the long term a

better way needs to be found to allow surface anchor observations to have sufficient influence.

The next global data assimilation and ensembles priority is the replacement of the ETKF with

En-4DEnVar in MOGREPS-G. Time lagging and shifting remains an option following the operational

implementation of En-4DEnVar, which is planned for late 2018 or early 2019 and which will use the

intended wavebands shown in the left plot of Figure 1.
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