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Summary 

Abdominal aortic aneurysms affect approximately 5% of the population over 65 years 

of age. It is thought that rapidly growing aneurysms are at greater risk of rupture. It is 

therefore important to understand what the causes of aneurysm growth are and 

whether these are different from the causes of rupture. In particular, blood flow is 

believed to influence the rate of aneurysm growth. The 1-dimensional method of 

characteristics offers a means of simulating the haemodynamics in the arterial network. 

Its major advantage over 3-dimensional models is that extensive parts of the vascular 

network can be simulated. The influence of vessel characteristics on other parts of the 

network can then be examined. The method of characteristics has been adapted to 

build a computer program that simulates the flow of incompressible fluids in elastic 

pipes. The program is used in the first part of the thesis to demonstrate that changes in 

arteries far from the aorta influences the haemodynamics within the aorta. In the 

second part of the thesis, a retrospective population-based statistical study is carried 

out of clinical and geometric factors of abdominal aortic aneurysms. Clinical 

measurements have been collected from patients records at Ninewells Hospital, 

Dundee. To strengthen the analysis of these measurements, a novel approach to 

include measured parameters into multiple linear regressions has been developed 

using a kernel smoother. The results suggest that aneurysm diameter remains a 

significant predictor of abdominal aortic aneurysm growth and the rate of growth is 

influenced by several geometric characteristics of the abdominal aorta. If the 

haemodynamics influence aneurysm growth rate, the conclusions suggest that 3-

dimensional computational fluid dynamics models would help to study the influence 

of aneurysm geometry on the blood flow dynamics. 
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Chapter 1 

Introduction 

1.1 Abdominal Aortic Aneurysms 

The first notice of aortic aneurysm was made by Jean Fernel, and also 

described at the same time by Vesalius, and was published in Medicina in 1555 

(Gibson 1898). An aneurysm consists of damage to the wall of a blood vessel 

and an increase in the vessel’s size. When left untreated, the aneurysm 

ruptures, with an overall fatality rate of 80% (Blanchard 1999; Wilmink and 

Quick 1998). 

The abdominal aorta lies from the diaphragm to the aorta-iliac bifurcation 

where it separates into two iliac arteries that supply the legs. It is an artery of 

the elastic category, also referred to as a conductance artery. Arteries are 

composed of three layers or tunicae. The innermost layer is the tunica intima 

consisting of a single layer of endothelial cells 0.2 to 0.5 µm thick in contact with 

the blood stream. In addition, the intima of the aorta may contain a 

subendothelial layer that includes smooth muscle cells. The tunica media, 

middle layer, alternates smooth muscle cells and collagen with sheets of elastin 

to make 20 to 70 concentric musculo-elastic layers in the aorta, each 5 to 15 µm 

thick (Humphrey 2002; Wolinsky and Glagov 1967). The smooth muscle cells, 

collagenous fibrils and elastin laminae are usually oriented circumferentially 

which is expected to regulate the distensibility of the aorta. The outermost layer 

of the aorta, about 10% of the wall thickness, is the tunica adventitia, a sheath of 
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collagen containing the vasculature of the aortic wall, the vasa vasorum. 

Whereas the thoracic aorta has a vasa vasorum that penetrates deep into the 

media, the abdominal aorta’s vasa vasorum is limited to the adventitia with no 

vessels supplying the media (Dollar 1994). 

It is suggested that damage to the intima by inflammation or impairment of 

the endothelium by atherosclerotic plaque (Crawford et al 2003) is the precursor 

to abdominal aortic aneurysms. Elastin has a Young’s modulus of ~500 kPa 

while that of collagen is ~500 MPa (Rutten 1998). The load bearing elastin in the 

aorta is not replaced when damaged so that destruction of elastin and damage 

to the media cause the much stiffer collagen to become the main load bearer 

(MacSweeney et al 1994). Furthermore, while elastin is an elastic material, 

collagen is visco-elastic and will deform over time (Caro et al 1978). The media 

of the abdominal aorta has fewer musculo-elastic layers than other sections of 

the aorta, and hence less elastin content, making the abdominal aorta more 

sensitive to elastin degradation; this may explain that 95% of aortic aneurysms 

occur in the infra-renal aorta (Kent and Boyce 1994). 

Remodelling of the collagen due to the extra load it has to bear increases the 

size of the aorta (Crawford et al 2003; MacSweeney et al 1994). The precise 

causes for the onset and growth of aneurysm are unclear (Faxon et al 2004). The 

vessel ruptures when its diameter is so large and its wall so thin that it cannot 

bear the load any longer (Kent and Boyce 1994). 
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It is estimated that 5% of the population has or will have an abdominal aortic 

aneurysm (see Table 1.1.1). A greater proportion of men (6%) than women (2%) 

will develop aneurysms. Screening studies have measured a prevalence of 

abdominal aortic aneurysm up to 14.2% for men (Wanhainen et al 2001) and up 

to 5.9% for women (Newman et al 2001). There are geographical variations in 

these epidemiologic figures. While Scandinavia and the United States of 

America are particularly affected, Benelux is less so, and a screening study in 

Japan did not reveal a single aneurysm (Wilmink and Quick 1998). In the 

United Kingdom variations in prevalence also appear to exist, with 

measurements for men from 2.9% in Liverpool (Loh et al 1989) to 8.4% (Smith et 

al 1993) in Birmingham. The largest population-based screening study is the 

Multicentre Aneurysm Screening Study in the south of England (Scott 2002) 

with in excess of 27 000 men and measured a prevalence of 4.9%. 

There are indications that a proportion of the population may be genetically 

predisposed to aneurysm and so to some extent the disease is heritable 

(Kuivaniemi et al 2003; Cannon Albright et al 2003; Salo et al 1999). For example 

mutations of the COL3A1 gene affect the structure of type III collagen and is 

thought to weaken the arterial wall (MacSweeney et al 1994; Henney et al 1993); 

in addition it is suggested that genetic polymorphisms of tissue inhibitors of 

metalloproteinases and matrix metalloproteinases may be linked to aneurysm 

(Ogata et al 2005). However, no single gene has yet been clearly associated with 

abdominal aortic aneurysm (Sandford et al 2007). The recent possibilities of  
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Table 1.1.1. Prevalence of abdominal aortic aneurysm in the United Kingdom and worldwide from screening, for men (♂) and 
women (♀). Included are studies with at least the 65 to 74 year age group and an aneurysm diameter minimum criterion between 29 
and 35 mm. Estimated totals are from meta-analysis of tabulated prevalence studies where numbers are known. 

 

Sources: * Cornuz et al 2004; ** Wilmink and Quick 1998. 

Location Study Numbers Prevalence (%) 
  ♂ ♀ ♂ ♀ ♂ and ♀ 

 United Kingdom 

Edinburgh Lee et al 1997 * 1156   2.9 

Birmingham Smith et al 1993 2669  8.4   

Chichester Scott et al 1995 2342 3052 7.6 1.3 4.0 

Croydon Jones et al 1996 203  5   

Huntingdon Wilmink and Quick 1998 7493  5.2   

Liverpool Loh et al 1989 657  2.9   

Northumberland Holdsworth 1994 628  6.7   

Oxford Collin et al 1988 426  5.4   

Southern England Scott 2002 27147  4.9   

 Estimated Totals for the United Kingdom: 41565 3052 5.3 1.3 3.8 

 Rest of the World 

Belgium (Liege) Vazquez et al 1998 727  3.8   

Denmark (Viborg) Lindholt et al 2006 4852  4   

Italy (Genoa) Simoni et al 1995 * ** 741 860 8.8 0.6 4.4 

Italy (Asola) Settembrini et al 1992 * 648   3.1 

Netherlands (Rotterdam) Pleumeekers et al 1995 2217 3066 4.1 0.7 2.1 

Norway (Tromso) Singh et al 2001 2962 3424 8.9 2.2 5.3 

Norway (Oslo) Krohn et al 1992 500  8.2   

Sweden (Norsjo) Wanhainen et al 2001 248 256 14.2 3.1 8.6 

Australia (Freemantle) Nicholls et al 1992 * 654 571 4.7 0.4 2.7 

Japan Takei et al 1995 ** 348   0 

United States of America Newman et al 2001 1953 2781 12.9 5.9 8.8 

Western Australia Jamrozik et al 2000 12203  7.2   

 Estimated Totals for the World: 68622 14010 6 2 5 
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genome-wide analyses might soon provide an answer to genetic predisposition 

(Kuivaniemi et al 2006; Tilson and Ro 2006). 

“The outlook in aortic aneurysm is always serious, and the prognosis is usually 

therefore somewhat grave.” Gibson (1898) further assesses that “the subject of 

treatment, it must be confessed, is somewhat discouraging.” By the beginning of the 

20th century, treatment consisted of encouraging the coagulation of the blood in 

the aneurysm. This was achieved partly by reducing the blood pressure 

through enforcing complete rest and a diet of starvation, and extracting 100 mL 

or so of blood when necessary. Remedies such as iodide of potassium and nitro-

glycerine could be used. Clotting of the blood was also achieved by electrolysis 

and the introduction of metallic wire or horse hair in the aneurysm. 

In 1951 in Paris the first successful graft replacement of an abdominal aortic 

aneurysm was performed by Dubost (1952) (Cannon et al 1963). Mortality rates 

from surgery were immediately much lower than that from aneurysm rupture 

and elective surgical repair of aortic aneurysms became possible. By the start of 

the 21st century the mortality rate from elective aneurysm repair can be as low 

as 2% to 3% (Kent et al 1994b). For each patient it is essential to assess both the 

probabilities of mortality from aneurysm rupture and from elective surgery 

(Brewster et al 2003; Hallett 2000). The most used criterion for estimating the 

probability of rupture is aneurysm diameter although alternatives based on 

diameter are frequently advocated such as the ratios of the aneurysm diameter 

to the supraceliac aorta diameter and to the aneurysm length (Blanchard 1999; 

Ouriel et al 1992). For aneurysms in the 40 to 50 mm range (see Table 1.1.2) the 
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probability of rupture (up to 0.05 for 1 year, equal to 5% risk per year) can 

exceed the mortality rate of elective surgery (0.02 to 0.03). Even with a 

probability of rupture of 0.005 per year (0.5% risk per year), a patient with a 

remaining 10 year life-expectancy will have a probability of rupture of 0.05 in 

those 10 years (5% risk of rupture). Katz et al (1992) estimated that elective 

surgery should be offered to some patients with aneurysms as small as 43 mm 

in diameter. 

Table 1.1.2. Probabilities of rupture for different ranges of abdominal aortic 
aneurysm diameters. 

Aneurysm Diameter (mm) Probability of Rupture (per year) 

less than 40 0 

40 to 50 0.005 to 0.05 

50 to 60 0.03 to 0.15 

60 to 70 0.1 to 0.2 

70 to 80 0.2 to 0.4 

more than 80 0.3 to 0.5 
Source: Brewster et al 2003. 

Currently, patients with abdominal aortic aneurysm larger than 55 mm in 

diameter are recommended elective surgery (Brewster et al 2003). Many 

aneurysms larger than 55 mm however never rupture (Lederle et al 2002) while 

some smaller aneurysms do rupture (10% of ruptured abdominal aortic 

aneurysms were smaller than 50 mm in a study by Nicholls et al 1998). The 

United Kingdom Small Aneurysm Trial investigated the benefits of operating 

on small aneurysms 40 mm to 55 mm in diameter (Powell et al 1998). The trial 

returned a “neutral result” whereby the 527 patients that were not operated on 

had a similar mortality over 6 to 8 years as the 563 patients that underwent 

elective surgical aneurysm repair (Brady et al 2002; Powell 1999). Although 

there is no evidence that surgery improves survival, nor is there any evidence to 
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the contrary (Pretre and Turina 1998). It should be expected that the survival 

rate of patients operated on is worse immediately after surgery, but then drops 

less rapidly than that of patients with aneurysms (McCleary and Mahomed 

1999). The survival curves published in 2002 (Brady et al) seem to follow this 

expectation even though the difference between mortalities is not statistically 

significant (with a 95% confidence): the survival curves cross each other after 

about 3 years and thereafter the gap between them appears to be ever 

widening. 

It is important to estimate the probability of rupture for the individual patient, 

and it is essential to determine the probability of mortality from surgery, which 

can be as low as 0.02 (2% risk) but higher than 0.4 (40% risk) for some 

(Kleinstreuer and Li 2006; Brewster et al 2003). For small abdominal aortic 

aneurysms, diameter is not a suitable criterion to differentiate the probabilities 

of rupture for individual patients. The first recommendation of Brewster et al 

(2003) is that “the arbitrary setting of a single threshold diameter for elective AAA 

[Abdominal Aortic Aneurysm] repair applicable to all patients is not appropriate, as 

the decision for repair must be individualized in each case”. Although it was 

suggested that the United Kingdom Small Aneurysm Trial looks at aneurysm 

growth rate as a predictive factor of rupture (Brown and Powell 1999), results 

concentrated on the link between growth and the increase in rupture 

probability due to the increase in size: however, no direct link between rate of 

growth and probability of rupture appears to have been made (Brady et al 

2004). This implies that predicting risk of rupture by using the growth rate may 
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not be justified. The work accounted for in the following chapters is concerned 

with the rate of aneurysm growth rather than the probability or risk of rupture. 

It is thought that an improved understanding of the factors that accelerate 

abdominal aortic aneurysm growth will help in differentiating the risks 

incurred by patients (Thompson et al 2002; Vardulaki et al 1998; Schewe et al 

1994) and so improve patient selection for repair. 

1.2 Aneurysm Growth 

While it is conceivable that aneurysm rupture can be explained by purely 

mechanical causes, it is clear that aneurysm growth is caused by biochemical 

effects, namely elastin degradation and collagen remodelling. However, the 

processes of elastin degradation and collagen remodelling may themselves be 

caused in part by haemodynamic phenomena within the aneurysm. 

The association of aortic wall inflammation with abdominal aneurysms 

(Swedenborg and Eriksson 2006; Treska et al 1999; Freestone et al 1995) is a 

clear indication of the involvement of biochemical factors such as homocysteine 

(Halazun et al 2007) and macrophage migration inhibitory factor (Pan et al 

2003) in aneurysm growth. This has led to the trial of possible pharmacological 

treatment of aneurysms, for example using doxycycline to reduce the rate of 

aneurysm growth (Baxter et al 2002; Mosorin et al 2001; Baxter 2001; Gadowski 

et al 1994). Furthermore, the aneurysmal aorta will itself produce chemicals that 

can be measured in the blood, such as interleukin-6 which concentrations have 

been found proportional to the aneurysm surface area (Dawson et al 2007). On 
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the one hand some chemicals in the blood cause the growth of the aneurysm, on 

the other hand the existence of an aneurysm causes higher concentrations of 

other chemicals (Satoh et al 2010; Golledge et al 2007; Satta et al 1995). 

Atherosclerosis is the most important contributor to inflammatory vascular 

disease, which, through changes to the endothelium damages the tunicae 

intima (Libby et al 2011; Libby 2002). Lipids, and in particular Low-Density 

Lipoprotein (LDL), are associated with inflammation, atherosclerosis and the 

formation of plaque (Aikawa et al 2002; Kinlay et al 2001; Libby et al 2000). 

Several studies have found that greater thickness of the intima and media is 

associated with lower wall shear stress of the blood in the lumen of the carotid 

artery (Kornet et al 1998) and the femoral artery (Kornet et al 1999); greater 

intima-media thicknesses have also been related to higher systolic and diastolic 

pressure (Augst et al 2007). While low wall shear stress may contribute to 

plaque formation, high wall shear stress may be associated with plaque rupture 

(Groen et al 2007) though this association may be confounded by other 

biochemical effects localised to where higher wall shear stress is likely (Segers 

et al 2007). Wall shear stress throughout the arterial network can now be 

estimated with 3-dimensional medical imaging and the use of computational 

fluid dynamics (Hoskins and Hardman 2009; Stroev et al 2007). 

Blood pressure and blood flow in the artery may also be associated with 

arterial damage and in particular with arterial wall remodelling. It is suggested 

that a progressive increase in pulmonary artery diameter is associated with 

hypertension in the vessel, though the statistical correlation is missing 
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(Boerrigter et al 2010). Furthermore, it was demonstrated by in vivo 

experiments that exposing the wall of an artery to high blood flow causes holes 

in the internal elastic lamina leading to remodelling of the intima through 

elongation and dilatation (Masuda et al 1999). Other biomechanical processes of 

the arterial wall, such as smooth muscle tone adaptation (Fridez et al 2001), are 

caused by high blood pressure. It has also been recently demonstrated in vitro 

that, at higher pressures, a pulsed flow can cause the progressive expansion of 

an elastic vessel through mechanical processes alone (Duclaux et al 2010; 

Lasheras 2010). 

Other haemodynamic factors such as peripheral vascular disease are possibly 

linked to aneurysm growth. The aneurysm geometry and size itself have been 

correlated to growth. Growth rate has been linked to maximum diameter with 

correlation coefficient 59.0=r  (Wilson et al 1999) and regression coefficients of 

0.22 yr-1 95% Confidence Interval (CI) [0.15;0.28] yr-1 (Lindholt et al 1998) and 

0.129 yr-1 95% CI [0.105;0.153] yr-1 (Brady et al 2004) have been measured. No 

study has yet found a link between aneurysm growth and blood pressure (Vega 

de Ceniga et al 2006; Wilson et al 1999; Chang et al 1997) and measurements of 

regression coefficients yielded 95% CI [-0.02;0.03] mm/yr/mmHg for diastolic 

pressure (Lindholt et al 1998), [-0.006;0.003] mm/yr/mmHg and [-0.007;0.003] 

mm/yr/mmHg for systolic pressure (Brady et al 2004). Occlusion of the lower 

limb arteries have been linked to aneurysm growth by measuring the regression 

coefficient for the Ankle-Brachial Pressure Index (ABPI): coefficients of 1.0 
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mm/yr 95% CI [0.4;1.7] mm/yr and 1.1 mm/yr 95% CI [0.5;1.7] mm/yr were 

obtained by Brady et al (2004). 

A note must be made of the size of the regression coefficients measured for 

aneurysm diameter and ABPI. The coefficient for diameter of 0.22 yr-1 means 

that for every extra 10 mm in diameter there is a predicted extra 2 mm/yr in the 

rate of aneurysm growth: this is useful because over the range of possible 

aneurysm diameters the extra growth rates are clinically relevant and this will 

influence how the aneurysm is managed. The coefficient for ABPI of 1 mm/yr 

means that for every extra 0.1 unit of the index there is a predicted extra 0.1 

mm/yr in the rate of growth: over the range of possible ABPI [0;~1] the extra 

growth rates are very small and unlikely to be clinically relevant. 

Tobacco consumption is associated with the rate of aneurysm growth 

(Lindholt et al 2001; Wilmink et al 1999): linear regression coefficients of 0.025 

mm/yr/(µg/L) for levels of S-cotinine and 0.22 mm/yr/(µg/L) for levels of P-

elastase have been found (Lindholt et al 2003); however, another study failed to 

link plasma cotinine with growth with a 95% CI [-0.014;0.086] mm/yr/ln(µg/L) 

(Brady et al 2004). This illustrates the difficulty in obtaining clear results using 

statistical analyses. Attempts have also been made to link cholesterol levels 

with rates of aneurysm growth by linear regression (Chang et al 1997). No link 

was found, with Brady et al (2004) measuring regression coefficients 95% CI  

[-0.092;0.133] mm/yr/(mmol/L) and [-0.058;0.175] mm/yr/(mmol/L) for total 

cholesterol, and [-0.13;0.85] mm/yr/(mmol/L) and [-0.28;0.80] 

mm/yr/(mmol/L) for High Density Lipoprotein (HDL) cholesterol. 
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As commented by Doyle et al (2011), there are many contributory factors to the 

risk of aneurysm rupture, many of which are difficult to estimate. Small 

aneurysms are known to rupture and larger ones may never rupture, 

nevertheless probability of rupture increases with size. The rate of aneurysm 

growth becomes an important factor in deciding when to operate and the 

frequency of visits for surveillance. A model of abdominal aortic aneurysm 

growth was developed based on an assumption of the relationship between 

wall stress and expansion rate using the finite element method with medical 

imaging to obtain aneurysm geometries (Helderman et al 2008). This numerical 

method combined with statistical methods was recently used by Helderman et 

al (2010) to calculate rate of aneurysm growth for 11 patients with validation 

measurements of diameter over a 30 month period: it was found that local 

anatomy from medical imaging contributed 62% to the aneurysm growth rate 

and other risk factors 38%. 

1.3 Research Aims 

It is suggested here, in section 1.2, that abdominal aortic aneurysm growth is 

caused by a combination of biochemical and mechanical effects, both being 

wholly or partially linked to the haemodynamics local to the aneurysm. It is 

unclear what the links are between the local haemodynamics and different 

characteristics of the arterial network. The aim of the work presented here is to 

determine the links between haemodynamic conditions in the arterial network 

and the rate of abdominal aortic aneurysm growth. 
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Chapter 2 describes how changes in characteristics at different parts of the 

arterial system might influence the haemodynamics within the abdominal 

aorta. The blood flow dynamics within the human arterial network have been 

simulated using a 1-dimensional computational model. The influence of 

changes of characteristics of the arterial network on the blood flow dynamics 

throughout the network have been studied by comparing the results from 

simulations using a ‘normal’ healthy model, an aged model with more rigid 

arteries, and three different types of vascular prostheses. 

Chapter 3 examines how clinical factors related to blood flow dynamics, 

including measurements of AAA size, are statistically linked to the rate of AAA 

growth. The hypothesis is that changes in the condition of the cardio-vascular 

system over the period of AAA growth might affect the growth rate. The 

parameters analysed have been AAA diameter, blood pressure and pulse rate, 

the Ankle-Brachial Pressure Index (ABPI) and levels of urea and creatinine 

(linked to haemodynamics by their indication of kidney function) and 

cholesterol. To this end, a method to analyse time-line data comprehensively 

has been developed in order to estimate the clinical factors from patients’ 

historic medical records at times when measurements are not being taken and 

with appropriate weighting functions. 

Chapter 4 extends the statistical analysis to include geometric factors of AAA 

obtained from medical imaging. The geometric factors provide a description of 

the shape of the vessel lumen along the length of the abdominal aorta, and in 

addition a description of the aortic centreline and hence its tortuosity. 
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The intention of the work presented here is to determine whether factors that 

might affect the haemodynamics within the abdominal aorta are linked to AAA 

growth. Determining how these haemodynamic factors then influence the 

biochemistry of the aortic wall (e.g. atherosclerosis) which in turn is linked to 

AAA growth is outside the scope of this thesis. 
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Chapter 2 

Simulations 

2.1 The Use of Computational Simulation Methods 

Even when a hypothesis is accepted statistically, the process does not provide 

a reason for the correlation between the measurements analysed. For example, a 

statistical link between hypertension and the rate of aneurysm growth does not 

indicate whether hypertension is causing the growth, or the growth is causing 

the hypertension, or both are caused by another phenomenon not included in 

the analysis. Indeed, there are other factors likely to influence aneurysm growth 

such as smoking, connective tissue disorder, etc. Even then, to gain an 

understanding of the causal effects between parameters in an aneurysmal aorta, 

and in the vascular system in general, the field of fluid mechanics offers a range 

of analytical and experimental tools (Chung 2002; Ku 1997; Skalak et al 1989). 

A key characteristic of the flow of blood in arteries is its pulsatile nature; an 

early study of oscillatory flow in an elastic vessel is Witzig’s 1914 thesis on 

incompressible fluid flow dynamics in elastic pipes. The behaviour of pulsatile 

flow in a vessel depends on the Womersley number, of Womersley (1957) who 

developed and applied elastic tube theory to flow in arteries. The Womersley 

number defines the radial distribution of velocities in a vessel, the mathematical 

solution for velocity requiring the use of Bessel functions nJ  (c.f. Watson 1944). 

This analytical approach is useful for simple geometries as it provides a most 

robust analysis, e.g. to examine the effect of taper on flow characteristics 
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(Belardinelli and Cavalcanti 1992). Yet it relies on approximations which may or 

may not represent real arteries (Mirsky 1967), and once the problems for which 

solutions are sought deviate from the simplest of specifications it is no longer 

efficient to develop purely analytical solutions. 

Physical experiments provide the flexibility of examining the flow 

characteristics in model arteries with complex geometries, and model 

specifications can be controlled (Chaudhuri et al 2004; Peattie et al 2004; 

Egelhoff et al 1999). Recently, with advances in non-invasive measurement 

technologies of the arterial system in vivo, such as with Computed 

Tomography (CT), precise physical models of individual patients’ aortas have 

become possible (Kato et al 2001; Lermusiaux et al 2001). However, physical 

experiments can be expensive because of the equipment and materials required, 

invasive measurements can affect the flow being studied and non-invasive 

techniques are not always suitable. 

To determine how differences in arterial characteristics far from the abdominal 

aorta may affect the flow characteristics within the infra-renal aorta, an efficient 

numerical simulation method is required to model extensive parts of the arterial 

network. 

Computers offer a means of simulating physical experiments using only the 

electronic equipment available. Statistical modelling of blood flow on 

computers can be achieved with Monte Carlo simulations that are achieved by 

reproducing a population with known characteristics distributions given 
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correlations of principal components obtained from measurements (Burnette 

1996), but this does not simulate the haemodynamics. Computational Fluid 

Dynamics (CFD) modelling of the arterial flow is a means of applying the 

underlying mathematical theory of fluid dynamics in a numerical volume 

broken down into small cells, so as to simulate the blood flow and, when 

required, the movement of the arterial walls (Steinman et al 2003). 

CFD is used to simulate the haemodynamics of abdominal aortic aneurysms 

by building simple models in 2D (2 dimensions) (Finol and Amon 2001) or 3D 

(3 dimensions). Studies normally use a physiological transient wave form, but 

some approximate to steady flow and rigid arterial walls to examine the 

characteristics at peak flow (Ekaterinaris et al 2006). Ranges of different 

aneurysm shapes can be studied using simple models, with and without fluid-

structure interaction, to determine for example arterial wall stresses (Scotti et al 

2005; Finol et al 2003). As with physical experiments, non-invasive scanning 

technology such as CT allows the development of patient-specific numerical 

models (Hammer et al 2009; Yamamoto et al 2006; Steinman et al 2003). Several 

computer simulations of the haemodynamics of abdominal aortic aneurysms 

have been carried out using patient-specific arterial geometries with pulsatile 

flow, and some with fluid-structure interaction, thus allowing the artery to 

expand with the fluid pressure (Papaharilaou et al 2007; Leung et al 2006; 

Wolters et al 2005; Finol and Amon 2003; Di Martino et al 2001). Figure 2.1.1 

illustrates one of the 3D computational models of a patient’s aortic aneurysm 

described in this thesis. 
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Figure 2.1.1. Computer model of a patient’s abdominal aortic aneurysm at 
Ninewells Hospital, Dundee, with polygonal cells using Star-CD (CD Adapco, 
London). 

Assumptions are made for such patient-specific models, because while the 

arterial geometry is measured non-invasively, little is known of the elasticity of 

the patient’s vessel wall. Bergel (1961) has measured the static and dynamic 

elastic properties of the arterial wall and techniques have been developed to 

assess elasticity from medical imaging (Kanai et al 2003). Values for the elastic 

modulus of arteries can also be found in a review by Hoskins (2007). Using such 

measurements, it is possible to allow for compliant arteries in experiments 

(Deters et al 1986) and to examine differences in results between rigid and 

compliant models (Pedrizzetti et al 2002; Liepsch and Moravec 1984). Models 

are often simplified in one respect or another according to what specifically is 

being researched, for instance with the use of constant flow (Doorly et al 2002) 

or of simple 2D geometries (Marques et al 2003). An assumption that is usually 
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made is that blood in large arteries is Newtonian. This is not strictly the case 

and assessments of the flow differences when using non-Newtonian fluid 

properties have been made (Leuprecht and Perktold 2001). 

The pulsatile flow of blood can be considered with 1D (1 dimension) wave 

propagation models (Cox 1969). Flow can be simulated by discretising the 

hyperbolic equations that govern the flow and finding a solution using the 

method of characteristics (Sherwin et al 2003; Versteeg and Malalasekera 1995; 

Parker and Jones 1990; Shapiro 1953). A 1D model was chosen instead of 3D for 

the analysis described in this chapter because it allows blood flow through an 

extensive part of the vascular network to be simulated with ease and, using the 

method developed here, with no numerical iterations. 

1D simulations of the haemodynamics in extensive parts of the arterial 

network can be carried out using the method of characteristics. Avolio (1980) 

published physiological data for 128 segments of the arterial tree, from the aorta 

to the tibial arteries. Using this, he carried out 1D computer simulations to 

examine pressure and flow pulse shapes (Karamanoglu et al 1994). Anliker et al 

(1971) judge that an advantage “is that the method of characteristics includes 

automatically the effects of reflections and makes it possible to account for the variations 

in cross-sectional area with distance and pressure and for the convection of the signal by 

the flow”. Wang and Parker (2004) used the method of characteristics to research 

the effects of occlusion and changes in peripheral resistance on pressure and 

velocity waveforms, and observed that “the complex pattern of wave propagation in 

the large arteries may be the most important determinant of arterial haemodynamics”. 
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Several studies have used 1D modelling to help inform clinicians, e.g. for 

planning bypass operations (Schulz et al 1997; Suda et al 1993; Stergiopulos et al 

1991). 

Some of the effects of different arterial characteristics on wave propagation can 

be determined analytically (Atabek 1968; Atabek and Lew 1966). However, 

physical experiments are carried out to verify the properties derived from 

theory (Horsten et al 1989; Gerrard 1985; Ling and Atabek 1972). Repeated 

wave reflections (Berger et al 1993) contribute to the pulse shape and play a 

physiological role: Berger et al (1995) examined power dissipation in the arterial 

system and suggest that “the presence of wave reflections leads directly to a reduction 

of oscillatory power and an increase in the efficiency of power dissipation”. 

Analyses using linear models describe the space and time distribution of 

pressure and velocity well (Skalak 1972), but need assumptions to linearise the 

equations. In a 1D model, approximations have to be made for the arterial 

geometry, in particular for curved vessels and bifurcations (Lou and Yang 

1992); this may result in errors concerning for example the predicted locations 

of atherosclerosis. 

1D models of the arterial network allow physiological parameters at different 

locations in the vascular network to influence the simulated haemodynamics 

within the aorta. These numerical experiments help to provide an 

understanding of the possible causal relationships between haemodynamics 

and specific vascular diseases, in particular abdominal aortic aneurysm. 1D 
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simulations could help with studying the changes in physiology that led to 

markedly detrimental pressures and flows in the aneurysm described by 

Cooney (1976), with a tenfold rise in pressure between resting and exercise 

conditions. 

2.2 1D Method 

The aim of the use of 1D numerical simulation methods is to determine what 

the effects on the haemodynamics are of altering the properties of the arterial 

network. For the purpose of the interpretation of results by radiologists, 

surgeons and medical engineers, a space-time formulation was chosen for the 

1D model. Furthermore, instead of using a system of governing equations in 

terms of area-velocity variables (Sherwin et al 2003), a system using pressure 

and flow rate was adopted because of the discretisation method developed 

here. This discretisation procedure relies on properties of the variables at 

changes in vascular cross-sectional area, provides an efficient way of solving 

the model and enables the simulation of applied changes in time of the cross-

sectional area. 

Measurements were taken of a patient’s artery sizes and clinically relevant 

alterations were examined by simulating the placing of vascular prostheses. The 

study of the arterial system using the 1D method described here required the 

development of a computer program that allowed the building of 1D models of 

the arterial network and the simulation of pulsatile blood flow in the vessels. 

Analysis of a patient’s radiography was also necessary to describe the arteries 
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geometrically, which allowed the reporting of some network characteristics 

through analytical means. The main limitation of the 1D method is that none of 

the detail of the haemodynamics in the vessel will be simulated as this requires 

3D models. However, the 1D method was chosen because of allowing the 

simulation of extensive parts of the arterial network and the computation of 

pressure, flow rate and mean velocity of the blood throughout that network. 

Both the mathematical development of the computer program Art 2 (written by 

Sarran for this thesis) and the clinical methods used to build the patient specific 

model are described here. 

For a pipe in which cross-sectional area can vary with time as well as distance, 

a control volume can be defined to enclose a section of size x∆  of the pipe and 

within which the pipe is allowed to expand (c.f. Vardy 1990). Effectively, the 

control volume encloses not only the fluid domain in the pipe, but also the pipe 

wall and its surroundings. The fluid in the control volume has density ρ , 

pressure P  and mean velocity u , and the pipe within the control volume has 

mean cross-sectional area a . Figure 2.2.1 (a) represents the pipe with the fluid 

flow into the control volume from which the net flow can be derived as 

( )
x

x

au ∆
∂

∂− ρ . The rate of change of mass of the fluid in the control volume 

( )xa
dt

d ∆ρ  is exactly balanced by the flux into the volume so as to form the 

equation of continuity (mass-conservation equation) (Batchelor 1967): 

( ) ( )
x

x

au
xa

dt

d ∆
∂

∂−=∆ ρρ   Equation 2.2.1 
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Figure 2.2.1. Pipe (solid lines) with cross-sectional area varying with time 
(dashed lines) and distance x , with a control volume of size x∆  showing (a) the 
flow into the control volume and (b) the forces acting on the control volume (2nd 
order forces not represented). 
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The rate of change of momentum of a fluid is governed by the body and 

surface forces acting on it. For the motion of blood in the cardiovascular system, 

body forces due to corporeal movement are neglected because of their 

complexity. The gravitational force may be included, but for the purpose of this 

study it is neglected because the direction of the acceleration from gravity 

depends on the patient’s position which is not an object of this analysis. Figure 

2.2.1 (b) represents the pipe with the forces acting on the control volume, 

namely the net force 
( )

x
x

aP ∆
∂

∂−  due to the pressure gradient and the friction 

force xfu∆− 2  due to viscosity. The rate of change of momentum of the fluid in 

the control volume ( )xau
dt

d ∆ρ  is balanced by the forces acting on the fluid to 

form the equation of motion: 

( ) ( )
xfux

x

aP
xau

dt

d ∆−∆
∂

∂−=∆ 2ρ   Equ. 2.2.2 

Blood is an incompressible fluid so its density ρ  remains constant. The phase 

velocity c  for blood in an artery ( m/s 10~c ) is therefore dependent on the 

compliance of the vessel wall which allows changes in the cross-sectional area 

of the vessel dependent on the internal fluid pressure P . For an elastic vessel 

with rigidity K  defined by 
a

da

K

dP =  and with cross-sectional area a  allowed to 

change with time due to elasticity, the equation of continuity (Equation 2.2.1) 

becomes: 

( )
0=

∂
∂+

∂
∂+

∂
∂

x

au

x

P

K

au

t

P

K

a
  Equ. 2.2.3 
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The flow rate auQ =  and the pressure P  are quantities that are constant 

across step changes in space of the cross-sectional area. Using Q  and P , the 

equations of continuity and motion become, respectively: 









=+
∂
∂+

∂
∂+

∂
∂

=
∂
∂+

∂
∂+

∂
∂

0
2

0

a

fQ

x

P
a

x

Q

a

Q

t

Q
x

Q

x

P

K

Q

t

P

K

a

ρρ
  Equ. 2.2.4 

A linear combination of the governing equations in Equation 2.2.4 leads to: 

ρ
λλλρ

Ka

fQ

dt

dQ

dt

dP

K

a 1
 if0

2 ±==++   Equ. 2.2.5 

From this the characteristic equations (Douglas et al 2001) are derived for the 

1D flow of an incompressible fluid in an elastic vessel: 









−==−−

+==++

cu
dt

dx

a

cfQ

dt

dQ

a

c

dt

dP

cu
dt

dx

a

cfQ

dt

dQ

a

c

dt

dP

 if0
2

 if0
2

2

2

ρ

ρ

  Equ. 2.2.6 

Where c  is the wave speed defined by Equation 2.2.7: 

ρ
K

c ≡   Equ. 2.2.7 

The friction factor f  is defined by considering Poiseuille flow and using the 

Navier-Stokes equation of motion to derive the flow rate given a pressure 

gradient in a pipe of radius R  under steady flow conditions: 

dx

dPR
Q

µ
π
8

4

−=   Equ. 2.2.8 
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Rearranging and substituting Q  and 2Ra π= , the friction factor is defined by 

Equation 2.2.9: 

πµ4=f   Equ. 2.2.9 

While it is an approximation, the factor πµ4=f  does not depend on any of the 

variables P , Q , u  or a  and is constant as long as the viscosity µ  is constant. 

While the phase velocity c  is of the order of 10 m/s, the velocity u  of blood in 

the arterial system is of the order of 0.1 m/s. It is therefore assumed that 

uc >> . This simplifies the characteristic equations so that they apply to the 

characteristic lines depicted in Figure 2.2.2. The pressure AP  and flow rate AQ  

at point A  are related to the pressures and flow rates LP , RP , LQ  and RQ  at the 

points L  and R  because (Nassiet et al 1994): 

dt

dP

t

PP LA

t
=

∆
−

→∆ 0
lim  and 

dt

dQ

t

QQ LA

t
=

∆
−

→∆ 0
lim  along ( )LA  defined by c

dt

dx +=  

dt

dP

t

PP RA

t
=

∆
−

→∆ 0
lim  and 

dt

dQ

t

QQ RA

t
=

∆
−

→∆ 0
lim  along ( )RA  defined by c

dt

dx −=  

Averages of the flow rate 
2

LA QQ +
 and 

2
RA QQ +

 are used along ] [LA  and 

] [RA , respectively, to have constant friction terms, such that Equation 2.2.10 are 

characteristic equations along ] [LA  and ] [RA : 

( ) ( )

( ) ( )









=+∆−−−−

=+∆+−+−

0

0

2
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R

RR
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L

LL
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L

L
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QQ
a

tfc
QQ

a

c
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QQ
a

tfc
QQ

a

c
PP

ρ

ρ

  Equ. 2.2.10 
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Figure 2.2.2. Characteristic lines ( )LA  and ( )RA  of gradients cx +=&  and 

cx −=& , respectively, linking the point ( )AA txA ;  to points ( )ttxxL AA ∆−∆− ;  and 

( )ttxxR AA ∆−∆+ ;  at either side and at the previous time step. 

The constants Lc , La  and Lf  are the parameters of the vessel between L  and 

A , and Rc , Ra  and Rf  are those between R  and A . 

The characteristic equations provide a means of simulating blood flow in 

numerical 1D models of arteries. In such models, pressure AP  and flow rate AQ  

at most grid points A  can be solved from the solution for the previous time 

step, or from specified initial conditions if it is the first time step, using 

Equation 2.2.11: 
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  Equ. 2.2.11 

The boundaries of the vascular network are the ends of vessels that are not 

connected to any other. At vessel ends only one characteristic equation applies 

so that a boundary condition has to be specified. Pressure P  or flow rate Q  is 

x  

t  

A  

L  R  
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specified, or a given function between pressure and flow rate such as for a 

resistive boundary. 

If the boundary condition is a given pressure AP , Equation 2.2.12 provides a 

solution for flow rate AQ : 

1

22

−








 ∆+














 ∆−+−=
R

RR

R

R
R

R

RR

R

R
RAA

a

tfc

a

c
Q

a

tfc

a

c
PPQ

ρρ
 

    left-hand-side boundaries   Equ. 2.2.12a 

1

22

−








 ∆+














 ∆−+−=
L

LL

L

L
L

L

LL

L

L
ALA

a

tfc

a

c
Q

a

tfc

a

c
PPQ

ρρ
 

    right-hand-side boundaries  Equ. 2.2.12b 

If the boundary condition is a given flow rate AQ , Equation 2.2.13 provides a 

solution for pressure AP : 
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R
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    left-hand-side boundaries   Equ. 2.2.13a 
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L
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L

L
LA QQ

a

tfc
QQ
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c
PP +∆−−−=

2

ρ
 

    right-hand-side boundaries  Equ. 2.2.13b 

A resistance boundary is where at the end of a vessel, the greater the velocity 

of the fluid exiting the vessel the greater the pressure, such that the resistance κ  

provides a second equation (Equation 2.2.14) in addition to the single 

characteristic equation. At a right-hand-side boundary, for example, a 

resistance condition leads to: 
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  Equ. 2.2.14 

and 
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  Equ. 2.2.15 

There is a vessel only to one side of a grid point at boundaries and there are 

vessels connected to two sides of most other grid points. At bifurcations, the 

grid point is connected to the ends of three vessels. This requires solving a 

system of three characteristic equations. While pressure is the same in the three 

vessels at the bifurcation, flow rate is split such that the sum of the flow rates in 

two vessels is equal to that of the remaining vessel to satisfy continuity. This 

means obtaining solutions for three unknowns AP , AQ  and AQ ′  from the three 

characteristic equations for the characteristic lines ( )LA , ( )RA  and ( )AR′  where 

( )ttxxR AA ∆−∆+′ ;  is in a grid representing a different vessel to that of R . At the 

bifurcation, the flow rate is AQ  in the R -vessel, and AQ ′  in the R′ -vessel, such 

that the flow rate in the L -vessel is AA QQ ′+ . The pressure AP  and flow rates 

AQ  and AQ ′  are found by solving Equation 2.2.16: 
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Equ. 2.2.16 

In principle there is no limit to the number of interconnected vessels and to the 

number of characteristic equations to be solved; however it is usually easier 

numerically to solve these as several bifurcations connected to each other. For 

example, trifurcations (a grid point at the junction of 4 vessels) can be solved as 

two bifurcations separate only by a small distance x∆ . In vascular applications 

only bifurcations and trifurcations are present. For this study of the abdominal 

aorta the only trifurcation is the junction of the renal arteries with the aorta 

which is solved as two bifurcations. 

Specifying constant vessel characteristics such as cross-sectional area a  in the 

areas between grid points is a new approach to using characteristic equations in 

1D models. By considering flow rate instead of velocity it has been possible to 

allow for changes in cross-sectional area along the vessel to affect velocity. The 

velocity at one side of a grid point is different to that at the other side if the 

cross-sectional areas on each side are different: 
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Changes in cross-sectional area with time can be seen as affecting pressure in a 

similar way. The change in pressure given a change in cross-sectional area is 

driven by the bulk modulus B  defined by 
a

dad

B

dP −==
ρ
ρ

 (Young 1992). If 

pressures at L  and R  are defined by Equation 2.2.18 and if the cross-sectional 

areas are specified by Equation 2.2.19, then a small instantaneous change in 

cross-sectional area from La  to La′  and from Ra  to Ra′  means a change in 

pressure given by Equation 2.2.20. 
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By substitution the characteristic equations become: 
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 Equ. 2.2.21 

Characteristic equations have been used before to describe the 1D fluid 

dynamics of blood flow in the arterial network (Jones 1985; Ghiassy 1982). The 

equations, valid on the characteristic lines, provide a means of finding solutions 
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to fluid flow in pipe networks by computer simulation, as long as the 

assumptions made hold, namely that the phase velocity c  is much greater than 

the blood velocity u  and that changes in cross-sectional area are small. Setting 

a constant time step t∆ , computational grids representing portions of the 

arterial system have been generated using Matlab version 6.1.0.450 release 12.1 

(Mathworks Inc., Natick), the spacing x∆  between grid points being 

determined by the local phase velocity c , ensuring all points have been 

connected by characteristic lines (the programs, geogen.m and bcgen.m, can be 

found in the Appendix). The program Art 2 has been written in Matlab to 

simulate the flow of blood in the 1D models of the arterial network using the 

method of characteristics (c.f. art2.m with test.m, lhsb.m, rhsb.m, bif.m, bifb.m 

and point.m in the Appendix). 

2.3 Application to the Arterial Network 

The ways in which changes in the arterial network affect the pressure and flow 

characteristics at different locations in the network can be examined using the 

1D numerical simulation tool Art 2. The geometric characteristics of the 

vascular network have been obtained from a patient’s scan, a numerical model 

has been built and haemodynamic flow in the model has been simulated. The 

arterial wall rigidity in the model has then been changed to simulate vascular 

prostheses of different types, grafts and stents. The flow characteristics in the 

modified models could then be compared with those of the original model, 
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hence providing knowledge about the influence of the changes on the 

haemodynamics. 

The Radiology department at Ninewells Hospital, Dundee, provided a CT 

(Computed Tomography) scan of a patient’s abdomen and lower limbs from 

which an anonymised arterial network was characterised. Two scan images for 

a single patient were provided, namely (i) a coronal section of the abdomen and 

lower limbs showing the main configuration of the arterial network, in 

particular the abdominal aorta at the level of the renal arteries and the 

bifurcation of the distal end of the abdominal aorta with the two common iliac 

arteries and (ii) a lateral view showing the angles at which the configurations of 

arteries lie. The latter was necessary to resolve the positions of anterior 

branches such as the superior mesenteric artery (Figure 2.3.1 and Figure 2.3.2). 

The graphical representation of the network analysed from the images is shown 

in Figure 2.3.3. Measurements of the lengths of the arterial sections and of their 

diameters at regular intervals (~10 mm) along each section have been made 

using Matlab. The cross-sectional areas were estimated from the diameters. The 

measured artery lengths and cross-sectional areas are listed in Table 2.3.1. The 

diameter measurement error is estimated from the CT image pixel size 

mm 4.1=rσ . 

How well the haemodynamic pulse is transmitted through the network can be 

assessed at the bifurcations from the rigidities and the measured cross-sectional 

areas of the vessels (Wang and Parker 2004). The rigidities were derived from  
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Figure 2.3.1. Colour-enhanced part of the coronal CT image showing the infra-
renal abdominal aorta. Individual image pixels can be seen. 

published wave speed values that are assumed constant for each vessel and that 

are themselves based on values of Young’s modulus and wall thickness 

(Westerhof et al 1969). For instance, the assumed rigidity of the thoracic aorta is 

19.2 kN/m2 derived from a wave speed of 4.28 m/s based on a Young’s 

modulus of 0.4 MPa and a wall thickness of 1.00 mm; the rigidity of the internal 

iliac arteries is 109 kN/m2 based on a wave speed of 10.21 m/s implied by a 

Young’s modulus of 1.6 MPa and a wall thickness of 0.40 mm. These values are 

within the ranges described by Hoskins (2007). For waves travelling from the 

proximal vessel to the two distal vessels, a bifurcation is said to be well 

matched when the transmission coefficient is 1=E , implying that the pressure 

wave is perfectly transmitted through the bifurcation with no reflection. A well  
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Figure 2.3.2. Coronal (left) and lateral (right) CT images of a patient’s abdomen 
and lower limbs at the Radiology department, Ninewells Hospital, Dundee; the 
main features are the abdominal aorta with the renal arteries leading to the 
kidneys (top of coronal image), the aorto-iliac bifurcation (centre), the iliac 
arteries (lower half) and circumflex and femoral arteries (bottom). 
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Figure 2.3.3. 1D arterial network derived from a CT scan of a patient’s 
abdomen and lower limbs; the arteries’ names and characteristics and listed in 
Table 2.3.1. 
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Table 2.3.1. List of the artery sections represented in Figure 2.3.3, with the 
lengths of each section, their measured cross-sectional areas, and the rigidities 
derived from Wang and Parker (2004). The rigidities assume a constant wave 
speed in each vessel that is obtained from values of Young’s moduli and wall 
thicknesses from Westerhof et al (1969). 

N° Name Length 
(mm) 

Cross-Sectional Area (mm2) 
Range 

Rigidity 
(kN/m2) 

Minimum Maximum 

1 Thoracic Aorta 127.9 463.3 519.4 19.2 

2 Splenic A 54 14.5 32.4 28.8 

3 Hepatic A 61.1 41.3 61.1 22 

4 Abdominal Aorta 1 12.1 360.6 20.1 

5 Superior Mesenteric A 106.3 92.4 106.3 28.5 

6 Abdominal Aorta 2 26.6 270.8 360.6 19.6 

7 Right Renal A 48 25.7 31.2 

8 Left Renal A 57.1 25.7 57.8 31.2 

9 Abdominal Aorta 4 95.3 193.9 578.6 23.2 

10 R Common Iliac A 106.4 57.8 115.7 26.3 

11 L Common Iliac A 98.7 90.2 144.7 26.3 

12 R Internal Iliac A 88.1 14.5 57.8 109 

13 R External Iliac A 131.3 48.6 90.2 45.3 

14 L Internal Iliac A 30.9 25.7 109 

15 Posterior Trunk 63.7 14.5 57.8 109 

16 Anterior Trunk 47.1 10 14.5 109 

17 L External Iliac A 124.7 57.8 102.7 45.3 

18 R External Circumflex A 33.6 14.5 54.4 

19 R External Iliac A 0 9.1 78.6 45.3 

20 L External Circumflex A 32.4 1.6 14.5 54.4 

21 L External Iliac A 0 10.1 102.7 45.3 

22 R Deep Femoral A 60.7 25.7 78.6 54.4 

23 R Femoral A 114 32.4 57.8 57 

24 L Deep Femoral A 95.1 10 19.6 54.4 

25 L Femoral A 125 32.4 57.8 57 

26 Abdominal Aorta 0 1.3 360.6 20.1 

27 Abdominal Aorta 3 1.3 360.6 20.8 

Abbreviations: A Artery; R Right; L Left. 
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matched bifurcation does not mean that waves travelling from one of the distal 

vessels will be transmitted well to the proximal and other distal vessels: 

typically returning pressure waves from the distal arteries will be attenuated 

with a transmission coefficient 1<E . The transmission coefficient is given by 

Equation 2.3.1: 

RRL

RRL

YYY

YYY
E

′

′

++
−−+= 1   Equ. 2.3.1 

LY  is the admittance of the end of the artery proximal to the bifurcation, RY  

and RY ′  are the admittances of the two distal arteries. The admittances are given 

by the cross-sectional areas a  and rigidities K  at the vessel ends (Equation 

2.3.2). 

c

a
Y

ρ
=   where 

ρ
K

c ≡   Equ. 2.3.2 

The transmission coefficient error Eσ  due to the diameter measurement error 

rσ  can be computed using Equation 2.3.3: 

( )
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YYYYE
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σ   Equ. 2.3.3 

Where the error in proximal admittance Lσ  is given by Equation 2.3.4, and 

similarly for the distal admittances: 

r

L

L
L

r

c σ
π
ρσ

3

2=   Equ. 2.3.4 
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At any point in the arterial network, the transmission of a pressure wave will 

depend on the admittances of the vessels immediately proximally and distally 

from that point. If the two admittances are equal, the transmission coefficient is 

1=E  and the pressure wave is transmitted with no reflections. If the distal 

vessel is smaller or stiffer, or both, than the proximal vessel, then the distal 

vessel has a smaller admittance and the transmission coefficient is 1>E : the 

transmitted pressure wave magnitude is increased and a reflected wave is 

created. If the distal vessel is larger or more compliant, or both, than the 

proximal vessel, then the distal vessel has a greater admittance and the 

transmission coefficient is 1<E : the transmitted pressure wave magnitude is 

reduced and a reflected wave is created of the opposite sign to that transmitted. 

Table 2.3.2 lists the transmission coefficients E  and their errors Eσ  for all the 

junctions of the network modelled. The very short sections (N° 26 and 27 in  

 

Table 2.3.2. Transmission coefficients E  at the junctions of the arterial network 
computed from the vessel admittances, coefficients for trifurcations being 
computed as total transmission through two bifurcations. 

Junction Linking Arteries N° Transmission Coefficient EE σ±   

1; 2; 3; 4 (trifurcation) 1.2 ± 0.2 

4; 5; 6 1 ± 0.1 

6; 7; 8; 9 (trifurcation) 1 ± 0.2 

9; 10; 11 0.9 ± 0.2 

10; 12; 13 0.9 ± 0.4 

11; 14; 17 1.2 ± 0.3 

13; 18; 19 0.9 ± 0.3 

14; 15; 16 0.5 ± 0.6 

17; 20; 21 0.9 ± 0.3 

19; 22; 23 0.9 ± 0.4 

21; 24; 25 1.4 ± 0.3 
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Table 2.3.1) are used to model the trifurcations as two bifurcations for 

programming convenience. Their short lengths (1.3 mm) mean that effectively 

trifurcations are modelled. It is the total transmission coefficient through the 

trifurcation that is stated in Table 2.3.2. For all but one junction, the bifurcations 

and trifurcations are well matched with 1=E  within the error Eσ  from 

measurement. The one differing bifurcation is that of the left external iliac 

artery splitting into the femoral and deep femoral arteries (arteries N° 21, 24 

and 25). The transmission coefficient 3.04.1 ±=E  suggests that the total distal 

admittance RR YY ′+  is smaller than the proximal admittance LY  and some 

resistance to the haemodynamic flow pulse is to be expected at that bifurcation. 

There, the pressure is expected to rise while the flow rate would drop. It is 

unclear whether this represents arterial disease at the site of the bifurcation, but 

these characteristics at the distal end of the left external iliac artery will affect 

the haemodynamics elsewhere in the network. This is not the same at the 

bifurcation on the other side (arteries N° 19, 22 and 23), i.e. at the distal end of 

the right external iliac artery, where the transmission coefficient is 4.09.0 ±=E  

and appears well matched. The transmission coefficient errors Eσ  demonstrate 

the difficulty in assessing how well matched vessels are at bifurcations, 

especially for small vessels: the junction splitting the left internal iliac artery 

into its posterior and anterior trunks (arteries N° 14, 15 and 16) has a measured 

transmission coefficient 5.0=E  smaller than its error 6.0=Eσ . 

Boundary conditions are required at the ends of arteries that are not connected 

to a bifurcation. Resistance boundaries are used at the distal ends of the vessels 
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as specified in Table 2.3.3; the resistances κ  defined in the 1D method 

development are derived from the aκ  values published by Stergiopulos et al 

(1992). The admittance of a resistance boundary can be derived as κaY = . A 

boundary condition is also required at the proximal end of the thoracic aorta. 

Different conditions are used depending on the numerical experiment being 

carried out. First, to determine the influence of the network on pressure waves, 

the amplitude of a pressure step change is assessed in all arteries based on a 

prescribed 100 Pa step in pressure as boundary condition at the top of the 

thoracic aorta. Second, to determine the influence of resistance in different parts 

of the network, the flow rates at the distal boundaries are evaluated for a 

constant prescribed flow of 2 L/min (3.3 × 10-5 m3/s) in the thoracic aorta. 

Finally, pulsatile flow is simulated by prescribing a periodic 1.89 × 10-4 m3/s  

 

Table 2.3.3. Resistances at the distal boundaries of the terminal vessels derived 
from Stergiopulos et al (1992). 

N° Name Resistance (kPa.s/m) 

2 Splenic Artery 75 

3 Hepatic Artery 71 

5 Superior Mesenteric Artery 135 

7 Right Renal Artery 29 

8 Left Renal Artery 29 

12 Right Internal Iliac Artery 115 

15 Posterior Trunk 204 

16 Anterior Trunk 79 

18 Right External Circumflex Artery 69 

20 Left External Circumflex Artery 69 

22 Right Deep Femoral Artery 123 

23 Right Femoral Artery 112 

24 Left Deep Femoral Artery 93 

25 Left Femoral Artery 75 
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flow rate for 150 ms followed by 0 m3/s for 700 ms, implying a pulsatile flow 

with a period of 850 ms. This equates to an average flow rate of 2 L/min, an 

approximate value for physiological blood flow, and a pulse rate of 70 min-1 

(1.18 s-1). 

The purpose of the numerical simulations is to study the effect on the 

haemodynamics of increasing the vessel rigidity of parts of the network. To this 

end, as well as simulating the base model using published values of vessel 

rigidity (healthy arteries) and peripheral resistance, three models of the same 

arterial network were built with different vascular prostheses. Also, one model 

was used with the vessel rigidity increased to simulate possible haemodynamic 

changes due to ageing. To examine the consequences of increases in rigidity on 

the haemodynamics, it is sufficient to compare the models with increased 

rigidity with the base model and it is not necessary to use specific physiological 

values of hardened arteries. A ten-fold increase in rigidity has been chosen as it 

would provide a 3.16-fold increase in wave speed, and though larger than 

published physiological increases in arterial rigidity, this uniform increase in 

rigidity between models has made it easier to make comparisons between 

models. A ten-fold increase in rigidity for the whole arterial network was 

modelled to examine the effect of hardened vessels due to ageing, so that the 

new rigidities ranged from 192 to 1 090 kN/m2. The specifications of the three 

implants, represented in Figure 2.3.4, are stated in Table 2.3.4. 
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Figure 2.3.4. Schematic representation of the positions of (a) the aorto-iliac 
graft, (b) the iliac stent and (c) the femoral stent; a section only of the 1D arterial 
network (Figure 2.3.3) is represented, depicting the infra-renal Abdominal 
Aorta (AA), Left Common Iliac Artery (LCIA), Right Common Iliac Artery 
(RCIA), Right Internal Iliac Artery (RIIA), Right External Iliac Artery (REIA), 
Right External Circumflex Artery (RECA), Right Deep Femoral Artery (RDFA) 
and Right Femoral Artery (RFA). 
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Table 2.3.4. Vascular implant specifications for the aorto-iliac graft, the iliac 
stent and the femoral stent used in the numerical 1D models; properties of the 
implants were checked at Tayside Flow Technologies, Dundee. 

Position Length (mm) Cross-Sectional 
Area (mm2) 

Rigidity 
(kN/m2) 

 Aorto-Iliac Graft 

Abdominal Aorta 4 95.3 300 232 

Right Common Iliac 106.4 150 232 

Left Common Iliac 98.7 150 232 

 Iliac Stent 

Right Common Iliac 90 120 263 

 Femoral Stent 

Right Femoral 90 60 570 

 

An aorto-iliac Y-shaped graft can be trimmed proximally and distally to allow 

for variations in arterial anatomy. The lengths of the aortic and iliac parts of the 

graft were set to be equal to the length of the patient’s abdominal aorta below 

the renal arteries and the lengths of their common iliac arteries. The graft 

diameter however cannot be changed. The graft modelled was specified by a 

cross-sectional area of 300 mm2 (19.5 mm diameter) for the aortic section and 

150 mm2 (13.8 mm diameter) for the iliac sections. These diameters ensure a 

perfect match at the aorto-iliac bifurcation with a transmission coefficient 1=E . 

The rigidity of the graft is a uniform 10 × 23.2 kN/m2, which is ten times the 

rigidity of the distal section of the native abdominal aorta. 

The stents modelled were both 90 mm long and were placed 10 mm below the 

nearest proximal bifurcation, i.e. the aorto-iliac bifurcation for the iliac stent and 

the bifurcation with the deep femoral artery for the femoral stent. Stents are 

expanded in situ to a diameter slightly greater than that of the native artery. 

The right common iliac artery has a maximum cross-sectional area of 115.7 mm2 
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so the iliac stent is modelled with a cross-sectional area of 120 mm2 (12.4 mm 

diameter). Similarly, the right femoral artery has a maximum cross-sectional 

area of 57.8 mm2 so the femoral stent is modelled with a cross-sectional area of 

60 mm2 (8.7 mm diameter). The rigidities of the stents are 10 × 26.3 kN/m2 and 

10 × 57 kN/m2, ten times the rigidities of the native right common iliac artery 

and right femoral artery, respectively. 

The first two sets of simulations, with a prescribed 100 Pa step in pressure and 

with a constant prescribed flow rate of 2 L/min (3.3 × 10-5 m3/s), are to help 

characterise the fluid dynamics that should be expected under simple and non-

physiological flow conditions. 

By specifying a 100 Pa step rise in pressure in the thoracic aorta, a wave is 

transmitted down the arterial network. At each bifurcation, the wave is 

transmitted in accordance with the transmission coefficients E  estimated from 

the geometry (c.f. Table 2.3.2). This can be seen in Figure 2.3.5 where the 

incident wave of 112 Pa at the aorto-iliac bifurcation is transmitted with a 

coefficient of ~0.9, hence the drop to 99 Pa for the reflected and transmitted 

waves. By recording the pressure during the first 5 ms after the wave reaches a 

location (equal to ten computational time steps), the amplitudes of the pressure 

steps at selected positions in the network are compared between the five 

different models (Figure 2.3.6). 
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Figure 2.3.5. Pressure at the distal end of the abdominal aorta and at the proximal ends of the common iliac arteries (the figures 90 
mm and 5 mm are the distances from the proximal ends of each vessel) given a 100 Pa pressure step in the thoracic aorta at time 0 s; 
the wave reaches the aorto-iliac bifurcation after ≈0.06 s. 
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Figure 2.3.6. Amplitudes of the pressure steps as a percentage of the 100 Pa pressure step boundary condition at the thoracic aorta, 
for the ‘normal’ model (published vessel rigidities), ‘ageing’ (hardened arteries), the models of the AI (Aorto-Iliac) graft and the 
iliac and fem (femoral) stents; the figures in brackets are the distances of the recording positions from the proximal ends of the 
arterial sections. 
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The simulation of a constant 2 L/min flow rate provides another means of 

characterising the models. The main resistance to flow lies at the arteriolar bed 

which is modelled by the distal boundaries, and the network itself provides a 

small resistance through friction. This is shown by Figure 2.3.7 where pressures 

at all positions range between 54 mmHg (7.2 kPa) and 56 mmHg (7.5 kPa). The 

drop in pressure between the proximal end of the network and its distal ends is 

no more than 3%. It is worth noting that a pressure of 54 to 56 mmHg is 

somewhat less than the accepted physiological pressure of about 80 mmHg (11 

kPa) and 120 mmHg (16 kPa) for diastolic and systolic pressures, respectively. 

The pressures evaluated from the pulsatile flow simulations with an average 

flow rate of 2 L/min are therefore underestimates of the likely physiological 

blood pressures. The 2 L/min average flow rate may be more suitable for the 

abdominal aorta below the superior mesenteric artery and so specifying a 

higher flow rate at the proximal end of the thoracic aorta would make the 

pressures closer to physiologic values. Yet, the flow rate used is of the correct 

order of magnitude for physiological flow in the aorta and a more precise value 

is not necessary for the purpose of comparing different models or arteries 

within models. To complete the description of this arterial network’s 

characteristics it is useful to assess how much of the blood flow is split towards 

each arterial branch. It is to be expected that much of the flow will be directed 

towards the least resistant distal conditions, such as the renal arteries as their 

terminal resistances are 29 kPa.s/m (c.f. Table 2.3.3). Indeed, as is shown in  
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7.5 mmHg = 1 kPa 

Figure 2.3.7. Haemodynamic pressures for the ‘normal’ model (published vessel rigidities) with a constant 2L/min flow rate 
boundary condition at the thoracic aorta; the figures in brackets are the distances of the recording positions from the proximal ends 
of the arterial sections. 
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Figure 2.3.8, the renal arteries take together 39% of the flow, not much less than 

the remaining 43% (the sum of the flow rates for the iliac arteries) that is carried 

by the abdominal aorta distal to the renal trifurcation. 

On the one hand, the simulated transmission of pressure waves in the arterial 

network agrees with the transmission coefficients calculated from specified 

vessel characteristics and, on the other hand, the haemodynamic flow split 

under steady flow conditions follows what is expected from the specified 

resistances at the distal boundaries. 

2.4 Computational Simulation Results 

Elastin degradation and collagen remodelling are the processes that cause the 

aneurysm to grow. Infiltration of inflammatory cells into the aortic wall is 

thought to accelerate aneurysm growth (Sakalihasan et al 2002). Local 

characteristics of the infra-renal aorta such as its tortuosity can be linked to 

growth rate, but, as raised by MacSweeney (1999): “Are the observed differences 

between individuals due to localised changes in the aneurysm wall or part of a 

generalised difference affecting all the arteries?” Methodologies based on analysing 

patient-specific AAA such as that developed by Raghavan et al (2005) provide 

detailed distributions of the arterial wall pressure and shear stress, but do not 

explore the possible influence of clinical and geometric conditions in other parts 

of the arterial network. The results from the 1D arterial network simulations 

provide insight into the influences that vessel characteristics other than those of 

the abdominal aorta have on the blood flow dynamics within an AAA. 
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Figure 2.3.8. Flow rates as a percentage of the total flow rate of 2 L/min boundary condition at the thoracic aorta for the ‘normal’ 
model (published vessel rigidities). 
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A general stiffening of the arteries due to ageing reduces the step change in 

flow rate (from 1.09 × 10-5 m3/s  to 3.43 × 10-6 m3/s) caused by a prescribed 100 

Pa step in pressure in the thoracic aorta. Furthermore, ageing changes the 

increase in the rate of blood flow, relative to the blood flow rate in the thoracic 

aorta. The flow rate increases (relatively) more in the smaller arteries down to 

the infra-renal aorta (Abdominal Aorta 4 on Figure 2.4.1), including the splenic, 

hepatic, superior mesenteric and renal arteries. The flow rate increases 

(relatively) less in the infra-renal aorta, a 43% step at its proximal end (5 mm) 

instead of 61% in the ‘normal’ case. This result would suggest it requires a 

greater step in pressure to supply the infra-renal aorta in the older patient with 

the same step in flow rate as in the younger ‘normal’ patient. No pulsatile flow 

results for ageing are presented here because the program used generates the 

network geometry from the specified time step. This limitation of the program 

means that a much smaller time step needs to be specified to generate a stiffer 

network with a similar grid point density. At the time the 1D network 

simulations were carried out, the computer system used could not complete the 

model runs with the 5-fold increase in the number of time steps required to 

correctly solve the model. 

Simulating the replacement of the patient’s infra-renal aorta and common iliac 

artery by a Y-shaped aorto-iliac graft was achieved by increasing the rigidities 

of these vessels. Under pulsatile flow conditions, the more rigid infra-renal 

aorta and common iliac arteries cause a greater systolic pressure through most  
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Figure 2.4.1. Amplitudes of the steps in flow rate, as a percentage of the step in flow rate of 1.09 × 10-5 m3/s (3.43 × 10-6 m3/s for 
‘ageing’) at the proximal end of the thoracic aorta, as a result of a 100 Pa pressure step boundary condition at the thoracic aorta. 
Results of the 1D numerical simulations for the ‘normal’ model (published vessel rigidities), ‘ageing’ (hardened arteries), the 
models of the AI (Aorto-Iliac) graft and the iliac and fem (femoral) stents. The figures in brackets are the distances of the recording 
positions from the proximal ends of the arterial sections. 
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of the arterial network (Figure 2.4.2) and a greater systolic-diastolic pressure 

difference throughout the network, some 40% higher in places (Figure 2.4.3). 

This means that a greater systolic-diastolic pressure difference, or pulse 

pressure, is needed to maintain the 2 L/min (3.3 × 10-5 m3/s) mean flow rate 

stipulated by the boundary condition. Even though mean flow is maintained, 

there are changes to the characteristics of the temporal variations in 

instantaneous flow rate. Compared to the ‘normal’ case, the peak flow rates are 

lower in the abdominal aorta and the distal end of the thoracic aorta (e.g. 4.2 

L/min or 7 × 10-5 m3/s instead of the ‘normal’ 5.4 L/min or 9 × 10-5 m3/s at the 

proximal end of the infra-renal aorta) (Figure 2.4.4). 

Placing a stent in the patient’s right common iliac artery and right femoral 

artery is simulated by making a 90 mm section of these arteries more rigid. The 

stents cause the systolic pressure and the systolic-diastolic pressure difference 

to be greater in several of the arteries distal from the common iliac arteries, and 

a small increase in systolic-diastolic pressure difference is recorded throughout 

the abdominal aorta and its branches (Figure 2.4.2 and Figure 2.4.3). The stents 

appear to have the opposite effect to the aorto-iliac graft when it comes to flow 

rates. The peak flow rates are all increased in the abdominal aorta with either 

the more rigid common iliac artery or the more rigid femoral artery (Figure 

2.4.4), up to 7.2 L/min (1.2 × 10-4 m3/s) at the proximal end of the infra-renal 

aorta for the femoral stent instead of the ‘normal’ 5.4 L/min (9 × 10-5 m3/s). 
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Figure 2.4.2. Systolic pressures under pulsatile flow conditions with 2 L/min mean flow rate, for the ‘normal’ model (published 
vessel rigidities) and the models of the AI (Aorto-Iliac) graft and the iliac and fem (femoral) stents. The figures in brackets are the 
distances of the recording positions from the proximal ends of the arterial sections. 
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Figure 2.4.3. Systolic-diastolic pressure differences under pulsatile flow conditions with 2 L/min mean flow rate, for the ‘normal’ 
model (published vessel rigidities) and the models of the AI (Aorto-Iliac) graft and the iliac and fem (femoral) stents. The figures in 
brackets are the distances of the recording positions from the proximal ends of the arterial sections. 
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Figure 2.4.4. Peak flow rates under pulsatile flow conditions with 2 L/min mean flow rate, for the ‘normal’ model (published 
vessel rigidities) and the models of the AI (Aorto-Iliac) graft and the iliac and fem (femoral) stents. The figures in brackets are the 
distances of the recording positions from the proximal ends of the arterial sections. 



58 

All of the above results are based on simulations where the boundary 

conditions are kept the same so as to compare the haemodynamic conditions 

between a ‘normal’ model and models where arteries are more rigid. In a more 

complete model of the cardiovascular system it would be necessary to adjust 

the terminal resistance of the resistive boundaries to take into account the flow 

control mechanism of the arteriolar bed. The advantage of this would be to use 

a model that is more closely representative of flows in the cardiovascular 

system. The disadvantage is that it would make it more difficult to interpret the 

results because like-for-like comparisons would not be practicable. 

This simplification is loosely analogous to the chosen use of simplified 

upstream boundary conditions used herein. Greatest realism is achieved with 

the most accurate representations of real pressure and flow histories at the 

upstream end of the aorta. However, the use of the various simpler boundary 

conditions chosen herein enhances the resulting potential to infer important 

underlying characteristics of the system’s behaviour. 
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Chapter 3 

Statistical Method 

3.1 Methods of Statistical Investigation 

Statistical study consists of first acquiring some data, then determining the 

relationships in the data, if any, through careful examination and application of 

numerical tests. The objectives of the study determine what data and tests are 

required; however, in medicine, obtaining data that satisfy the study objectives 

is often difficult, and the tests then depend on the available data. 

Volunteers are required for experimental studies, where conditions are 

controlled and measurements regularly taken (Blanchard et al 2000). These are 

essential to prove the efficacy of new drugs, medical devices or procedures 

(Baxter et al 2002; Morosin et al 2001; Thompson and Baxter 1999). Case-control 

studies are normally carried out. These require considerable resources and may 

take several years to complete, though it is sometimes possible to carry out 

retrospective case-control studies (Peeters et al 2007). In contrast, observational 

studies do not always need volunteers and can be carried out retrospectively. 

One advantage with not requiring explicit consent from patients is the absence 

of volunteer bias. Traditional case studies such as that of Cannon et al (1963) are 

observational. While with prospective experimental studies the researcher 

controls the quality and frequency of clinical measurements, observational data 

obtained retrospectively is often incomplete. 
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Population-based studies include a specific population often limited to a 

region or town. For some studies the whole population is required in order to 

measure prevalence (Singh et al 2001) or evaluate the effect of screening 

(Norman et al 2004; Jamrozik et al 2000). Population-based studies also include 

those with a specific population limited by clinical condition, e.g. aneurysm. 

These have often smaller numbers of subjects and are useful for evaluating risk 

of a disease (Wanhainen et al 2005) or the appropriateness of a clinical 

procedure (Reed et al 1997). They are also used to study biological factors that 

appear unrelated at first, such as abdominal aortic aneurysm and bone mineral 

density (Jorgensen et al 2004). Martin Bland (2000) argues that “Findings from 

such studies can only apply to the population from which the sample was drawn.” The 

study of all patients with an abdominal aortic aneurysm attending one hospital 

will infer conclusions the application of which to all sufferers of the condition 

“depends on evidence which is not statistical and often unspecified”. It is only with 

the strength of a meta-analysis of similar studies that a statistical extrapolation 

to all patients is justifiable. 

 Given a population of patients at a hospital, a population-based retrospective 

longitudinal study is possible by examining the records of these patients. An 

audit of this patient information provides the material to populate a database 

with clinical measurements that are taken at different times of the patients’ life 

and for various reasons. The timing of these events can be studied using the 

Poisson process, described by Cox and Lewis (1966). The analysis of the 
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magnitude of the parameters measured, with respect to other measured 

parameters, provides an attempt to explain causal relationships. 

Statistical correlation provides a tool to measure the strength of the 

relationship between two parameters. Without any prior knowledge of the form 

of relationship between two variables, linear regression is normally used to 

measure that relationship, presumed linear. Chatfield (2004) suggests that “the 

assumption of linearity is often made more for mathematical and computational 

convenience rather than because it is really believed to be true”. 

The objective of such statistical studies is to reject one hypothesis in favour of 

another. If the initial (null) hypothesis is that risk of aneurysm rupture is 

dependent only on aneurysm diameter, then alternative hypotheses that could 

be studied could be that risk of aneurysm rupture depends on hypertension, or 

kidney function, or iliac artery stenosis, or cholesterol level... Hypothesis testing 

by linear regression is a means of determining the correlation if any between 

measurements, and having obtained a significance level for the regression 

coefficients, to keep or reject the original hypothesis. 

3.2 Audit of Patient Information 

The aim of this work is to find which factors are linked statistically to 

Abdominal Aortic Aneurysm (AAA) growth. To this end, a study has been 

carried out at Ninewells Hospital, Dundee, consisting of setting up a 

comprehensive database of clinical information for AAA patients. This has been 

achieved through the audit of a number of sources of information held at the 
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hospital. This was a population-based retrospective observational study. All 

AAA patients who had attended the hospital were included; only patient 

information that had been gathered as a result of the provision of medical care 

was analysed; no data were obtained prospectively from the patients and no 

questionnaire was used. Ethical approval was obtained for the study. 

All AAA patients who had a measurement of their aneurysm size in the 6-

month period from 1st March to 31st August 2005 have been included in the 

study. This ensured that most patients on aneurysm surveillance were included 

as an AAA size measurement is carried out at least once every 6 months for 

patients with an aneurysm size greater than 40 mm and annually for smaller 

aneurysms. No criterion was set for the lower limit of aneurysm size. Hence all 

patients recorded as having an aneurysm were included, with the smallest 

recorded size in the 6-month period being that of a male patient with an aortic 

diameter measurement of 22 mm. The inclusion of patients with very small 

aneurysms on the AAA surveillance programme is likely to have been due to 

these patients having concomitant cardiovascular risk factors. At the other end 

of the scale, measurements of AAA diameters up to 105 mm were recorded. 

These were predominantly emergency patients who present with a ruptured 

AAA, which included aneurysms with diameters of 105 and 100 mm in the 6-

month period. Notably, the largest un-ruptured aneurysm was that of a male 

patient with a diameter of 97 mm, with a first recorded measurement two 

months earlier of 93 mm, and who survived un-ruptured for a further three  
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months. Figure 3.2.1 gives the distribution of AAA diameters included in the 

study. As the study is concerned with the natural progression of the aneurysms, 

patient participation ended when their aneurysm ruptured, an open or 

endovascular surgical intervention was carried out on their aneurysm, or in the 

event of death. Any clinical measurements made after any of these three events 

were excluded. This effectively removed from the analysis patients who 

presented ruptured aneurysms that had not previously been detected. 

Aneurysm growth is the subject of this work and it is the rate of change of 

aneurysm diameter that is required: at least two measurements of AAA 

diameter are necessary to estimate rate of change so participants with only one 

measurement of AAA diameter have been excluded from the analyses. 99 

patients satisfied the inclusion criterion of at least one measurement of AAA 

size in the period 1st March to 31st August 2005, but 10 patients have been  

 

 

Figure 3.2.1. Distribution of abdominal aortic aneurysm diameters from the 
last measurement from participants of the AAA study. 
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excluded from the analyses because they did not have at least two 

measurements of aneurysm size before the end of their participation. The 

remaining 89 patients with AAA have been studied. 

While the inclusion and exclusion criteria and the end points are clear, the 

onset of aneurysmal disease cannot be determined. In practice the date of the 

first record held by the hospital effectively defines the beginning of patient 

participation. Medical records are normally kept for 5 years after the last 

hospital attendance of the patient, after which time they are destroyed. 

Exceptionally, the records may be kept for longer if such is stipulated by the 

involvement of the patient in a clinical trial. However, patients, especially near 

the end of their lives, attend the hospital sufficiently frequently that the 5 year 

limit does not lapse until the patients’ death. The first hospital attendance for 

one AAA patient was dated 1966 (at which time the hospital was the Dundee 

Royal Infirmary) and a total of 191 clinical measurement records for this patient 

were entered in the AAA study database, until the end of his participation in 

August 2005. For the 97 patients that had at least one measurement before 

aneurysm rupture or surgical intervention, the mean period of participation 

from first record was 7.8 years (Standard Deviation SD 7.3 years) with a range 

from 1 day to 39.0 years. 

Study participants were identified by their first and last names and their 

Community Health Index (CHI), a 10 digit identification number which is used 

for health care. The CHI includes the date of birth of the patient which was also 

recorded in the AAA study database to provide the ages of the patients. These 
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personal identifiers have been anonymised by using computer generated 

random numbers between 1000 and 9999 to generate a unique anonymous 

identifier for each patient. A cross-referencing table of these 4 digit study 

participant numbers and the personal information of the patients is kept at the 

hospital. All analyses could then be carried out without risk of breach of patient 

confidentiality as the participant names and CHI have been removed from the 

data. 

Information from four different sources within the hospital has been 

examined, namely, the Vascular Laboratory, the Clinical Radiology department, 

the medical records department and the laboratory for biochemical analyses. 

The Vascular Laboratory manages the AAA surveillance programme. AAA 

patients attend the Vascular Laboratory at least every 6 or 12 months for 

ultrasound examination and clinical assessment. These include the 

measurement of the aneurysm diameter, measurements of the resting or 

segmental blood pressures, and a record of the patient-reported tobacco 

smoking status. The Ankle-Brachial Pressure Index (ABPI) is calculated from 

the brachial, posterior tibial and dorsalis pedis pressures and provides an 

indication of ischemia and the presence of arterial stenoses in the lower limbs. 

The Vascular Laboratory also holds a record of patients who have undergone 

elective and emergency aneurysm repair. 

Clinical Radiology is used to obtain detailed imagery of the abdominal aorta of 

AAA patients. From these, aneurysm diameters are measured and reported. 
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Aneurysm lengths are also often reported (44 out of the 99 AAA patients), as 

well as the aneurysm type, fusiform or saccular (41 patients), and the presence 

of renal and iliac stenoses (9 patients). Whether the aneurysm extends to the 

iliac arteries or to the supra-renal aorta is also indicated. As well as the 

radiologists’ reports of key aneurysm characteristics, the CT (Computed 

Tomography) scan images are available electronically. In this study, 47 patients 

had a total of 59 CT scans. These have been subsequently analysed to measure 

the geometric parameters describing the lumen of the AAA (c.f. thesis section 

4.1). The scans have also been used to generate 3D (3-dimensional) numerical 

models of the AAA. 

The medical records department holds a complete record of health care 

provided to each patient by the hospital. This includes monitoring of blood 

pressure, pulse rate, etc., while attending the hospital, as well as paper copies of 

biochemistry tests carried out, X-rays, notes of aneurysm dimensions, and 

concomitant clinical conditions. Normal systolic and diastolic blood pressures 

are reported only in the patients’ medical records, and this during either a 

planned visit to the hospital or during an emergency attendance. Blood 

pressure is then often measured several times per day. 

Biochemistry analyses are provides by a hospital laboratory service. In 

particular, patients attending the hospital either for an emergency or for elective 

surgery will have on average one biochemistry test carried out per day. 

Parameters of particular interest in relation to conditions that might affect the 
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circulation and aneurysm growth are levels of total cholesterol, HDL (High 

Density Lipoprotein) cholesterol, urea and creatinine. 

Descriptive statistics of the clinical measurements obtained are listed in Table 

3.2.1. A total of 3995 measurements have been analysed, consisting of an 

average of 40 measurements per patient (SD 31), most of which were 

measurements of multiple factors, such as systolic and diastolic pressures and 

pulse rate taken at the same time. This is essential to derive secondary 

information including the systolic-diastolic pressure differences, the total to 

HDL cholesterol ratios and the ABPI. There are 1471 measurements of urea 

levels, urea being an indicator of renal function and typically taken daily over 

the course of an AAA patient’s stay in hospital. There are only two mean 

pressure measurements, so this parameter is not included in the statistical 

analyses. 

The descriptive statistics highlight the difficulties associated with clinical 

measurements. The largest aneurysm diameter measured is 135 mm. This is a 

measurement taken from left to right as opposed to the standard AP (Anterior-

Posterior) measurements (front to back). Aneurysms, and blood vessels in 

general, are not necessarily cylindrical, but have elliptical cross-sections with 

major and minor diameters. Anatomically, because of the hard back-bone 

behind the aorta, the AP diameter will often be the smallest but is the most 

accurate to measure by ultrasound. The highest systolic blood pressure 

measured is 325 mmHg (43.3 kPa). This may be surprising as the scale on a  
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Table 3.2.1. Arithmetic means and ranges for all patients of all primary and 
secondary measurement data extracted from the AAA study database for 
analysis. Primary data consists of raw measurements as reported. Secondary 
data (in italics) are clinical parameters derived from the primary data. 
Aneurysm diameter and length are as reported by the radiographer or clinician; 
measurement errors and potential outliers have been removed for all other 
data. 

 Min. Mean SD Max. N  

Age 30.8 yr 72.2 yr 9.0 yr 90.5 yr 
3995 * 

N  per Patient 3 40 31 191 

Follow-up Length 1 day 7.8 yr 7.3 yr 39.0 yr 99 ** 

Aneurysm 
Diameter 

20 mm 48 mm 11 mm 135 mm 836 

Aneurysm Length 30 mm 80 mm 27 mm 200 mm 74 

Systolic Pressure 80 mmHg 
10.7 kPa 

139 mmHg 
18.5 kPa 

35 mmHg 
4.7 kPa 

220 mmHg 
29.3 kPa 

547 

Diastolic Pressure 42 mmHg 
5.6 kPa 

80 mmHg 
10.7 kPa 

20 mmHg 
2.7 kPa 

122 mmHg 
16.3 kPa 

541 

Mean Pressure 98 mmHg 
13.1 kPa 

104 mmHg 
13.9 kPa 

8 mmHg 
1.1 kPa 

110 mmHg 
14.7 kPa 

2 

Pulse Rate 50 min-1 
0.83 s-1 

77 min-1 
1.28 s-1 

17 min-1 
0.28 s-1 

111 min-1 
1.85 s-1 

502 

Systolic-Diastolic 
Pressure Difference 

28 mmHg 
3.7 kPa 

59 mmHg 
7.9 kPa 

22 mmHg 
2.9 kPa 

106 mmHg 
14.1 kPa 

540 

Total Cholesterol 3.2 mmol/L 5.0 mmol/L 1.1 mmol/L 7.8 mmol/L 426 

HDL Cholesterol 0.7 mmol/L 1.3 mmol/L 0.4 mmol/L 2.3 mmol/L 394 

Total to HDL 
Cholesterol Ratio 

2.0 4.0 1.4 7.4 394 

Brachial Resting 
Pressure 

100 mmHg 
13.3 kPa 

143 mmHg 
19.1 kPa 

24 mmHg 
3.2 kPa 

188 mmHg 
25.1 kPa 

237 

Posterior Tibial 
Resting Pressure 

52 mmHg 
6.9 kPa 

129 mmHg 
17.2 kPa 

44 mmHg 
5.9 kPa 

230 mmHg 
30.7 kPa 

235 

Dorsalis Pedis 
Resting Pressure 

58 mmHg 
7.7 kPa 

126 mmHg 
16.8 kPa 

47 mmHg 
6.3 kPa 

280 mmHg 
37.3 kPa 

234 

Lower ABPI 0.3 0.8 0.2 1.2 121 

Higher ABPI 0.5 0.9 0.2 1.2 114 

Urea 3.0 mmol/L 7.5 mmol/L 4.0 mmol/L 17.8 mmol/L 1472 

Creatinine 66 µmol/L 109 µmol/L 34 µmol/L 202 µmol/L 1467 

Abbreviations: Min. Minimum; SD Standard Deviation; Max. Maximum; N  Number of measurements. 

* Total number of measurement times for all patients to which ages are associated. 
** Total number of patients: 77 male, 20 female, 2 gender unreported. 
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typical sphygmomanometer ranges up to 300 mmHg (40 kPa) only, but the 

measurement may have been taken by an electronic pressure monitor or other 

device. However, it is probably an error in recording in the clinical notes and 

any such extreme values are not included in Table 3.2.1. The problem of 

haemodynamic pressures being possibly out of range of the measuring 

apparatus is illustrated with the maxima for the resting pressures, 300 mmHg 

(40.0 kPa) for both the posterior tibial and dorsalis pedis (again not listed in 

Table 3.2.1). In these cases the pressures represent the hardness of the artery in 

the lower limb, which was so rigid that it did not flex to allow a blood pressure 

reading. The algorithm that computes the ABPI from the resting pressures takes 

these into account by removing indices with values above 1.2, hence the 1.2 

maxima for the ABPI. There were a total of 235 resting pressure measurements 

(left and right limbs), 18 of which produced ABPI greater than 1.2 and were 

removed. The resting pressures were supplemented with segmental pressure 

measurements, 18 of which produced valid ABPI, resulting in a total of 235 

valid ABPI measurements. Resting and segmental pressure measurements were 

taken on both of the lower limbs, normally categorised as right and left, but for 

the purpose of this analysis the lower is named the ‘lower ABPI’ and the higher 

the ‘higher ABPI’. The biochemical measurements provide indicators of 

concomitant diseases. Patients with total to HDL cholesterol ratios above 5 

suggest hypercholesterolaemic individuals, while levels of urea and creatinine 

provide a measure of kidney disease. Urea and creatinine are highly correlated 

and can be used independently as indicators of renal function. 
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Much of the data are collected when the patient is under some stress, is ill or 

injured, in a way affecting several of the clinical parameters, for instance pulse 

rate with measurements up to 200 min-1 (3.33 s-1) (not listed in Table 3.2.1), but 

also normal systolic and diastolic blood pressures. Some patients with renal 

dysfunction undergo dialysis which causes variations in urea and creatinine 

levels. Some adjustments to the data are possible to correct for particular patient 

circumstances, but each source of error is complex. For this statistical work the 

errors were not corrected as the corrections themselves were likely to be 

additional sources of error due to the complexity of each clinical case. 

3.3 Data Estimate 

The retrospective analysis of clinical information often involves the analysis of 

measurements that have been taken at different times in a patient’s medical 

history. Typically, one parameter is not measured at the same time as another, 

so that if parameters change with time, these cannot be correlated with each 

other unless it is assumed that parameters do not change much within a certain 

timeframe and so may be correlated if measured within that timeframe. The 

statistical analysis of clinical factors that might be linked to abdominal aortic 

aneurysm growth, using information obtained from the patients’ historical data 

(patients’ medical records, medical imaging reports, biochemical records, 

records from the hospital’s Vascular Laboratory, etc.) is one such database of 

information where measurements cannot be correlated unless an assumption is 

made as to the period of time over which the parameter is likely to be constant, 

or to have a constant-like effect on AAA growth. 
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Initial analyses of the data involved the use of interpolated parameters on a 

given date for each patient. The start of the 6 month period for patient 

participation, 1st March 2005, was chosen as all patients included in the study 

were participating at that date. Predictions were made by linear regression 

against time for each parameter, or log-linear for parameters with lognormal 

distributions, as described by Kokoska and Nevison (1989). This approach was 

later abandoned because it assumed that parameters changed linearly with time 

with constant rates of change, and in particular AAA had a constant rate of 

growth. Neither did it account for variations in aneurysm growth that occur 

over time for an individual patient. 

As a consequence, it has been necessary, for the purpose of analysing the data 

collected for the AAA study, to develop a method of statistical analysis that 

may comprehensively include the patients’ historical data so that, on the one 

hand the information may be weighted according to how correlated in time it is, 

and on the other hand to maximise the use of the information to strengthen the 

statistical significance. 

The reason for developing a method to determine statistical significance from 

time-line data comprehensively is to have data in a form that can be examined 

by using regression models to determine which predictor variables might 

correlate with aneurysm growth. Linear regression models assume that 

variables follow normal distributions (Bland 2000) and transformations may be 

required for variables that are not normally distributed. 
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In particular, this is the case for aneurysm diameter. First, the shape of the 

distribution can be examined by plotting the histogram of diameter 

measurements and comparing it with different distribution functions (c.f. 

Figure 3.3.1). It can be seen that the lognormal distribution function provides a  

 

 

Figure 3.3.1. Normalised distribution of aneurysm diameter measurements 
with corresponding normal and lognormal distribution functions: the 
lognormal provides a better fit. 

better fit than that of the normal distribution. Second, the nature of the variable 

provides an indication as to the distribution that is applicable. Measurements of 

diameter can have only positive values and their distribution will have a lower 

bound at 0. A distribution function with that same property such as a 

lognormal is likely to apply. Third, AAA growth by arterial remodelling occurs 

conceptually by volumetric growth or accretion as defined by Humphrey 

(2002). This implies that growth is proportional to the arterial circumference 

and hence to the aneurysm diameter. Proportionate growth is satisfied if 

aneurysm diameters follow a lognormal distribution, as, given a variable ξ  
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with a lognormal distribution, ξln=x  is normally distributed and the 

derivative of x  against time t  is: 

ξ
ξξ
&

& == ln
dt

d
x   Equ. 3.3.1 

x&& ξξ =∴   Equ. 3.3.2 

The derivative ξ&  of the variable with lognormal distribution, such as the rate 

of change of aneurysm diameter, is directly proportional to the variable ξ , the 

aneurysm diameter, and x&  is a fractional rate of change with units of inverse 

time. The distributions are defined by Kokoska and Nevison (1989): 

Normal distribution: ( ) ( )







 −−=
2

2

2
exp

2

1

σ
µ

πσ
x

xf   Equ. 3.3.3 

Lognormal distribution: ( ) ( )







 −−=
2

2

2

ln
exp

2

1

σ
µξ

πσξ
ξf   Equ. 3.3.4 

σ  and µ  are the standard deviation and the mean, respectively, of the 

normally distributed variable x  defined as ξln=x  for the lognormal 

distribution. For the following derivations and analyses, the mean will always 

refer to the arithmetic mean as defined for a set of n  measurements ix : 

∑=
i

ix
n

1µ   Equ. 3.3.5 

For clinical parameters other than aneurysm diameter, whether a parameter is 

to be log-transformed is determined in the same way, by examining the 
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distributions of the measurements and considering the nature of the clinical 

measurements. Table 3.3.1 provides a list of the parameter distributions. 

Pressure measurements were found to be normally distributed, including the 

ABPI and the systolic-diastolic pressure difference. Biochemical measurements 

consist of concentrations which by nature cannot be negative, and examining 

their distributions confirmed that these tend to follow lognormal distributions. 

The distribution of total to HDL cholesterol ratio measurements did not 

warrant a log-transform, yet this parameter is the ratio of two positive 

cholesterol concentrations and will itself always be positive. However, in this 

case the data suggest a normal distribution. 

Table 3.3.1. Distributions of the clinical parameters analysed with respect to 
aneurysm growth with their units and the units of their time-derivatives. 

Parameter Distribution Units Time-Derivative Units 

Aneurysm 
Diameter 

Lognormal mm yr-1 

Systolic Pressure Normal mmHg or kPa mmHg/yr or kPa/yr 

Diastolic Pressure Normal mmHg or kPa mmHg/yr or kPa/yr 

Pulse Rate Lognormal min-1 or s-1 yr-1 

Systolic-Diastolic 
Pressure Difference 

Normal mmHg or kPa mmHg/yr or kPa/yr 

Total Cholesterol Lognormal mmol/L yr-1 

HDL Cholesterol Lognormal mmol/L yr-1 

Total to HDL 
Cholesterol Ratio 

Normal none yr-1 

Lower ABPI Normal none yr-1 

Higher ABPI Normal none yr-1 

Urea Lognormal mmol/L yr-1 

Creatinine Lognormal µmol/L yr-1 
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Being assured that as far as possible the variables are normally distributed, 

kernel regression smoothing (Sprent and Smeeton 2001) is a means of 

estimating the value the variables take at instants between measurement times. 

For each measurement ix  taken at a time it , there is a weighting function or 

kernel smoother ( )twi  (Hastie and Tibshirani 1990) such that the weight is 

greatest at the time of measurement and reduces with increasing values of 

itt − . The weighting function should also satisfy normality so that each 

measurement counts as one only. That is: 

( ) 1=∫
+∞

∞−

dttwi   Equ. 3.3.6 

One such weighting function, and that which is used here, is (c.f. Figure 3.3.2): 

 

Figure 3.3.2. Weighting function ( )twi  with 5.0=T . 
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( ) ( )( )22 Ttt

T
tw

i

i +−
=

π
  Equ. 3.3.7 

T  is a constant and the half-period of time over which an individual 

measurement is thought to be valid and applicable. For this function, the 

weight at a time T  before or after it  is half the maximum weight at it : 

( ) ( )
2

ii
ii

tw
Ttw =±   Equ. 3.3.8 

This form of the weighting function is somewhat empirical, but satisfies the 

assumption that a clinical measurement is not only valid at the time of 

measurement but also for a period of time before and after, and its significance 

drops the greater the time difference itt − . 

The value of parameters at times between measurements can be estimated by 

the weighted average of the measurements ix  using the individual weighting 

functions ( )twi : 

( )
∑

∑
=

i
i

i
ii

w

xw

tx   Equ. 3.3.9 

This means that at a time t , the best estimate of x  is the weighted mean of the 

measurements, weighted in function of how distant in time each measurement 

is. This weighted average has the property that if all the measurements are 

taken at the same time, then the estimate is the arithmetic mean of the n  

measurements: 
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( )
n

x
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xw
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i
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i
i

i
ii ∑∑

∑

∑
===   itti ∀= 1   Equ. 3.3.10 

It is necessary to evaluate a weight associated with the parameter estimate 

( )tx , as at times close to one or several measurements the estimate is significant, 

while at other times away from any measurement the estimate is more 

unreliable. For this, each individual weighting function is first separated into 

different components corresponding to each interaction between 

measurements, then each component is further split into an independent part 

and an interacting part according to an interaction factor iiw ′  (Figure 3.3.3): 

 

Figure 3.3.3. Independent (green), interacting (red) and self-interacting (blue) 
parts of the weighting function ( )tw1  of a measurement taken at time 01 =t  

interacting with a measurement taken at time 12 =t  with 5.0=T ; individual 

weighting functions ( )tw1  and ( )tw2  are shown with dashed lines. 

Independent part ( )1221 1 www −  
Self-interaction 11

2
1 ww  

Interaction part 1221 www  
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Two measurements will interact if they were taken close in time, and as a 

consequence, the product of their individual weighting functions will be 

greater. Their product will remain small if the measurements are not close in 

time and either parts (independent and interacting) remain small at all times. 

The interaction factor iiw ′  is not a function of time and takes values between 0, 

no interaction, and 1, complete interaction ( ] ]1;0∈′iiw ). It is here given the same 

form as the weighting function ( )twi , with the same limitations and 

assumptions, as there is no evidence with which to base a more complex choice, 

the exact shape of the kernel smoother being in this case unimportant: 

( ) 22

2

Ttt
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′   Equ. 3.3.12 

Having separated each interaction between measurements into independent 

and interacting parts, a weighting function ( )tw  for the estimate (c.f. Figure 

3.3.4 for two measurements) can be expressed as the sum of the independent 

parts added to the weighted average of the interacting parts: 
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Figure 3.3.4. Weighting function ( )tw  (solid line) for the parameter estimate 

from two measurements taken at times 01 =t  and 12 =t  with 5.0=T ; 

individual weighting functions ( )tw1  and ( )tw2  are shown with dashed lines. 

Note that when considering the interaction of a measurement with itself 

( ii ′= ), the interaction factor is 1=iiw , so that it has no independent part and is 

fully interacting with itself. Also, if all the measurements were taken at the 

same time, then the weighting function of the estimate would reduce to: 
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  itti ∀= 1   Equ. 3.3.14 

The integral of ( )tw  over all t  represents the equivalent number of 

independent measurements, and it can be shown that: 
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( ) ndttw <≤ ∫
+∞

∞−

1   Equ. 3.3.15 

If a parameter is known to have a constant rate of change a , then the best 

estimate of that rate of change would be the coefficient obtained from the linear 

regression (Barford 1985; Sprent 1969) of the parameter measurements against 

time. This would consist of fitting a line of equation batx +=  where a  and b  

are the coefficients of regression (Kokoska and Nevison 1989). In general, it 

cannot be assumed that clinical parameters change at a constant rate. Several of 

the parameters studied do not change linearly with time, such as blood 

pressure and pulse rate. There may also be sudden changes in some 

parameters, for example ABPI that could change because of injury, or a sudden 

increase in urea level due to kidney dysfunction. It is possible to estimate 

locally the rate of change at any time t  by carrying out weighted linear 

regressions of the measurement points, where those measurements closer to t  

take more importance and those further less. The same individual weighting 

functions ( )twi  as those for the parameter estimate (Equation 3.3.7) are used 

here. A weighted linear regression consists of minimising the residuals 

batx iii −−=ε  where ( )ta  is the rate of change and differential (locally 

estimated) of the parameter: 
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The differential estimate ( )ta  obtained is not constant with t  as it is a function 

of the individual weighting functions ( )twi  which are themselves functions of 

time t . It is the best estimate for the rate of change at each particular moment in 

time given the relative importance of the measurements. 

As with the parameter estimate ( )tx , it is necessary to evaluate a weight 

associated with the differential estimate ( )ta . To estimate the differential, the 

measurements need to be independent while taken sufficiently close in time to 

interact. On the one hand, if two measurements are taken at an interval much 

greater than T , then the rate of change estimated will be averaging out any 

changes in ( )ta  that might have occurred; on the other hand, if two 

measurements are taken at an interval much smaller than T , then the estimated 

differential will be unreliable (the estimate being dominated by the division by 

a small time interval). The sum of the independent parts of the interaction 

components of the individual weighting functions provides a suitable 

expression for the weighting function ( )tw′  to be associated with the differential 

estimate ( )ta  (Figure 3.3.5): 
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Figure 3.3.5. Weighting function ( )tw′  (solid line) for the differential estimate 

from two measurements taken at times 01 =t  and 12 =t  with 5.0=T ; 

individual weighting functions ( )tw1  and ( )tw2  are shown with dashed lines. 
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  Equ. 3.3.18 

If all the measurements were taken at the same time, ( )iiw ii
′∀=′ ;1  and so 

( ) 0=′ tw : no differential can be estimated. The integral of ( )tw′  over all t  

represents the equivalent number of independent estimates of the differential. 

( )tw′  is smaller than ( )tw  which reflects the degrees of freedom used in the 

weighted linear regression used to obtain ( )ta : 

( ) ( )∫∫
+∞

∞−

+∞

∞−

<′≤ dttwdttw0   Equ. 3.3.19 
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Matlab version 6.1.0.450 release 12.1 (Mathworks Inc., Natick) was used to 

compute all parameter and differential estimates with their associated 

weighting functions for all patients (c.f. population.m and its associated 

function rddat.m, and wfunc.m in the Appendix). 

In a controlled experiment, the various parameters being studied would be 

measured or set under specific conditions. With each set of measurements being 

independent, the relationship between parameters can be studied using linear 

regressions. A regression for discrete measurements results in obtaining the 

coefficients kβ  by solving: 

k
i

i

k

∀=
∂
∂
∑ 02ε

β
  Equ. 3.3.20 

Regressions consist in minimising the sum of squared residuals 2
iε , so by 

extension, given continuous parametric expressions rather than discrete 

measurements, it is possible to obtain coefficients of regressions by solving: 

( ) kdtt
k

∀=
∂
∂
∫

+∞

∞−

02ε
β

  Equ. 3.3.21 

Furthermore, given a number of sets of continuous parametric expressions, the 

coefficients result from solving: 

( ) kdtt
j

j

k

∀=
∂
∂
∑ ∫
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∞−

02ε
β

  Equ. 3.3.22 

The summation and integral essentially serve the same adding function, the 

summation being of discrete values, the integral being of continuous values. 
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They are commutative. In the case of estimates from measurements of different 

clinical parameters against time, a set of continuous parametric expressions is 

the set of clinical parameter estimates for each patient j . (The index j  is used to 

denote a patient or set of measurements and it is different from the index i  that 

denotes individual measurements.) Also, the clinical parameter estimates have 

weight functions associated with them, so that, given sets of weighted 

continuous parametric expressions, a complete weighted linear regression 

consists in solving: 

( ) ( ) kdtttW
j

jj

k

∀=
∂
∂
∑ ∫

+∞

∞−

02ε
β

  Equ. 3.3.23 

Given a parameter ( )ty j  being regressed against m  parameters ( )tx jk , the 

combined weight ( )tW j  of the estimates is given by the weight function ( )tv j  

for parameter ( )ty j  and the weight functions ( )tw jk  for the parameters ( )tx jk : 

( ) ( ) ( ) ( )

1

11
1

−












++= ∑

k jkj

j
twtv

mtW   Equ. 3.3.24 

This ensures that the regression is essentially that of parameters strongly 

correlated in time. Also, if 0≠∀= kvw jjk , then 0; ≠== kjkjj wvW . For the purpose 

of the regression equations, where 0=k , 10 ≡jx  and 10 ≡jw  (by definition 0jx  

is not a parameter). 
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For example, Figure 3.3.6 illustrates for a particular AAA patient the estimates 

and associated weight functions from 11 measurements of aneurysm diameter 

and 20 measurements of systolic and diastolic pressures. The first diameter 

measurement was carried out at 52 years of age, the last at about 57. The best fit 

line using the kernel function ( )twi  suggests an increase in AAA size from 40 

mm to 55 mm, confirmed by the estimated rate of growth of 1 mm/yr 

increasing to 6 mm/yr. Blood pressure measurements were available from 31 to 

53 years, ranging from 100 mmHg (13 kPa) to 150 mmHg (20 kPa) for systolic 

pressure, 70 mmHg (9 kPa) to 90 mmHg (12 kPa) for diastolic pressure. The 

associated weight functions ( )tw jk  show the low significance of the estimates 

between measurements separated by long periods (e.g. the absence of recorded 

pressure measurements between the ages of 36 and 43). Integrating the weight 

functions (Equation 3.3.15 and Equation 3.3.19) provides the figures of 6.2 

equivalent independent measurements for aneurysm diameter, 4.8 for its rate of 

change and 9.9 for blood pressure. Combining these using Equation 3.3.24 

results in 3.8 equivalent independent measurements, essentially available 

between 50 and 55 years when both pressure and aneurysm diameter 

measurements were being taken. 

In the regressions carried out for this thesis, a more conservative calculation of 

the combined weight has been used by reducing ( )tW j  by a factor of 1+m . 

This is because when considering the combined weight as a function of 

independent orthogonal time parameters (in a space with 1+m  dimensions),  
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Figure 3.3.6. Aneurysm 
diameter and pressure 
measurements with associated 
estimates and weight functions 
for a particular AAA study 
patient: (a) Aneurysm diameter 
and rate of growth measured 
and estimated; (b) systolic and 
diastolic pressures measured 
and estimated; (c) weights ( )tw jk  

associated to the estimates of 
aneurysm diameter, rate of 
growth and blood pressures, 
and combined weight ( )tW j  for 

the three parameters. 



87 

the weight when keeping all but one of the time parameters constant is inflated. 

To avoid this problem the combined weight is divided by the square-root of the 

number of dimensions, as required when collapsing a multidimensional space 

onto its diagonal. 

To regress a parameter ( )tyi  against parameters ( )tx jk , the residuals are: 

( ) ∑−=
k

jkkjj xyt βε   Equ. 3.3.25 

The regression thus consists in solving the following: 

( ) ( ) ( ) ( ) ( ) ( ) YXβ =⇔∀=
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∞−
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jjkj

k j
kjjkjkβ  

          Equ. 3.3.26 

The elements of matrix X  are: ( ) ( ) ( )∑ ∫
+∞

∞−
′

j
kjjkj dttxtxtW   Equ. 3.3.27a 

The elements of matrix Y  are: ( ) ( ) ( )∑ ∫
+∞

∞−j
jjkj dttytxtW   Equ. 3.3.27b 

The coefficients of regression kβ  are the elements of matrix β . The total 

number of degrees of freedom 1−q  available for the regression is provided by 

the sum of the combined weights, and the first element ( 0=′= kk ) of X : 

( )∑ ∫
+∞

∞−

=
j

j dttWq   Equ. 3.3.28 

Given m  degrees of freedom used by the regression, there remain 1−− mq  

residual degrees of freedom due to error. Similar implications can be derived 
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when calculating the sum of squares, etc., used in determining confidence 

intervals and probabilities of errors (Kokoska and Nevison 1989) when 

regressing sets of weighted continuous parameter estimates. The code in Matlab 

for this weighted regression method can be found as cwreg.m in the Appendix. 

3.4 Multiple Linear Regression 

Multiple linear regression techniques provide a means of evaluating key 

statistics concerning possible relationships between aneurysm growth and 

measured parameters. The aim of this section is to test the hypothesis that 

aneurysm growth is independent of the measured parameters, and, by rejecting 

this hypothesis, to argue that there is a link between growth and some clinical 

parameters. 

The ratio of the sum of squares due to regression RS  and the total sum of 

squares TS  is the coefficient of determination TR SSR =2  (equivalent to the 

correlation coefficient squared, but applicable to multiple regressions). 2R  

provides a measure of the proportion of the data scatter accounted for by the 

regression, so that a coefficient of determination 10.02 =R  means that the 

regression accounts for 10% of the variability in scatter. 

Solving Equation 3.3.26 results in coefficients of regression kβ  which are 

statistics describing how aneurysm growth is related to the clinical parameters. 

The sign of kβ  determines whether growth is increased or reduced. 
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For kβ  to be significant it is necessary for its magnitude to be greater than 

kkctσ  (Kokoska and Nevison 1989). t  is Student’s t -statistic dependent on the 

remaining degrees of freedom 1−− mq  and the significance level p  of the test. 

σ  is the standard deviation of the residuals. kkc  are the diagonal elements of 

the matrix ( ) 1−′XX . To have a 95% confidence ( 05.0≤p ) in the significance of a 

coefficient kβ , the t -statistic takes on the values 71.12=t  if there is only 1 

remaining degree of freedom, 23.2=t  if 10 remaining degrees of freedom, and 

96.1lim =
∞→

t
q

 for large numbers of degrees of freedom (typically 150>− mq ). 

Hence, for few degrees of freedom, the magnitude of the kβ  regression 

coefficient needs to be very large for it to be significant. Conversely, a t -statistic 

can be calculated from a coefficient kβ  given σ  and kkc : 

kk

k

c
t

σ
β

=   Equ. 3.4.1 

The p -value is the probability that the coefficient kβ  is not significant. p  is 

computed from the t -distribution function ( )xf  and the t -statistic obtained 

from Equation 3.4.1: 

( )∫
+∞

=
t

dxxfp   Equ. 3.4.2 

While the p -value is the probability of wrongly rejecting the null hypothesis 

0:0 =kh β , critical values of p  are required as thresholds to determine the 

significance of regression coefficients. In particular different critical values of p  
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are necessary as criteria for stepwise selection methods of parameters. These 

thresholds need to be acceptable to the study to which they are applied (Bland 

2000). 

It is important to report the number of patients and measurements included in 

regression analyses. Even if significant with a low p -value, a coefficient kβ  may 

be valid only under specific conditions. If it is computed from a small subset of 

measurements, the selection of the measurements may be biased. For example, 

analyses including both blood pressure and cholesterol level measurements 

may be biased towards conditions at the times when these measurements are 

coincident. In the case of the AAA study, approximately 180 cholesterol level 

and 160 blood pressure equivalent number of measurements (i.e. number of 

measurements after kernel smoothing using the weighting function described 

in thesis section 3.2) were available, less than half (≈70) of which were 

coincident. The number n  of patients included in the analysis provides an 

assessment of the scope. The number q  of equivalent measurements included is 

a measure of the degrees of freedom 1−q  available to the regression. The 

degrees of freedom m  used by a regression should be small compared to the 

available degrees of freedom. 

It is not possible to test every possible combination of parameters, not because 

it is computationally intensive, but because the more combinations tested the 

more likely a significant regression will be found in error. If the desired 

confidence is 95% then 1 in 20 combinations tested may be wrongly found 

significant, and testing all combinations of just 12 clinical parameters would 
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result in several hundred errors. Hence an appropriate selection technique has 

to be chosen. The stepwise multiple linear regression selection method is the 

recommended means of selecting a subset of variables for a regression model. 

This method “must be treated with care” and is qualified as potentially “very 

misleading” (Bland 2000) as it does not remove the chance of finding a wrongly 

significant regression. Typically 1.0<p  and 3.0>p  are used as inclusion and 

exclusion criteria, respectively. 

Table 3.4.1 lists the p -values for individual linear regressions of all 12 factors. 

Simple linear regressions were carried out against each factor individually to 

determine the significant factors. Aneurysm diameter was selected with 

07.0=p  as the only significant factor for aneurysm growth rate. The next 

significant factor is HDL cholesterol with 21.0=p  ( 29.0=p  once adjusted for 

aneurysm diameter). 

Table 3.4.1. Individual linear regressions of aneurysm growth against all 
factors including aneurysm diameter, p  is the probability of wrongly rejecting 

the null hypothesis 0:0 =kh β  where kβ  is the regression coefficient. 

 p  

Systolic Pressure 0.83 

Diastolic Pressure 0.91 

Systolic-Diastolic Pressure Difference 0.88 

Pulse Rate 0.65 

Lower ABPI 0.48 

Higher ABPI 0.83 

Urea 0.59 

Creatinine 0.60 

Total Cholesterol 0.41 

HDL Cholesterol 0.21 

Total to HDL Cholesterol Ratio 0.48 

Aneurysm Diameter 0.07 
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Some parameters are strongly correlated with each other. For instance, systolic 

and diastolic pressure are related (correlation coefficient 82.0=r ) because the 

former cannot be lower than the latter. Similarly, for the lower and higher ABPI, 

84.0=r . Table 3.4.2 and Table 3.4.3 highlight all the couples of factors that have 

a significant correlation coefficient r  with 05.0<p . From 12 clinical factors a 

total of 19 significant correlations were found. 

3.5 Clinical Factors 

The linear regression models applied to the clinical factors measured from 

patients with AAA at Ninewells Hospital, Dundee, resulted in the selection of 

aneurysm diameter as a significant predictor of the rate of aneurysm growth. 

None of the other factors have been found to be statistically linked to AAA 

growth, either because the variability of the data meant that the factors could 

not be selected with sufficient confidence, or simply because these factors are 

not predictors of aneurysm growth rate. 

The most significant predictor of AAA growth rate is the log-transformed 

AAA diameter. (If the log-transformed diameter is significant in a linear model, 

then the untransformed diameter is also significant in an exponential model; 

hence the term ‘log-transformed’ need not be used when reporting 

significance.) The regression coefficient of growth rate against diameter is 

mm)ln(/ yr03.005.0 -1±=kβ  95% Confidence Interval (CI) [0;0.1] yr-1/ln(mm) 

with 07.0=p  (Table 3.5.1). With HDL cholesterol in the regression model, the  
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Table 3.4.2. Number of patients n  (upper value) with equivalent number of independent measurements q  (lower value) for the 

correlation analyses of couples of factors; highlighted in bold are significant correlation coefficients r  (listed in Table 3.4.3) with 
05.0<p  where p  is the probability of wrongly rejecting the null hypothesis 0:0 =rh . 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Systolic Pressure (1) 63 n=           

164.2 q=           

Diastolic Pressure (2) 61 61          

162.6 162.4          

Systolic-Diastolic 
Pressure Difference (3) 

61 61 61         
162.6 162.3 162.3         

Lower ABPI (4) 44 43 43 68        

37.2 36.5 36.4 71.5        

Higher ABPI (5) 42 41 41 64 64       

35.5 34.7 34.7 67.5 67.2       

Urea (6) 60 58 58 65 61 93      

128.8 126.2 126.2 84.0 78.6 465.4      

Creatinine (7) 93 58 58 65 61 93 93     
464.2 124.2 124.2 84.1 78.6 464.2 464.5     

Total Cholesterol (8) 55 53 53 62 58 82 82 84    

82.4 80.8 80.8 63.7 59.9 215.7 216.0 193.0    

HDL Cholesterol (9) 54 52 52 61 57 82 82 83 83   

69.0 67.4 67.4 61.2 57.3 210.6 210.9 181.4 179.4   

Total to HDL 
Cholesterol Ratio (10) 

54 52 52 61 57 82 82 83 83 83  

69.0 67.4 67.4 61.2 57.3 210.6 210.9 181.4 179.4 179.4  

Aneurysm Diameter 
(11) 

61 59 59 68 64 92 92 83 82 82 95 
94.5 92.5 92.5 95.2 89.4 285.4 285.7 181.5 176.4 176.4 368.4 
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Table 3.4.3. Coefficients of correlation r  (upper value) with probability p  (lower value) of wrongly rejecting the null hypothesis 

0:0 =rh  for the correlation analyses of couples of factors; highlighted in bold are significant correlation coefficients with 05.0<p , 

number of patients n  and equivalent number of independent measurements q  are listed in Table 3.4.2. 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Systolic Pressure (1) 1 r=           

0 p=           

Diastolic Pressure (2) 0.82 1          
<0.001 0          

Systolic-Diastolic 
Pressure Difference (3) 

0.90 0.49 1         
<0.001 <0.001 0         

Lower ABPI (4) -0.20 -0.01 -0.22 1        

0.2 1.0 0.2 0        

Higher ABPI (5) -0.21 0.03 -0.26 0.84 1       

0.2 0.8 0.1 <0.001 0       

Urea (6) -0.03 -0.03 -0.06 -0.09 -0.14 1      

0.7 0.8 0.5 0.4 0.2 0      

Creatinine (7) -0.18 -0.02 -0.27 -0.09 -0.01 0.79 1     

0.04 0.8 0.002 0.4 0.9 <0.001 0     

Total Cholesterol (8) 0.14 0.21 0.08 -0.12 -0.09 -0.21 -0.36 1    

0.2 0.06 0.5 0.3 0.5 0.001 <0.001 0    

HDL Cholesterol (9) 0.22 0.04 0.28 -0.08 -0.11 -0.16 -0.30 0.36 1   

0.07 0.7 0.02 0.5 0.4 0.02 <0.001 <0.001 0   

Total to HDL 
Cholesterol Ratio (10) 

-0.15 0.07 -0.24 -0.01 0.02 0.02 0.06 0.30 -0.78 1  

0.2 0.6 0.04 0.9 0.9 0.8 0.4 <0.001 <0.001 0  

Aneurysm Diameter 
(11) 

-0.26 -0.33 -0.15 0.17 0.13 0.11 0.00 -0.06 0.13 -0.18 1 
0.01 0.001 0.2 0.1 0.2 0.07 0.9 0.4 0.09 0.01 0 
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Table 3.5.1. Coefficients of regression kβ  for the linear regression of aneurysm 

growth rate against aneurysm diameter, with probability p  of wrongly 

rejecting the null hypothesis 0:0 =kh β , with 89 patients and 312.8 degrees of 

freedom. 

 Regression 

Coefficient kβ  

Standard 
Error 

95% Confidence 
Interval 

Units Probability 
p  

Unit ( 10 ≡jx ) 0.056 ±0.004 [0.045;0.065] yr-1 <0.001 

Aneurysm 
Diameter 

0.05 ±0.03 [0.00;0.10] yr-1 0.07 

 

regression coefficient becomes 0.08 ± 0.04 yr-1/ln(mm) 95% CI [0;0.17]  

yr-1/ln(mm) (Table 3.5.2). The unit yr-1/ln(mm) for the regression coefficients of 

proportionate growth rate against log-transformed diameter is used here to 

distinguish it from (mm/yr)/mm applicable to the coefficients for absolute rate 

of growth against untransformed diameter. 

Table 3.5.2. Coefficients of regression kβ  for the linear regression of aneurysm 

growth rate against aneurysm diameter and HDL cholesterol, with probability 
p  of wrongly rejecting the null hypothesis 0:0 =kh β , with 78 patients and 

137.8 degrees of freedom. 

 Regression 
Coefficient 

kβ  

Standard 
Error 

95% Confidence 
Interval 

Units Probability 
p  

Unit ( 10 ≡jx ) 0.053 ±0.007 [0.039;0.068] yr-1 <0.001 

Aneurysm Diameter 0.08 ±0.04 [0.00;0.17] yr-1 0.05 

HDL Cholesterol 0.03 ±0.03 [-0.02;0.08] yr-1 0.3 

 

Having accounted for the proportionality between absolute rate of growth and 

aneurysm diameter by taking the logarithm of diameter and regressing the 

proportionate rate of growth, the log-transformed aneurysm diameter has 

remained an important predictor of proportionate growth. The coefficient of 

0.05 yr-1/ln(mm) means that for each doubling in diameter the proportionate 
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rate of growth increases by 0.035 yr-1: e.g. compared to a 30 mm diameter AAA, 

a 60 mm diameter AAA is predicted to grow at an extra 2 mm/yr over and 

above the doubling in growth rate due to the doubling in diameter. This 

regression of AAA rate of growth against AAA diameter may account for some 

of the variance in rates illustrated by the expansion patterns of 98 aortic 

aneurysms reported by Bengtsson et al (1993). 

The next most significant independent predictor of AAA growth rate is HDL 

cholesterol. The regression coefficient of growth rate against HDL cholesterol is 

-1 yr02.003.0 ±=kβ  95% CI [-0.02;0.08] yr-1 with 2.0=p  (Table 3.5.3). With the 

logarithm of aneurysm diameter in the regression model, the regression 

coefficient becomes 0.03 ± 0.03 yr-1 95% CI [-0.02;0.08] yr-1 (Table 3.5.2). 

Table 3.5.3. Coefficients of regression kβ  for the linear regression of aneurysm 

growth rate against HDL cholesterol, with probability p  of wrongly rejecting 

the null hypothesis 0:0 =kh β , with 78 patients and 149.5 degrees of freedom. 

 Regression 
Coefficient 

kβ  

Standard 
Error 

95% Confidence 
Interval 

Units Probability 
p  

Unit ( 10 ≡jx ) 0.054 ±0.007 [0.041;0.067] yr-1 <0.001 

HDL Cholesterol 0.03 ±0.02 [-0.02;0.08] yr-1 0.2 

 

For the linear regression of AAA growth on aneurysm diameter, Bengtsson et 

al (1993) report a regression coefficient of 0.11 (mm/yr)/mm with 001.0<p  and 

a coefficient of determination 11.02 =R . Lindholt et al (1998) report 0.22 

(mm/yr)/mm and Brady et al (2004) 0.129 (mm/yr)/mm, both with strong 

significance. However, none of these studies transformed their aneurysm 

diameter measurements to ensure that they followed normal distributions, 
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despite the histogram of the distribution of 155 aortic diameters plotted by 

Bengtsson et al (1993) showing a log-normal distribution. Brady et al (2004) 

found however that exponential growth models, equivalent to log-transforming 

the diameters, did not fit their data well. These apparently strongly significant 

results reported in the literature are due to having regressed the absolute rate of 

growth without taking the logarithm of the diameter. 

In a study with 199 patients, Schewe et al (1994) found that both rate of AAA 

growth and AAA diameter were possible predictors of aneurysm rupture 

( 036.0≤p ), suggesting that rate of growth and diameter are linked. The study 

by Wilson et al (1999) of 60 patients including some from Ninewells Hospital, 

Dundee, used Spearman’s rank correlation analysis and found a significant 

correlation between aortic diameter and growth rate ( 001.0<p ). Figure 3.5.1 

compares the regression line for the simple linear regression of growth rate 

against diameter (as reported in Table 3.5.1) with measurements of mean 

growth rates at different AAA diameters reported by Brown et al (1996) with 

error bars representing the standard deviations, and by Schewe et al (1994). The 

model is clearly consistent with measurements reported in the literature, 

though the large standard deviations warrant caution. 

For the linear regression of AAA growth on HDL cholesterol, Brady et al 

(2004) measured a regression coefficient of 0.35 mm/yr/(mmol/L) 95% CI  

[-0.13;0.85] mm/yr/(mmol/L), which while not statistically significant 

( 05.0>p ) would tend to indicate a positive regression of AAA growth rate  
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Figure 3.5.1. Plot of the regression line for the simple linear regression of 
aneurysm growth rate on aneurysm diameter (model presented in this thesis), 
compared with measurements of growth rate taken by Brown et al (1996) with 
error bars representing standard deviation, and by Schewe et al (1994). 

against HDL cholesterol similar to that measured here. Brady et al (2004) also 

measured the coefficient of regression against total cholesterol as 0.017 

mm/y/(mmol/L) 95% CI [-0.092;0.133] mm/y/(mmol/L), again not strictly 

significant but tending towards a positive regression. Chang et al (1997) did not 

find hypercholesterolaemia linked to growth rate ( 1.0>p ). In common with 

other atherosclerotic diseases, abdominal aortic aneurysms result from the 

degradation of elastin, a product of which is elastin-derived peptides. 

Concentrations of serum elastin-derived peptides were found to be significantly 
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higher in patients with AAA by Petersen et al (2002) who also mention that 

elastin-derived peptides have the potential to induce cholesterol production. 

Hence, while total cholesterol may not be a causal factor of aneurysm growth, it 

may be itself a by-product of the elastin degradation present in aneurysms. 

Serum elastin peptides however were not associated with aneurysm growth 

rate by Lindholt et al (2001), but higher levels of serum elastin peptides were 

linked to a greater risk of aneurysm rupture. While HDL cholesterol was 

selected by the stepwise method as a possible predictor of aneurysm growth 

rate, the associated p -value remains high with 2.0≥p . This means that there is 

a greater than 1 in 5 chance that the association of HDL cholesterol with 

aneurysm growth is due to random scatter in the data and not due to a 

biochemical phenomenon. No explanation for the association of HDL 

cholesterol with aneurysm growth was found in literature. 

None of the haemodynamic factors such as blood pressure, pulse rate or ABPI, 

have been found significant by the linear regression method. While Chang et al 

(1997) found that age, severe cardiac disease, stroke and smoking were linked 

to increased AAA growth rate ( 05.0<p ), he did not find hypertension 

significant ( 1.0=p ). Indeed, regression of AAA growth rate on systolic 

pressure results in a coefficient with 95% CI [-0.0011;0.0013] mm/yr/mmHg  

([-0.008;0.01] mm/yr/kPa) with 8.0=p . Similarly, Brady et al (2004) did not 

find systolic pressure to be significant with 95% CI [-0.006;0.003] 

mm/yr/mmHg and [-0.007;0.003] mm/yr/mmHg. Regression of AAA growth 

rate on diastolic pressure results in a coefficient with 95% CI [-0.003;0.002] 
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mm/yr/mmHg ([-0.02;0.02] mm/yr/kPa) with 9.0=p . Lindholt et al (1998) did 

not find diastolic pressure to be a significant predictor of growth with 95% CI  

[-0.02;0.03] mm/yr/mmHg. The regression coefficient for the systolic-diastolic 

pressure difference was also computed, with 95% CI [-0.0017;0.002] 

mm/yr/mmHg ([-0.013;0.015] mm/yr/kPa) with 9.0=p . The study by Wilson 

et al (1999) attempted to predict growth rates from measurements of the elastic 

modulus, a function of the systolic-diastolic pressure difference, and the 

stiffness, a function of the difference between the logarithms of systolic and 

diastolic pressures. Along with the mean arterial pressure, neither elastic 

modulus nor stiffness were found to be significant predictors of AAA growth 

rate ( 15.0≥p ) using Spearman’s rank correlation method. The lack of 

significance of the haemodynamic factors with respect to AAA growth has also 

been found with risk of AAA rupture. Schewe et al (1994) found that neither 

systolic pressure nor diastolic pressure nor the systolic-diastolic pressure 

difference were predictors of rupture ( 13.0>p ). This is supported by the results 

of Lederle et al (2002) who evaluated risk ratios for rupture with 95% CI 

[0.98;1.01] mmHg-1 and [0.98;1.04] mmHg-1 for systolic and diastolic pressure, 

respectively. The regression of growth rate against lower and higher ABPI 

resulted in 95% CI [-0.08;0.16] mm/yr ( 5.0=p ) and [-0.13;0.16] mm/yr 

( 8.0=p ), neither being significant. This is a different result from that suggested 

by Diehm et al (2005), namely that “AAA growth is significantly slower in patients 

with low ankle-brachial index”, with coefficients of regression of 1.0 mm/yr 95% 

CI [0.4;1.7] mm/yr and 1.1 mm/yr 95% CI [0.5;1.7] mm/yr (Brady et al 2004) 
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calculated from measurements from 1743 patients. This number of patients is 

vastly superior to the 66 patients in the AAA study with valid ABPI 

measurements that were used here. That and the fact that coefficients of ~1 

mm/yr per ABPI are particularly small and possibly not clinically relevant 

would suggest that ABPI is not a predictor of clinically significant growth rates 

and therefore would not return a statistically significant regression coefficient 

with the number of measurements analysed here. 
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Chapter 4 

Analysis of Aortic Geometry 

4.1 Shape Analysis 

Instead of analysing proxies of haemodynamics, or indeed in conjunction with 

these analyses, the rate of aneurysm growth has been analysed against the 

geometry of the infra-renal abdominal aorta. In particular, the stepwise 

multiple linear regression analyses of parameters strongly support the selection 

of abdominal aortic diameter as being a significant predictor of exponential 

growth. Nevertheless, studies of geometrical parameters in relation to risk of 

aneurysm rupture have highlighted the unreliability of simple diameter as a 

criterion (Giannoglou et al 2006). The tortuosity (or centreline asymmetry) of 

the AAA (Abdominal Aortic Aneurysm) has been linked to elevated wall stress 

in AAA by Doyle et al (2009) and to high wall shear stress in the superficial 

femoral artery by Wood et al (2006). Measures of radii of curvature have been 

linked to the locations of high stresses on the aortic wall, but do not predict 

stress magnitude (Hua and Mower 2001); this would be supported by earlier 

autopsy measurements by Darling et al (1977) who found varying sites of 

rupture with most being retroperitoneal. This raises the question of whether 

there are other geometric characteristics of the aortic lumen that can predict risk 

of aneurysm growth. 

To determine the possible statistical links between AAA geometry and AAA 

growth, factors describing the shape of the arterial lumen have been measured 
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from medical imaging. For 47 patients there were a total of 59 CT (Computed 

Tomography) abdominal scans referenced on the study database. These CT 

scans consisted of the imaging of consecutive cross-section slices of the 

abdomen. In all but the most unusual of cases, the abdominal aorta lies 

essentially parallel to the axis of the abdomen and each abdominal CT image 

represents a cross-section of the aorta.  

Figure 4.1.1 illustrates measurements of an aortic lumen taken on a typical CT 

image. A vertical measuring scale available on the CT imaging system can be 

used as an axis with origin O  and directed towards S  (two arbitrary fixed 

points specific to the CT scanner). First, the position of the centre at O′  of the 

aortic lumen, defined as the mid-point of the shortest diameter [ ]BB ′  (i.e. 

BOBO ′′=′ ), is measured using the vertical scaling tool [ )OS  as an axis of 

reference defining a cylindrical CT coordinate system ( )zr ;;θ . The 

measurements of the distance OO ′  and the angle ( )OOOS ′;  provide the first 

two coordinates for the centre O′ : 

    OOr ′=   Equ. 4.1.1a 

    ( )OOOS ′= ;θ   Equ. 4.1.1b 

The origin of the z -axis is defined as the trifurcation of the renal arteries with 

the abdominal aorta (as depicted by Figure 4.1.2). The CT images have numbers 

I  such that if 0I  is the number of the image with the proximal ends of the renal 

arteries, the z -coordinate of the lumen cross-section is: 
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Figure 4.1.1. Graphical representation of the lumen shape at the proximal end 
of the infra-renal abdominal aorta of a patient (2-dimensional, see Figure 4.1.2 
for a 3-dimensional representation of the CT imaging with the coordinate 
systems). In this example the measurements were mm 33=′AA , mm 25=′BB , 

mm 11=BE  and °= 67α  which result in a lumen shape with a maximum 
radius mm 5.16=a , an ellipsity 758.0=b , a parabolic distortion 091.0=ε  and 
an orientation °−= 6.148φ  (the orientation of the proximal ends of the renal 

arteries is °−= 4.80φ ). 

( )
2

0
CTt

IIz −=   Equ. 4.1.2 

CTt  is the CT slice thickness and the CT system typically produces two images 

per slice. To standardise the dimensions of the infra-renal aorta between 

patients, it has been necessary to transform the coordinates linked to the CT 

machine to coordinates linked to the aorta itself. The z -axis is therefore defined 

as the straight line that runs from the trifurcation with the renal arteries to the 

aorto-iliac bifurcation. With ( )00 ;θr  the cylindrical CT coordinates of the lumen  
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Figure 4.1.2. Diagram representing the stack of CT images with CT slice 
thickness CTt , with the image 0I  that of the trifurcation of the renal arteries with 

the abdominal aorta and the image I  that of the aortic lumen drawn in Figure 
4.1.1. The scaling tool [ )OS  of the CT imaging system that defines the 

cylindrical CT coordinate system ( )zr ;;θ  is shown on both images, and the axes 

of the Cartesian coordinate system ( )zyx ;;  that originate at the trifurcation are 

also shown. On image 0I , the orientation 0φ  of the renal arteries is given by the 

coordinates ( )LRALRA yx ;  and ( )RRARRA yx ;  of the proximal ends of the left and 

right renal arteries, respectively; on image I , the orientation φ  of the lumen 

shape is relative to the orientation 0φ  of the renal arteries. 
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centre at the trifurcation, the ( )yx;  Cartesian coordinates of the lumen centre on 

a line running through the trifurcation point (but still aligned with the CT 

system) are given by: 





−=
−=

θθ
θθ

coscos

sinsin

00

00

rry

rrx
  Equ. 4.1.3 

A sequential computation of rotations of the ( )yx;  coordinates around the 

three orthogonal axes adjusts the coordinates to the alignment with the z -axis 

passing through the aorto-iliac bifurcation. The actual total correction being 

quite small, the adjustment has negligible effect on the z -coordinate values. 

This also holds true for the lumen shape parameters described next. Unlike the 

AAA asymmetry study of Doyle et al (2009) that only included asymmetry in 

the anterior-posterior plane, the centreline definition that has been used here 

includes both x  and y  coordinates; furthermore, in addition to the 

measurement of the lumen centre, parameters measured from the shape of the 

lumen cross-section have also been analysed. 

On a CT image (c.f. the diagram of Figure 4.1.1), the measurements of the 

maximum diameter [ ]AA ′  and the minimum diameter [ ]BB ′  provide an 

assessment of the axial distortion, or compression, of the shape of the lumen, 

quantified as the ellipsity b  (Equation 4.1.4b). The offset segment [ ]EO′  between 

the centre O′  of the lumen and the intersect ( ) ( )BBAAE ′∩′∈  of the two 

diameters (c.f. Figure 4.1.1) provides a measure of a secondary distortion which 

can be included in the lumen function (thereafter) as a quadratic term and 
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hence quantified by the parabolic distortion ε  (Equation 4.1.4c). EO′  being 

usually small, it is best obtained by measuring [ ]BE . Finally, the orientation φ  

(Equation 4.1.4d) is the angle that the maximum diameter makes with respect to 

the orientation 0φ  of the renal arteries. It is obtained from the measurement of 

angle ( )AAOS ′= ;α  between the axis of reference [ )OS  and the maximum 

diameter [ ]AA ′  (c.f. Figure 4.1.1). The major, or maximum, radius a  (Equation 

4.1.4a) is half of diameter [ ]AA ′ . 

   
2

AA
a

′
=     Equ. 4.1.4a 

   
AA

BB
b

′
′

=     Equ. 4.1.4b 

   
a

BE
b

AA

EO −=
′

′
= 2ε    Equ. 4.1.4c 

   ( )πφπαφ 2mod
2

0−−−=   Equ. 4.1.4d 

By determining from measurement the Cartesian coordinates ( )LRALRA yx ;  and 

( )RRARRA yx ;  of the proximal ends of the left and right renal arteries, respectively, 

the orientation 0φ  of the renal arteries is defined by Equation 4.1.5 (c.f. Figure 

4.1.2). 

RRALRA

RRALRA

xx

yy

−
−=0tanφ   Equ. 4.1.5 

From the parameters derived from the measurements of a cross-section of 

aortic lumen, the lumen function ( )θ ′Λ  is a complex function of angle 

parameter θ ′  that describes numerically the shape of the lumen edge. For a 
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lumen with a circular cross-section of radius a , the lumen function ( )θ ′Λ  is 

given by Equation 4.1.6. 

( ) θθ ′=′Λ iae   Equ. 4.1.6 

For a lumen with an elliptical cross-section of maximum radius a  and ellipsity 

b , the lumen function ( ) ( ) θθθ ′′=′Λ ieS  has to satisfy Equation 4.1.7, where ( )θ ′S  

is a scaling factor dependent on angle θ ′ : 

( )
( )




==′Λ
==′Λ

iba

a

2

0
πθ

θ
  Equ. 4.1.7 

The solution for ( )θ ′S  that satisfies Equation 4.1.7 is: 

( )
1

22

2

2

2 sincos
−

′
+

′
=′

aba
S

θθθ   Equ. 4.1.8 

For a distorted lumen with a measurement ε  of parabolic distortion (c.f. 

Equation 4.1.4c), the imaginary part of θ ′ie  has an additional term ( ) θεθ ′′ 2cosa
S  

which is a function of the square of the real part of θ ′ie  with the parabolic 

distortion factor ε  appropriately scaled by ( )
a

S θ ′ . Equation 4.1.9 defines an 

elliptical lumen function with parabolic distortion ε . 

( ) ( ) ( )





 ′′
+′=′Λ ′ θεθθθ θ 2cos

a

S
ieS i   Equ. 4.1.9 

The lumen function can be rotated by its orientation φ  and translated by its 

centre coordinate iyx + , such that the full lumen function ( )θ ′Λ , substituting 

for ( )θ ′S , is given by Equation 4.1.10: 
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  Equ. 4.1.10 

The lumen function is used here first to illustrate the influence of the measured 

parameters x , y , a , b , ε  and φ  on the shape of the lumen (e.g. Figure 4.1.3) 

and second to reconstruct the 3-dimensional shape of the aorta by layering  

 

 

 

 

Figure 4.1.3. Plots of the parametric lumen function ( )θ ′Λ  with radius 1=a  for 

ellipsities { }1;7.0;4.0∈b  and parabolic distortions { }6.0;3.0;0∈ε . 
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cross-sectional lines defined by the lumen function (e.g. Figure 4.1.4). Figure 

4.1.3 illustrates the influence of ellipsity and parabolic distortion on the shape of 

the lumen. 

 

Figure 4.1.4. Infra-renal aorta surface of a patient, defined by individual lumen 
cross-sectional lines reconstructed from Fourier coefficients of the shape 
parameters. 

The parameters x , y , a , b , ε  and φ  have been chosen in such a way as to 

avoid their interdependence: the ellipsity b  provides no information on the 

radius a ; the parabolic distortion ε  no information on the radius a  or the 
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ellipsity b , etc. As these parameters vary along the length of the abdominal 

aorta, it is possible to use the properties of Fourier series (Jordan and Smith 

1994) to obtain independent components of the parameters by computing 

Fourier coefficients. As the parameters are not strictly periodic, the analysis has 

been adapted so that the coefficients for ( )za , ( )zb , ( )zε  and ( )zφ  are given by 

Equation 4.1.11a, while because the aortic centreline must pass through the 

centres of the trifurcation and of the aorto-iliac bifurcation, the functions ( )zx  

and ( )zy  are bound at the ends of the infra-renal aorta, 0=z  and Lz = , and 

their coefficients are therefore given by Equation 4.1.11b. Being measures of 

length, the parameters ( )zx , ( )zy  and ( )za  are normalised by using L  as a 

reduction factor. 

   
( )

( )







=

=

∫

∫
L

L

dzza
L

a

dz
L

z
za

L
a

00

0

1

cos
2 νπ

ν
  Equ. 4.1.11a 

   ( )∫=
L

dz
L

z
zx

L
x

0
sin

2 νπ
ν   Equ. 4.1.11b 

In the case of the AAA patient already taken as an example for Figure 4.1.1, 

coefficients 06.01 =x  and 12.01 =y  indicate that the aorta centreline deviates 

some 6% and 12% of the infra-renal aorta length L , along the x  and y  axes, 

respectively, the other coefficients being much smaller (c.f. Figure 4.1.5). The 

mean maximum radius is given as a function of length by LLa 16.00 = , the 

negative first coefficient 04.01 −=a  indicating that the aorta is wider at its distal  
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Figure 4.1.5. Plots of the estimates (circles) at regular intervals from CT of the 
coordinates x  and y , the maximum radius a , the ellipsity b , the parabolic 

distortion ε  and the orientation φ , and of their functions (lines) as 

reconstituted from the first 10 Fourier coefficients, of the infra-renal abdominal 
aorta of the patient. 
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section than proximally, but the actual distal end narrows ( 02.02 −=a ), which is 

often typical of abdominal aortic aneurysms. The mean ellipsity is 76.00 =b  

with 14.01 =b , indicating that the proximal section is more circular and the 

distal section takes the shape of a narrower ellipse. 

In general, the aorta shape is described by the first 2 to 5 coefficients of each 

parameter with the higher frequencies (higher ν ) being small. The coefficients 

νε  for parabolic distortion tend to remain small for all ν  which means that 

most of the lumen shape is described by νx , νy , νa  and νb . While important for 

the reconstruction of the lumen shape, the orientation φ  measured from images 

where the cross-sectional shape is quasi circular ( 9.0>b  and 1.0<ε ) is 

irrelevant and is removed from the Fourier analysis. 

Despite the relatively small number of patients with CT scans, it has been 

possible to carry out simple linear regression analyses of the rate of aneurysm 

growth on the Fourier coefficients. For this, the aneurysm growth rate is 

estimated for the time at which the CT scan was carried out, as there is usually 

no more than one CT scan per patient. Using Equation 3.3.17 provides a suitable 

estimate of growth. The p -values for the linear regressions of aneurysm growth 

are listed in Table 4.1.1 for each Fourier coefficient separately. Aneurysm 

growth regresses against the mean maximum radius 0a  with 06.0=p . Only two 

other coefficients appear more significant: 3b  with 05.0=p  and 4x  with 

02.0=p . To some extent, 3b  has a reasonable geometric interpretation: a  
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Table 4.1.1. Probabilities p  for the regressions of aneurysm growth estimated 

at time of CT scan against each Fourier coefficient of lumen shape up to 4=ν , 
individually. 

ν  0 1 2 3 4 

νx   0.1 0.3 0.2 0.02 

νy   0.6 0.1 0.2 0.5 

νa  0.06 0.7 0.1 0.4 0.9 

νb  0.1 0.2 0.3 0.05 0.2 

νε  0.3 0.8 0.2 0.8 1 

νφ  0.7 0.5 0.09 0.8 0.6 

 

positive 3b  means a more circular lumen cross-section at the trifurcation and in 

the distal section of the infra-renal aorta, and a more elliptical cross-section in 

the proximal section and at the aorto-iliac bifurcation. A positive 4x  means that 

the infra-renal aorta first bears left, then right, then left again, then right again, 

before joining the bifurcation. While this may describe a particularly tortuous 

aorta, the regression is linear indicating that first bearing to the left has the 

opposite effect on aortic growth from first bearing to the right. This illustrates 

how the use of the geometric coefficients in regression analyses makes the 

results difficult to interpret clinically. 

While multiple linear regressions could be carried out, the stepwise selection 

method is inappropriate for this geometric data because there are too many 

coefficients relative to the number of patients. 

The full shape of the lumen can be reconstructed using the Fourier coefficients 

computed for the six different parameters. A dense layering of lumen cross-

sectional lines obtained from the coefficients provides the final shape of the 
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infra-renal aorta (Figure 4.1.4) in a way analogous to the methods described by 

Raghavan et al (2000) and Venkatasubramaniam et al (2004). The lumen surface 

is meshed using Star-CD (CD Adapco, London) by defining a regular cylinder, 

which is then dilated into the shape specified by the lumen function Λ  

(Hammer et al 2009; Wolters et al 2005; Leung et al 2006). The dilated cylinder 

surface is then used by the Star-CD automatic meshing program to produce a 

meshed 3D (3-dimensional) fluid domain using polyhedral cells (Figure 4.1.6). 

 

Figure 4.1.6. 3D numerical model of the fluid domain defined by the lumen of 
the infra-renal aorta of the patient, generated by the automatic meshing 
capability of Star-CD (CD Adapco, London) with polyhedral cells. 
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Throughout the analysis of the geometric characteristics of AAA, a thrombus 

in the artery is regarded as part of the aortic wall. While a thrombus is not a 

fluid, the possible action it has on the aortic wall has been considered a risk for 

rupture and for AAA growth, although what exactly the risks are has been a 

matter of some controversy (Shurink et al 2000; Mower and Quinones 2001). 

Consequently, for the purpose of this analysis, the aortic lumen is deemed to be 

the open fluid lumen excluding the areas of thrombus. For completeness, 

geometric measurements of the lumen defined by the actual arterial wall on the 

CT images and including thrombosed areas have been taken at the same time as 

the measurements of the open lumen so that these are available for analysis 

(given appropriate methods). 

Simple geometric measurements from CT scans provide sufficient information 

to build numerical 3D models of the infra-renal aorta with AAA. The automatic 

meshing program provides good quality polyhedral meshes that can be used in 

subsequent CFD (Computational Fluid Dynamics) analyses (Di Martino et al 

2001; Li and Kleinstreuer 2006) to compute maximum local wall stresses. The 

importance of carrying out the full 3D CFD numerical analyses is highlighted 

by Fillinger et al (2002); only peak wall stress obtained from 3D reconstruction 

was found to be significant in relation to AAA rupture (or symptomatic AAA) 

and not indices of geometric shape. CFD analyses were not carried out on the 

numerical AAA models built at Ninewells Hospital, Dundee, however. The 

development of the methods required for this is outside the scope of the work 

presented here. 
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4.2 Geometric Factors 

While some studies have used CT scans to link risk of AAA rupture to 

geometric factors such as aneurysm diameter itself (e.g. Siegel et al 1994), few 

have broken down the geometry of the AAA into independent separate 

components such as have been described earlier with radii νa , ellipsity νb , aorta 

centreline coordinates νx  and νy , etc. Doyle et al (2009) examined the variation 

in y  (vessel asymmetry) and a2  (diameter) against aortic wall stress but not 

rate of AAA growth. Vorp (2007) is critical of the perceived clinical importance 

of maximum AAA diameter towards risk of rupture, and states that “the 

“maximum criterion diameter” is not reliable”. It therefore becomes important not 

only to analyse diameter with respect to aneurysm growth rate but also to 

analyse other geometric components derived from CT scans. 

Similarly to finding a statistical link between AAA diameter and aneurysm 

growth when aneurysm diameter is included as a clinical factor, the linear 

regression of the rate of aneurysm growth on the mean maximum radius 0a  of 

the infra-renal aorta results in a regression coefficient (with standard error) of 

1.0 ± 0.5 yr-1 with 06.0=p . Figure 4.2.1 is a scatter plot of the 0a  factors 

obtained from CT versus the estimated rate of growth at the time of the scan. 

With more statistical significance than the mean maximum radius, the rate of 

aneurysm growth was found to regress against the geometric factor 3b  with 

05.0=p  and a regression coefficient of -0.6 ± 0.3 yr-1 (Figure 4.2.2). When  

 



 
2 

 

Figure 4.2.1. Scatter plot with regression line of aneurysm 
growth rate against 0a  (mean maximum radius) with 40=n  

measurements; regression accounts for 9% of the variability in 
scatter and probability of type I error is 06.0=p . 

 

Figure 4.2.2. Scatter plot with regression line of aneurysm 
growth rate against 3b  with 40=n  measurements; 

regression accounts for 10% of the variability in scatter and 
probability of type I error is 05.0=p . 
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regressing against each of the geometric factors up to 4=ν  (the first 4 or 5 

components of the Fourier series) the most significant factor was 4x  with 

02.0=p  and a regression coefficient of 2.3 ± 1.0 yr-1 (Figure 4.2.3). 

 

Figure 4.2.3. Scatter plot with regression line of aneurysm growth rate against 

4x  with 40=n  measurements; regression accounts for 13% of the variability in 

scatter and probability of type I error is 02.0=p . 

0a  represents the larger radius of an elliptical lumen and hence 02a  the larger 

diameter which Fillinger (2007) suggests may provide a better indication of 

rupture risk, but also considers that the larger diameter may be overestimated 

due to the tortuosity of the vessel. This was already considered when taking 

measurements from the CT images; infra-renal abdominal aortas that displayed 
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particularly unusual morphologies were not included in the analysis. Geometric 

factors based on arterial diameter, such as “the ratio of the aneurysm diameter to 

the supraceliac aortic diameter” (Ouriel et al 1992), have been studied in relation to 

aneurysm rupture. Fillinger et al (2004) found a number of different arterial 

geometry measurements and indices including the maximum aneurysm 

diameter itself and the supraceliac and infrarenal aortic diameters to be 

significantly greater in ruptured cases. The supraceliac and infrarenal diameters 

remained significant after matching AAA by diameter. This would suggest that 

lower negative 2a  values, corresponding to an aortic shape whereby the radius 

is small at the ends of the infra-renal abdominal aorta and large in the middle, 

are less of a risk for rupture. Regression of rate of growth against 2a  results in a 

regression coefficient of -1.3 ± 0.9 yr-1 and a coefficient of determination 

06.02 =R . The probability of error remains somewhat large with 1.0=p , but 

the result suggests that greater growth rates occur in AAA with low 2a , i.e. 

AAA more saccular and less fusiform in shape. 

Greater rates of growth are linked with lower (negative) 3b . Perhaps the 

negative 3b  corresponds to aneurysms that lie in the distal half of the infra-renal 

aorta, the proximal half of circular cross-section with a more elliptical lumen at 

the trifurcation, the distal half of more elliptical cross-section with a more 

circular lumen at the bifurcation. Fillinger et al (2004) measured the ellipsity of 

the aneurysm in terms of its maximum diameter less its minimum diameter. 

They found a greater risk of rupture for the more elliptical AAA ( 02.0=p ). The 

regression of rate of growth on mean ellipsity 0b  of the infra-renal aorta results 
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in a regression coefficient of -0.4 ± 0.2 yr-1 with 1.0=p  (Figure 4.2.4) which may 

suggest that the more elliptical aortas experience a greater rate of growth as 

well as risk of rupture. 

 

Figure 4.2.4. Scatter plot with regression line of aneurysm growth rate against 

0b  (mean ellipsity) with 40=n  measurements; regression accounts for 6% of 

the variability in scatter and probability of type I error is 1.0=p . 

The 4x  component may be taken as a measure of left-right tortuosity (or 

horizontal tortuosity when supine), but a measure of tortuosity with a direction, 

positive values meaning the aorta first bears left after the trifurcation, negative 

values meaning the aorta first bears right. While tortuosity was weakly 

associated with risk of rupture (Fillinger et al 2004) with lower tortuosity linked 
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to greater rupture risk, Sacks et al (1999) argues that the greater the tortuosity 

the greater the number of high curvature areas of the aortic wall that may 

correspond to high wall tension and stress. This association between tortuosity 

and wall stress has also been shown by Doyle et al (2009). It is also suggested 

that as the spatial distribution of these focal areas of curvature is not uniform, 

the rate of growth of the aortic wall and the risk of its rupture may not be 

uniform either. Furthermore, for the 4x  component, it is not simply the degree 

of tortuosity that appears important, but also its direction. Studies of the 

rupture sites of AAA (Golledge et al 1999) have found that the risk of rupture 

appears to be one-sided. Perhaps the rate of AAA growth is also dependent on 

the direction of the tortuous path the infra-renal aorta takes. 

The statistical analysis of the geometric components evaluated for this study 

remains empirical. The complex geometric nature of the problem that is 

presented by a tortuous and elliptical aneurysm with varying shape and size 

(Sacks et al 1999) suggests that the rate of aneurysm growth is not spatially 

uniform and so the limitations of predicting rates of aneurysm growth are not 

surprising. The statistical analyses, by being empirical, have been criticised as 

not having “a physically sound theoretical basis” (Vorp 2007). However, the lack of 

any strong relationship between the geometric factors evaluated here and the 

rate of aneurysm growth could reside in part in the low number of patients 

with CT scans included in the analysis; the approach that was taken here to 

analyse a set of independent geometric components that fully describe the 

aneurysm remains original. The set of geometric factors also enables the 
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construction of 3D numerical models with which computational fluid dynamic 

simulations can be carried out. Computations of the wall shear stress and 

pressure by Papaharilaou et al (2007) with numerical models of AAA found an 

increased pressure loading throughout most of the aneurysm and in particular 

at the distal end of the AAA (pressure some 15% higher than the peak systolic 

pressure). The geometric factors would help in examining the influence of 

varying each in turn on the simulated aortic wall shear stress and pressure. 
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Chapter 5 

Discussion and Conclusion 

5.1 Discussion 

It has been described how Abdominal Aortic Aneurysm (AAA) growth is 

linked to changes to the principal constituents of the arterial wall, elastin 

degradation and collagen remodelling (Chapter 1). A method to simulate 1D 

models of the arterial network has been developed. Using this 1D method it has 

been found that more rigid abdominal aorta and iliac arteries together cause a 

greater systolic-diastolic pressure difference throughout the network modelled 

and a smaller variation in flow rate in the aorta. In contrast, a more rigid iliac or 

femoral artery has much less of an effect on the systolic-diastolic pressure 

difference and causes a greater variation in flow rate in the aorta. However, the 

1D model used is limited in that it makes certain assumptions, in particular 

concerning the flow-control mechanism. A statistical method has been 

developed and used to analyse the AAA patient data available at Ninewells 

Hospital, Dundee. This small, but careful statistical study was undertaken with 

the objective of reducing uncertainty about the causes of AAA growth. The 

regression analysis of clinical factors yields that aneurysm diameter is linked to 

aneurysm growth and HDL cholesterol may also be linked to growth. None of 

the haemodynamic clinical factors such as blood pressure or ABPI have been 

found statistically significant with respect to aneurysm growth rate. From the 

regression analysis of geometric factors of the infra-renal abdominal aorta, it 
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has been found that aneurysm growth is linked to the mean maximum radius, 

the mean ellipsity and its variation along the length of the aorta, and variations 

of one of the centreline coordinates that has been associated with tortuosity. The 

reliability of some of these conclusions is questionable because of the sample 

size and attention has been drawn to this limitation when applicable. While 

these analyses have linked some of the clinical and geometric factors to 

aneurysm growth, they have not provided an answer to the causes of aneurysm 

growth. 

The experimental study carried out by Peattie et al (2004) demonstrates that 

important shear stresses occur at the proximal and distal ends of the AAA. 

High shear stress is thought to damage the endothelium and generate 

thrombus. As suggested by the 1D simulations of stents, hardening of arteries 

in the lower limbs, e.g. through peripheral vascular disease, increases the 

instantaneous peak flow rates in the abdominal aorta, hence contributing 

further to shear stress. In this way, damage to the intima and then the media 

would cause the aneurysm to grow. Interestingly, the comparison of aneurysm 

models of different sizes yielded the greatest shear stress occurring in the model 

equivalent to a 43 mm diameter aneurysm, with lower maximum shear stresses 

for smaller and larger aneurysms. This is explained by the vortex that is formed 

in aneurysms during flow deceleration. However, wall pressure was measured 

several orders of magnitude greater than wall shear stresses (Peattie et al 2004). 

The computational fluid dynamics modelling of a 60 mm diameter AAA 

before endovascular repair, and of the same AAA with an endovascular graft, 
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provided by Li and Kleinstreuer (2005) is a useful demonstration of the main 

haemodynamic characteristics. Their results clearly show the vortices at the 

proximal end of the AAA during flow deceleration, which are linked to higher 

wall shear stress, as shown in their article where areas of high wall stress are 

noted at the proximal and distal ends of the aneurysm. The vessel specifications 

used in the models indicate that while the implant of an aorto-iliac graft 

removes the bulge of the aneurysm, it also further increases the rigidity of the 

vessel from an already rigid aneurysm. If aneurysm growth is caused by wall 

shear stress, then the implant would inhibit shear stress and growth, the 

implant effectively shielding the arterial wall (Li and Kleinstreuer 2005). 

Thrombus also shields the arterial wall from further possible damage caused 

by high shear stress. It has already been mentioned that research into the role of 

thrombus in aneurysms has returned contradictory results. Indeed, thrombus 

sac pressure appears not to be linked to AAA size or thrombus volume (Hans et 

al 2003). What the study of the effect of clamping the smaller arterial branches 

of the infra-renal aorta did show, however, is that even these smaller vessels 

play a role in the pressures present in the AAA lumen and thrombus. The 

vessels, namely the lumbar and inferior mesenteric arteries, were too small for 

the CT imagery that was used for the 1D model and were assumed to be small 

enough to be negligible. It would be possible to develop the 1D model to add 

permeability to the characteristics of vessels, which would avoid explicitly 

specifying additional arterial sections for small arteries to the 1D network. Even 



127 

these smaller vessels may have an influence on the haemodynamics in 

abdominal aortic aneurysms. 

The deformation of collagen over time is the primary mechanism in AAA 

growth. Every unit area of arterial wall will grow due to collagen remodelling. 

Because of this it is expected that the rate of AAA growth will be proportional 

to aneurysm diameter. Collagen remodelling and proportionate growth may 

also account for the increasing tortuosity displayed by aortic aneurysms. It is 

the proportionate rate of growth that must be analysed and not the absolute 

growth rate. The requirement to consider the proportionate growth rate because 

of the mechanism of collagen remodelling is backed up by the shape of the 

statistical distribution of AAA diameters. Aneurysm diameter follows a 

lognormal distribution which means that the diameters must be log-

transformed so that a normally distributed diameter is analysed. In this way, 

the AAA growth rate is the rate of change of the logarithm of aneurysm 

diameter which is a rate of proportionate growth. No reference has been found 

in the literature of analysing proportionate growth instead of absolute growth, 

and the results thereof reported here are new. 

It is not obvious whether biochemical processes are a cause of aneurysm 

growth or simply a consequence thereof. If collagen remodelling was the sole 

mechanism of AAA growth then the aneurysm diameter would not be a 

predictor of proportionate growth rate. In larger aneurysms the rate of collagen 

remodelling is accelerated because there is none of the load bearing elastin left, 

while in smaller aneurysms the rate of expansion of the arterial wall is slower 
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because of remaining elastin. Therefore, the increase in proportionate rate of 

growth with aneurysm diameter may be explained by elastin degradation.  

A number of geometric factors of the infra-renal aorta were found statistically 

significant in relation to AAA growth rate. In particular, the mean maximum 

radius is related to the aneurysm diameter, and both are predictors of AAA 

growth rate. The geometric factors provide a complex description of each 

aneurysm. The derivation of the terms of the lumen function, and using Fourier 

transforms, made each geometric factor as far as possible mathematically 

independent. Yet, upon further examination of each factor one by one with each 

other, a multitude of correlations have been found. This is not surprising as the 

morphology of the aneurysmal infra-renal aorta constitutes a subset of all 

possible combinations of the geometric factors. Computing up to the 4th Fourier 

component provides 18 geometric factors for radius, ellipsity and centreline 

coordinates, and a further 10 for parabolic distortion and orientation. From 

these 28 factors, there are 60 significant correlations, or 26 if analysing radius, 

ellipsity and centreline only. 

Besides the mean maximum radius, the statistical analysis of the geometric 

factors suggests that the ellipsity and tortuosity of the infra-renal aorta are 

linked to the aneurysm growth rate. Both ellipsity and tortuosity are linked to 

high curvature parts of the aorta, which not only have been associated with 

elevated aortic wall stress (Doyle et al 2009) but also affect the local blood flow 

dynamics. While it has been shown that risk of aneurysm rupture may be 

predicted by computing the AAA mechanical wall stress distribution (Doyle et 
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al 2011), if AAA growth rate is affected by wall shear stress, then the local 

haemodynamics may become significant. This may explain the additional risk 

factors included in the model by Helderman et al (2010) such as ischemic heart 

disease and peripheral arterial disease. Geometry affects the haemodynamics 

such that to determine the causal effect of geometry on the haemodynamics it is 

necessary to analyse 3D models of the infra-renal aorta and the blood flow 

within them. The geometric factors obtained from the abdominal scans provide 

the information required to create suitable 3D numerical models of AAA 

(Hammer et al 2009); changes in the haemodynamics due to variations in any of 

the geometric factors can then be examined. 

While it has been shown that the geometric factors, that affect the 

haemodynamics of the AAA, are linked to aneurysm growth rate, none of the 

clinical haemodynamic factors such as blood pressure, pulse rate or Ankle-

Brachial Pressure Index (ABPI) are statistically linked to AAA growth rate. This 

is surprising insofar as a more rigid infra-renal aorta is shown to increase the 

systolic-diastolic pressure difference. The vascular wall of an aneurysm, 

depleted of elastin, has certainly greater rigidity than a healthy abdominal 

aorta. The 1D haemodynamics, including the systolic-diastolic pressure 

difference, are a result of the summed effect of pressure and flow rate wave 

reflections caused by variations of vascular characteristics in the arterial 

network. These reflections are governed by the admittance of each vessel 

section. It is possible for the admittance of the abdominal aorta to remain the 

same if the cross-sectional area of the vessel grows with the square-root of 
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rigidity: indeed an aneurysm is not only a more rigid vessel it also has an 

increased diameter and cross-sectional area. In this way the admittance and the 

systolic-diastolic pressure difference remain unaffected by aneurysm growth. 

The overall blood flow dynamics in the abdominal aorta does not appear to be 

affected by AAA growth. The significant links between geometric factors and 

rate of aneurysm growth suggest that it is the detail of the geometry of the AAA 

that affects arterial wall stress (Helderman et al 2008); this in turn may cause 

increased collagen remodelling, elastin degradation and aneurysm growth. 

It has been suggested that high shear stress damages the vascular wall and 

causes aneurysm growth. The vessel characteristics at parts of the arterial 

network other than the infra-renal aorta affect the blood flow in the AAA and 

will influence the local haemodynamics, such as shear stress, close to the 

aneurysm wall. This supports a possible link between ABPI, an indicator of 

peripheral vascular disease, and AAA growth rate and could be an additional 

risk factor for the multi factorial prediction model suggested by Helderman et 

al (2008). Therefore, while the precise haemodynamic cause of aneurysm 

growth depends on the detail of the AAA geometry, vessel characteristics at 

other parts of the arterial network will influence the haemodynamics local to 

the AAA. 

The 1D method used for simulating the blood flow in the arterial network 

provides a useful tool to evaluate the overall haemodynamics in different 

sections of arteries. The 1D program could be further used to assess other 
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vascular conditions that may affect the blood flow characteristics in the 

abdominal aorta, such as arterial stenoses, renal disease, cardiac function, etc. 

The 1D method may be particularly useful to specify boundary conditions to 

detailed 3D models of AAA, especially as the 1D program used here does not 

need to iterate to reach a solution at each time step. 

In an attempt to strengthen the statistical analyses by making better use of the 

data available for each AAA patient, the development of an extension to the 

method of multiple linear regression is presented in this thesis. The method 

enables the inclusion of all measurements of a parameter taken at different 

times by estimating a continuous expression for the parameter with an 

associated weight function. A combined weight function is then derived and 

included in the multiple linear regression models, which translates into 

appropriate degrees of freedom for the regressions. In this work, the combined 

weight and degrees of freedom have been underestimated and further work is 

required to provide a suitable method for combining the weight functions of the 

individual parameters. Underestimating the degrees of freedom still provides 

robust statistical analyses by overestimating the chance for error, while taking 

the risk of overestimating the number of degrees of freedom would have meant 

risking obtaining erroneous results. One advantage of the method is to include 

the natural history of each AAA as estimated from the measurements rather 

than just the characteristics of each AAA at a single moment in time. 

Vorp (2007) describes the “fallacy” of using AAA diameter to assess risk of 

rupture. In his review of AAA biomechanics, he explains the dependency of 
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rupture risk on AAA wall stress and strength. In particular, risk of aneurysm 

rupture is influenced by the precise geometry of the abdominal aorta and 

arterial wall stress depends on the haemodynamics close to the vascular wall. 

Similarly, the rate of AAA growth depends on the local detail of the 

haemodynamics which will be influenced by the 3D geometry. However, it is 

suggested that the haemodynamic conditions connected to the rate of AAA 

growth are different to those linked to rupture risk. Peaks in intra-luminal 

blood pressure will directly influence vascular wall stress and an AAA will 

rupture when this exceeds its strength. For AAA growth rate, it remains unclear 

which of shear stress or wall pressure is the cause. High shear stress has been 

suggested to damage the intima and generate thrombus which in turn has been 

linked to arterial wall weakening by hypoxia (Vorp and Vande Geest 2005); 

high wall pressure has also been suggested to play a role through macrophage-

mediated arterial wall weakening. It is probable that both shear stress and wall 

pressure are causes of AAA growth. 

5.2 Conclusion 

The aim of this thesis is to determine what, in terms of blood flow dynamics, 

causes abdominal aortic aneurysms to grow. 

The 1D simulations (Chapter 2) have shown that changes in characteristics of 

the arterial network outside the abdominal aorta affect the haemodynamics 

within. This however needs to be confirmed by further work on the 1D model 
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to better simulate all of the physiological processes involved in the vascular 

system. 

The statistical analysis of AAA growth rate in relation to clinical factors 

including aneurysm diameter itself (Chapter 3) has shown that aneurysm 

diameter remains a significant predictor of AAA growth. Independently, the 

analysis also suggests that HDL cholesterol may also be linked to AAA growth. 

By analysing the logarithm of aneurysm diameter, the exponential growth of 

aneurysms is implicit in the statistical model. Despite this, the proportionate 

growth rate has been found to increase with increasing aneurysm diameter, i.e. 

over and above the rate of arterial remodelling that would be expected from the 

arterial wall surface area only. None of the haemodynamic factors such as blood 

pressure or ABPI have been linked to AAA growth. 

The statistical analysis of AAA growth rate in relation to geometric factors 

(Chapter 4) has shown that the mean maximum radius, the mean ellipsity and 

the longitudinal variations of the abdominal aorta’s ellipsity and centreline are 

linked to AAA growth. 

In summary, the conlusions are, (i) aneurysm diameter is strongly predictive 

of aneurysm growth rate, (ii) there are significant statistical links between 

several geometric characteristics of the abdominal aorta and the rate of AAA 

growth. 

In relation to the aim of the thesis, it has been found that there is insufficient 

evidence to show that there are haemodynamic causes to AAA growth, either 
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because it is the detailed blood flow dynamics within the aorta that is 

important, or because there have been too few patients included in the 

statistical analysis of the clinical and haemodynamic factors, or that indeed 

there are no haemodynamic causes of AAA growth. 

5.3 Future Studies 

Abdominal aortic aneurysm is associated with aortic wall inflammation which 

affects the structure of the arterial wall and consequently the vessel size (Libby 

2002). Hypertension is associated with atherosclerosis, yet the causal link 

remains unresolved (Libby et al 2011). While the study by Leung et al (2006) 

demonstrates that the interaction of the AAA structure with the fluid dynamics 

within has little effect on arterial wall stress, progression of disease that might 

influence AAA growth may require estimation of wall shear stress through 

simulation of the haemodynamics with fluid-structure interaction (Fraser et al 

2009). Diseases of the cardio-vascular system affecting the haemodynamics are 

still significant factors in predicting AAA growth rate even with a static 

structural wall stress model (Helderman et al 2010). 

Given that it is the detailed fluid dynamics local to aortic aneurysms rather 

than the overall blood flow characteristics (e.g. flow rate, blood pressure) of the 

aorta that are likely to be haemodynamically linked to AAA growth, to 

determine what characteristics of the aortic fluid dynamics may be causes of 

growth it is necessary to solve 3D models of aneurysms. The flow in 

standardised models of aneurysms have been studied (e.g. Khanafer et al 2007; 
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Ekaterinaris et al 2006; Peattie et al 2004; Finol et al 2003; Finol and Amon 2001) 

as well as flows in patient-specific models of aneurysms directly reproduced as 

true geometries from medical imaging (e.g. Yamamoto et al 2006; Yeung et al 

2006; Finol and Amon 2003). In each case, small numbers of geometric 

configurations or patient cases have been studied. Considering recent advances 

in computer technology, it is proposed that numerical solutions of the fluid 

dynamics within abdominal aortic aneurysms are obtained by varying each 

geometric factor in turn. In this way, starting from a standard geometry, it 

would be possible to simulate the haemodynamics over a range of different 

aneurysmal geometries. The results of these Computational Fluid Dynamics 

(CFD) simulations, and in particular the conditions at the vascular wall, could 

then be catalogued. The catalogue of CFD results could then be used to retrieve 

haemodynamic conditions such as shear stress and wall pressure given an AAA 

patient with specific aorta geometry. 

This approach presents a number of foreseeable difficulties. The range of 

geometric parameters needs to be informed by descriptive statistics of 

measurements taken from medical imaging of AAA patients. The parameters 

that have been used for the statistical analysis of AAA growth rate against the 

infra-renal aorta geometry are one such set of geometric parameters measured 

from medical imaging. Automatic meshing of 3D models is now possible with 

CFD software and provides a means of rapidly creating the model to be solved 

from the geometric specifications (Raghavan et al 2005). To investigate the 

automatic meshing capability of Star-CD (CD Adapco, London), numerical 
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models of AAA were built (Figure 5.3.1) using the geometric parameters of 39 

of the 40 AAA which geometries were analysed statistically. The CFD software 

has inbuilt mesh quality checks which rejected 1 of the 40 models. A further 

complication may be the need to model some of the biochemical processes 

themselves by considering the characteristics and composition of the arterial 

lumen wall, for example the diffusion of oxygen through thrombus (Vande 

Geest et al 2006; Vorp et al 1998). It has already been described how thrombus 

geometry can be measured in the same way as the lumen. 

The systematic solving of CFD models of AAA over a range of geometries and 

boundary conditions could form the basis of an empirical formula that can be 

used to predict the rate of aneurysm growth, in a similar way as that developed 

by Li and Kleinstreuer (2005) for risk of rupture. Such a formula would be 

directly useful to the clinician for evaluating a patient’s prognosis. The CFD 

results would indicate which geometric and haemodynamic features are linked 

to aneurysm growth. Furthermore, by determining the biochemistry processes 

that are sensitive to the haemodynamic processes linked to growth, the 

haemodynamic causes of AAA growth may be found. 



 
2 

 

Figure 5.3.1. Numerical models of abdominal aortic aneurysm lumens of 39 AAA study patients at Ninewells Hospital, Dundee, 
using the automatic meshing capability of Star-CD (CD Adapco, London). 
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Appendix 

Programs and Functions 

geogen.m 

function geogen(dt,gr) 
% Program GeoGen version 3.0c 
% C.E. SARRAN 2004-2007 (c.e.sarran@dundee.ac.uk) 
% (c) University of Dundee 2004-2007 
% (c) NHS Tayside 2007 
% (c) Tayside Flow Technologies Limited 2004 
% 
% The program Geogen is used to generate the geomet ry file 
% required for use by the program Art. 
% Geogen requires the following Matlab data file: 
%  fn.mat  : contains the ordered list of file name s as a 
%            10 by n character array of the vessel 
%            specifications (n is the number of ves sels) 
% Geogen requires the ASCII data files listed in fn .mat 
% containing the vessel characteristics as defined by the 
% data file format specified below (S). 
% Geogen writes a Matlab data file geo.mat that con tains 
% the following variables: 
%  para  : cell array containing the parameters des cribing 
%          each vessel 
%  szp   : numeric array of the number of grid poin ts for 
%          each vessel 
% 
% The following variables are required to run Geoge n: 
% 
% dt    : time step size 
% gr    : density 
% 
% data file format: 
% S(1,:)    : distance L up to which vessel paramet ers 
%             apply 
% S(2,:)    : cross-sectional area a 
% S(3,:)    : compliance factor C 
% S(4,:)    : friction factor f 
% 
% file names for vessel specifications should be ge nerated 
% here 
% e.g. fn(:,1)='aorta.dat'; % branch 1 is given by the 
%                             aorta data file 
 
% File names are specified in fn.mat 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% file names for vessel specifications should be ge nerated 
% here 
% e.g. fn(:,1)='aorta.dat'; % branch 1 is given by the 
%                             aorta data file 
 
% fn(:,1)='pi.dat'; 
load fn; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Display progress - "computing geometry" 
disp(' computing geometry') 
 
% Repeat for each vessel data file 
for h=1:size(fn,2) 
 
 % Checks that the file exists by attempting to ope n it 
 % checks that a file exists 
 fid=fopen(fn(:,h)); 
 
 % If successfully opened, close the file then load  the 
 % vessel specifications and create the vessel grid  
 if fid>0 
  fclose(fid); 
 
  % loads data file 
 
  % Delete the vessel specifications variable S, 
  % then load the vessel specifications from file 
  clear S; 
  S(:,:)=load(fn(:,h)); 
 
  % Determine the number of vessel sections with di fferent 
  % specifications 
  sz=size(S,2); 
 
  % S(1,:)    : distance L up to which vessel param eters 
  %             apply 
  % S(2,:)    : cross-sectional area a 
  % S(3,:)    : compliance factor C 
  % S(4,:)    : friction factor f 
 
  % Initialise the grid point coordinate and number  
  % variables z and m 
  z=0;  % grid point coordinate at start of section  
  m=0;  % last grid point number before start of se ction 
 
  % computes geometry parameters 
 
  % Repeat for each different vessel section 



173 

  for i=1:sz 
 
   % Compute wave velocity c from compliance factor  and 
   % density 
   c=sqrt(S(3,i)/gr); 
 
   % Compute number of grid points that fall within  this 
   % section given length of section, time step dur ation 
   % and wave velocity 
   n=round((S(1,i)-z)/dt/c); 
 
   % Assign vessel characteristics to identified n grid 
   % points falling within this vessel section 
   for j=m+1:m+n 
    para{h}(1,j)=S(2,i);        % cross-sectional a rea a 
    para{h}(2,j)=c;             % wavespeed c 
    para{h}(3,j)=S(3,i);        % compliance factor  C 
    para{h}(4,j)=S(4,i);        % friction factor f  
    para{h}(5,j)=z+(j-m)*dt*c;  % grid point coordi nate z 
   end 
 
   % Increment grid point coordinate and number giv en n 
   % grid points 
   z=z+n*dt*c; 
   m=m+n; 
  end 
 
  % Save number of grid points for the vessel in sz p array 
  szp(h)=m;  % number of grid points for the vessel  
 
 end 
 
 %h 
end 
 
% saves geometry file 
 
% Display progress - "saving geometry" 
disp(' saving geometry') 
 
% Save variables para and szp to Matlab data file g eo.mat 
save geo para szp; 
 

bcgen.m 

function bcgen(dt) 
% Program BCGen version 2.3c 
% C.E. SARRAN 2004-2007 (c.e.sarran@dundee.ac.uk) 
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% (c) University of Dundee 2004-2007 
% (c) NHS Tayside 2007 
% (c) Tayside Flow Technologies Limited 2004 
% 
% The program Bcgen is used to generate the boundar y 
% conditions file required for use by the program A rt. 
% Bcgen requires the following Matlab data file: 
%  bfn.mat  : contains the ordered list of file nam es as a 
%             10 by n character array of the vessel  
%             specifications (n is the number of ve ssels) 
% Bcgen requires the ASCII data files listed in bfn .mat 
% containing the boundary conditions as defined by the data 
% file format specified below (S). 
% Bcgen writes a Matlab data file bc.mat that conta ins the 
% following variables: 
%  bc  : m by 3 by n numeric array containing the 
%        parameters describing each boundary condit ion (m 
%        is the number of time steps and n is the n umber of 
%        vessels) 
%  T   : boundary conditions period 
% 
% The following variables are required to run Bcgen : 
% 
% dt    : time step size 
% 
% data file format: 
% S(1,:)    : time up to which boundary condition 
%             parameters apply 
% S(2,:)    : boundary type 
% S(3,:)    : boundary condition at start of period  
%             specified 
% S(4,:)    : boundary condition at end of period s pecified 
% 
% file names for boundary condition specifications should 
% be generated here 
% e.g. fn(:,1)='lhsbc.dat'; % boundary of branch 1 is given 
%                             by the lhsbc data fil e 
% 
% note: the vessel with the highest number in the n etwork 
%       should have a specified boundary condition 
 
% File names are specified in bfn.mat 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% file names for boundary condition specifications should 
% be generated here 
% e.g. fn(:,1)='lhsbc.dat'; % boundary of branch 1 is given 
%                             by the lhsbc data fil e 
 
% file names must be 6 characters long before the e xtension 
 
%fn(:,1)='lbc.dat';  % lhs branch end 



175 

%fn(:,4)='rbc.dat';  % rhs branch end 
load bfn; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% Display progress - "computing boundary conditions " 
disp(' computing boundary conditions') 
 
% Initialising the boundary conditions period 
T=0;  % grid time at end of period specified by bou ndary 
      % condition data file 
 
% Repeat for each boundary condition data file 
for h=1:size(fn,2) 
 
 % Checks that the file exists by attempting to ope n it 
 % checks that a file exists 
 fid=fopen(fn(:,h)); 
 
 % If successfully opened, close the file then load  the 
 % specifications and create boundary conditions fo r each 
 % time step 
 if fid>0 
  fclose(fid); 
 
  % loads data file 
 
  % Delete the boundary condition specifications va riable 
  % S, then load the boundary condition specificati ons from 
  % file 
  clear S; 
  S(:,:)=load(fn(:,h)); 
 
  % Determine the number of periods of time with di fferent 
  % specifications 
  sz=size(S,1); 
 
  % S(1,:)    : time up to which boundary condition  
  %             parameters apply 
  % S(2,:)    : boundary type 
  % S(3,:)    : boundary condition at start of peri od 
  %             specified 
  % S(4,:)    : boundary condition at end of period  
  %             specified 
 
  % Initialise time t, grid time tn and grid time n umber m 
  t=0;   % time at start of period specified by bou ndary 
         % condition data file 
  tn=0;  % grid time at start of period specified b y 
         % boundary condition data file 
  m=1;   % first grid time number at start of perio d 
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         % specified by boundary condition data fil e 
 
  % computes boundary conditions 
 
  % Repeat for each period of time with different 
  % specifications 
  for i=1:sz 
 
   % Compute number of time steps that fall within the time 
   % period with specified boundary conditions give n time 
   % period duration and time step duration 
   n=round((S(i,1)-tn)/dt); 
 
   % Assign boundary condition parameters to identi fied n 
   % time steps falling within the specified time p eriod 
   for j=m:m-1+n 
    bc(j,1,h)=S(i,2);                  % boundary t ype 
    bc(j,2,h)=S(i,3)+(S(i,4)-S(i,3))/(S(i,1)-t)*(j* dt-t); 
                                       % boundary c ondition 
    bc(j,3,h)=j*dt;                    % grid time 
   end 
 
   % Increment time t, grid time tn and grid time n umber m 
   t=S(i,1); 
   tn=tn+n*dt; 
   m=m+n; 
  end 
 
 end 
 
 % Adjust boundary conditions period to latest grid  time 
 if T<tn 
  T=tn; 
 end 
 
end 
 
% saves boundary conditions file 
 
% Display progress - "saving boundary conditions" 
disp(' saving boundary conditions') 
 
% Save variables bc and T to Matlab data file bc.ma t 
save bc bc T; 
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art2.m 

function art2(dt,ts,n) 
% Program Art version 3.0c 
% C.E. SARRAN 2004-2007 (c.e.sarran@dundee.ac.uk) 
% (c) University of Dundee 2004-2007 
% (c) NHS Tayside 2007 
% (c) Tayside Flow Technologies Limited 2004 
% 
% The program Art (Art 2) solves the characteristic  
% equations for pressure and flow rate in a network  of 
% flexible vessels. 
% It can be used, for example, to simulate the flow  of 
% blood in 1D models of the arterial network. 
% Art 2 requires the following Matlab function file s: 
%  test.m   : tests the vessel network for errors 
%  lhsb.m   : solves for pressure and flow rate at a left 
%             hand-side boundary 
%  rhsb.m   : solves for pressure and flow rate at a right 
%             hand-side boundary 
%  bif.m    : solves for pressure and flow rates at  a 
%             bifurcation with two vessels 'downstr eam' 
%  bifb.m   : solves for pressure and flow rates at  a 
%             bifurcation with two vessels 'upstrea m' 
%  point.m  : solves for pressure and flow rate at all 
%             other grid points 
% Art 2 requires the following Matlab data files: 
%  geo.mat  : geometry file generated by the functi on 
%             geogen.m containing the variables par a and 
%             szp (see below) 
%  bc.mat   : boundary conditions file generated by  the 
%             function bcgen.m containing the varia bles bc 
%             and T (see below) 
% Art 2 requires the following ASCII data file: 
%  net.dat  : n records of 3 integers corresponding  to the 
%             vessel identification numbers, positi ve for 
%             'downstream' vessel ends and negative  for 
%             'upstream' vessel ends (n is the numb er of 
%             bifurcations) 
% Art 2 writes a Matlab data file grid.mat that con tains 
% the following variables: 
%  v     : m by 2 cell array of 2 by x numeric arra ys 
%          containing the p (pressure) and q (flow rate) 
%          values at the last time step of the comp utation 
%          and at the second-last time step (m is t he 
%          number of vessels and x is the number of  grid 
%          points for each vessel) 
%  pq    : m by k cell array of 2 by x numeric arra ys 
%          containing the p (pressure) and q (flow rate) 
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%          values at each time step saved at regula r 
%          intervals specified by ts (m is the numb er of 
%          vessels, k is the number of saved time s teps and 
%          x is the number of grid points for each vessel) 
%  tt    : numeric array of the times at which p an d q 
%          values were saved in the pq array 
%  para  : cell array containing the parameters des cribing 
%          each vessel (from geo.mat) 
%  szp   : numeric array of the number of grid poin ts for 
%          each vessel (from geo.mat) 
%  bc    : m by 3 by x numeric array containing the  
%          parameters describing each boundary cond ition (m 
%          is the number of time steps and x is the  number 
%          of vessels) (from bc.mat) 
%  T     : boundary condition period (from bc.mat) 
%  net   : m by 3 numeric array of vessel identific ation 
%          numbers describing the bifurcations of t he 
%          network, positive values for 'downstream ' vessel 
%          ends and negative for 'upstream' (m is t he 
%          number of bifurcations) 
%  dt    : time step size 
%  ts    : time between saved solutions 
%  n     : number of periods 
%  gr    : density 
%  gm    : molecular viscosity 
% 
% The following variables are required to run Art 2 : 
% 
% dt    : time step size 
% ts    : time between saved solutions 
% n     : number of periods 
 
% Define values for the density and molecular visco sity of 
% blood 
gr=1050;    % density 
gm=.00368;  % molecular viscosity 
 
% Display progress - "testing network" 
disp('testing network') 
 
% Tests the vessel network for errors, returning th e number 
% tst of errors and b identifying the vessel ends w ith 
% missing boundary conditions 
[tst,b]=test;  % tests network 
 
% If the test fails displays the number of errors a nd ends 
if tst>0 
 disp([num2str(tst) ' errors']) 
                                % displays number o f errors 
else 
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 % Display progress - "loading geometry" 
 disp('loading geometry') 
 
 % Loads the geometry file generated by geogen.m 
 load geo;  % loads geometry file 
 
 % Display progress - "loading boundary conditions"  
 disp('loading boundary conditions') 
 
 % Loads the boundary conditions file generated by bcgen.m 
 load bc;  % loads boundary conditions file 
 
 % Display progress - "loading network data" 
 disp('loading network data') 
 
 % Loads the network configuration from the network  data 
 % file 
 load net.dat;  % loads network data file 
 
 % Display progress - "initialising model" 
 disp('initialising model') 
 
 % Create a grid v for the vessels specified by the  
 % geometry file geo.mat with two time steps so as to 
 % compute the solutions for pressure and flow rate  and 
 % initialise both pressure and flow rate to zero 
 for h=1:size(para,2) 
  v{h,1}(1:2,1:size(para{h},2)+1)=zeros; 
  v{h,2}=v{h,1}; 
 end 
 %v(1:2,1:size(para,2)+1,1:size(para,3),1:2)=zeros;  
                                        % initialis es model 
 
 % Initialise a counter j to save solutions at regu lar 
 % intervals 
 j=1; 
 
 % Initialise the number of saved time steps per pe riod 
 nts=0; 
 
 % Initialise the sums of squared residuals for plo tting 
 smr=[0 0;0 0]; 
 
 % Display progress - "sorting network information"  
 disp('sorting network information') 
 
 % Sort network information for each bifurcation in to 
 % vessel number order including sign (negative for  
 % 'upstream' ends, positive for 'downstream' ends)  
 net=sort(net,2);  % sorts network information 
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 % Set up display of residuals using a log-scale on  the 
 % vertical axis with red used for pressure P and b lue for 
 % flow rate Q 
 semilogy(T,1,'r.',T,1,'b.') 
 legend('P','Q',3) 
 
 % 'hold on' is required to prevent display refresh  
 hold on 
 
 % A pause is required to reduce diplay flicker 
 pause(.00001) 
 
 % Repeat computation for the number of periods spe cified 
 for m=1:n  % steps through number of periods 
 
  % Display progress - "starting period" with perio d number 
  disp(['starting period ' num2str(m) '...']) 
 
  % Repeat computation for each time step 
  for t=1:size(bc,1)  % steps through number of tim e steps 
 
   % Solves for pressure and flow rate at all the 
   % boundaries 
   % solves boundaries 
   for h=1:size(b,1) 
 
    % Uses lhsb.m if it is a left-hand-side boundar y 
    if b(h,1)==1 
     [v{h,2}(1,1),v{h,2}(2,1)]=lhsb(bc(t,1,h),bc(t, 2, ... 
      h),v{h,1}(1,2),v{h,1}(2,2),para{h}(1,1), ... 
      para{h}(2,1),para{h}(4,1),gr,dt); 
    end 
 
    % Uses rhsb.m if it is a right-hand-side bounda ry 
    if b(h,2)==1 
     [v{h,2}(1,szp(h)+1),v{h,2}(2,szp(h)+1)]=rhsb(b c(t, ... 
      1,h),bc(t,2,h),v{h,1}(1,szp(h)),v{h,1}(2,szp( h)), ... 
      para{h}(1,szp(h)),para{h}(2,szp(h)),para{h}(4 , ... 
      szp(h)),gr,dt); 
    end 
 
   end 
 
   % If the model consists of a single vessel with 
   % specified boundary conditions required at both  ends, 
   % use rhsb.m for the righ-hand-side boundary (th is is 
   % because the second vessel end will have been m issed by 
   % the selection above) 
   % solves right-hand-side boundary if single vess el model 
   if sum(b(1,:))==2 
    [v{1,2}(1,szp(1)+1),v{1,2}(2,szp(1)+1)]=rhsb(bc (t, ... 
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     1,2),bc(t,2,2),v{1,1}(1,szp(1)),v{1,1}(2,szp(1 )), ... 
     para{1}(1,szp(1)),para{1}(2,szp(1)),para{1}(4,  ... 
     szp(1)),gr,dt); 
   end 
 
   % Solves for pressure and flow rates at all the 
   % bifurcations 
   % solves bifurcations 
   for i=1:size(net,1) 
 
    % Uses bif.m if it is a bifurcation with two ve ssels 
    % 'downstream' 
    if prod(net(i,:))>0 
     [v{abs(net(i,3)),2}(1,szp(abs(net(i,3)))+1), . .. 
      v{abs(net(i,1)),2}(2,1),v{abs(net(i,2)),2}(2, 1)]= ... 
      bif(v{abs(net(i,3)),1}(1,szp(abs(net(i,3)))),  ... 
      v{abs(net(i,3)),1}(2,szp(abs(net(i,3)))), ...  
      para{abs(net(i,3))}(1,szp(abs(net(i,3)))), .. . 
      para{abs(net(i,3))}(2,szp(abs(net(i,3)))), .. . 
      para{abs(net(i,3))}(4,szp(abs(net(i,3)))), .. . 
      v{abs(net(i,1)),1}(1,2),v{abs(net(i,1)),1}(2, 2), ... 
      para{abs(net(i,1))}(1,1),para{abs(net(i, ... 
      1))}(2,1),para{abs(net(i,1))}(4,1),v{abs(net( i, ... 
      2)),1}(1,2),v{abs(net(i,2)),1}(2,2), ... 
      para{abs(net(i,2))}(1,1),para{abs(net(i,2))}( 2, ... 
      1),para{abs(net(i,2))}(4,1),gr,dt); 
 
     % Pressure is equal in all three vessels at th e 
     % bifurcation 
     v{abs(net(i,1)),2}(1,1)=v{abs(net(i,3)),2}(1, ... 
      szp(abs(net(i,3)))+1); 
     v{abs(net(i,2)),2}(1,1)=v{abs(net(i,3)), ... 
      2}(1,szp(abs(net(i,3)))+1); 
 
     % Flow rate in the 'upstream' vessel is the su m of the 
     % flow rates in the 'downstream' vessels at th e 
     % bifurcation 
     v{abs(net(i,3)),2}(2,szp(abs(net(i,3)))+1)= .. . 
      v{abs(net(i,1)),2}(2,1)+v{abs(net(i,2)),2}(2, 1); 
 
    % Uses bifb.m if it is a bifurcation with two v essels 
    % 'upstream' 
    elseif prod(net(i,:))<0 
     [v{abs(net(i,1)),2}(1,1),v{abs(net(i,2)),2}(2,  ... 
      szp(abs(net(i,2)))+1),v{abs(net(i,3)),2}(2, . .. 
      szp(abs(net(i,3)))+1)]=bifb(v{abs(net(i,2)),1 }(1, ... 
      szp(abs(net(i,2)))),v{abs(net(i,2)),1}(2, ...  
      szp(abs(net(i,2)))),para{abs(net(i,2))}(1, .. . 
      szp(abs(net(i,2)))),para{abs(net(i,2))}(2, .. . 
      szp(abs(net(i,2)))),para{abs(net(i,2))}(4, .. . 
      szp(abs(net(i,2)))),v{abs(net(i,3)),1}(1, ...  
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      szp(abs(net(i,3)))),v{abs(net(i,3)),1}(2, ...  
      szp(abs(net(i,3)))),para{abs(net(i,3))}(1, .. . 
      szp(abs(net(i,3)))),para{abs(net(i,3))}(2, .. . 
      szp(abs(net(i,3)))),para{abs(net(i,3))}(4, .. . 
      szp(abs(net(i,3)))),v{abs(net(i,1)),1}(1,2), ... 
      v{abs(net(i,1)),1}(2,2),para{abs(net(i,1))}(1 ,1), ... 
      para{abs(net(i,1))}(2,1),para{abs(net(i,1))}( 4, ... 
      1),gr,dt); 
 
     % Pressure is equal in all three vessels at th e 
     % bifurcation 
     v{abs(net(i,2)),2}(1,szp(abs(net(i,2)))+1)= .. . 
      v{abs(net(i,1)),2}(1,1); 
     v{abs(net(i,3)),2}(1,szp(abs(net(i,3)))+1)= .. . 
      v{abs(net(i,1)),2}(1,1); 
 
     % Flow rate in the 'downstream' vessel is the sum of 
     % the flow rates in the 'upstream' vessels at the 
     % bifurcation 
     v{abs(net(i,1)),2}(2,1)=v{abs(net(i,2)),2}(2, ... 
      szp(abs(net(i,2)))+1)+v{abs(net(i,3)),2}(2, . .. 
      szp(abs(net(i,3)))+1); 
    end 
   end 
 
   % Solves for pressure and flow rate at all the o ther 
   % grid points of all the vessels using point.m 
   % solves all other grid points 
   for h=1:size(para,2) 
    for i=2:szp(h) 
     [v{h,2}(1,i),v{h,2}(2,i)]=point(v{h,1}(1,i-1), v{h, ... 
      1}(2,i-1),para{h}(1,i-1),para{h}(2,i-1), ... 
      para{h}(4,i-1),v{h,1}(1,i+1),v{h,1}(2,i+1), . .. 
      para{h}(1,i),para{h}(2,i),para{h}(4,i),gr,dt) ; 
    end 
   end 
 
   % Saves the solution and plots the residuals sta tistics 
   % if the time interval between saved solutions h as 
   % lapsed 
   % saves results 
   if (m-1)*T+t*dt>j*ts 
 
    % Saves the solution for each vessel 
    for h=1:size(para,2) 
     pq{h,j}=v{h,2}; 
    end 
 
    % Computes and saves the time for the solution 
    tt(j)=(m-1)*T+t*dt; 
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    % Add the sum of squared residuals for pressure  and 
    % flow rate for each vessel to the current sum of 
    % squared residuals 
    for h=1:size(para,2) 
     smr(1,2)=smr(1,2)+sum(pq{h,j}(1,:).^2,2); 
     smr(2,2)=smr(2,2)+sum(pq{h,j}(2,:).^2,2); 
 
     % If first period fully computed, then adjust the sums 
     % of squared residuals 
     if tt(j)>T 
 
      % Calculate once the number of saved time ste ps per 
      % period 
      if nts==0 
       nts=j-1; 
      end 
 
      % Remove the sum of squared residuals for the  
      % previous period from the current sum of squ ared 
      % residuals 
      smr(1,2)=smr(1,2)-sum(pq{h,j-nts}(1,:).^2,2);  
      smr(2,2)=smr(2,2)-sum(pq{h,j-nts}(2,:).^2,2);  
 
      % Add the sum of squared residuals for the pr evious 
      % period to the sum of squared residuals of o ne 
      % period ago 
      smr(1,1)=smr(1,1)+sum(pq{h,j-nts}(1,:).^2,2);  
      smr(2,1)=smr(2,1)+sum(pq{h,j-nts}(2,:).^2,2);  
 
      % If second period fully computed, then remov e the 
      % sum of squared residuals for the period two  periods 
      % ago from the sum of squared residuals of on e period 
      % ago 
      if j>2*nts 
       smr(1,1)=smr(1,1)-sum(pq{h,j-2*nts}(1,:).^2, 2); 
       smr(2,1)=smr(2,1)-sum(pq{h,j-2*nts}(2,:).^2, 2); 
      end 
     end 
    end 
 
    % If first period fully computed, plot the resi duals 
    % statistics; these are the relative change in sum of 
    % squared residuals from the previous period 
    % Note: because of the way these statistics are  
    % computed, they are dependent on the time step  size 
    if tt(j)>T 
     semilogy(tt(j),abs(smr(1,2)-smr(1,1))/smr(1,2) , ... 
      'r.',tt(j),abs(smr(2,2)-smr(2,1))/smr(2,2),'b .') 
     pause(.00001) 
 
    % For the first period, only indicate progress of 
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    % computation on the plot 
    else 
     semilogy(tt(j),1,'r-',tt(j),1,'b-') 
     pause(.00001) 
    end 
 
    % Increment counter of saved solutions 
    j=j+1; 
   end 
 
   % At the end of each time step, copy the solutio n for 
   % each vessel to be used as starting conditions for the 
   % next time step 
   for h=1:size(para,2) 
    v{h,1}=v{h,2}; 
   end 
  end 
 
  % Display progress - "period completed" with peri od 
  % number 
  disp(['period ' num2str(m) ' completed.']) 
 end 
 
 % saves solution file 
 
 % Display progress - "saving solution" 
 disp('saving solution') 
 
 % Save variables v, pq, tt, para, szp, bc, T, net,  dt, ts, 
 % n, gr and gm to Matlab data file grid.mat 
 save grid v pq tt para szp bc T net dt ts n gr gm;  
 
 % 'hold off' is required to allow display refresh again 
 hold off 
 
end 
 

test.m 

function [tst,b]=test 
% Program Test version 3.0c 
% C.E. SARRAN 2004-2007 (c.e.sarran@dundee.ac.uk) 
% (c) University of Dundee 2004-2007 
% (c) NHS Tayside 2007 
% (c) Tayside Flow Technologies Limited 2004 
% 
% The Test program tests for errors in a vessel net work 
% with its boundary conditions. 
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% The tests ensure that each vessel has one and onl y one 
% 'upstream' and 'downstream' end, that each vessel  has at 
% least one grid point and boundary conditions are 
% specified to vessel ends that are not connected t o any 
% other vessel. 
% The function Test is required by the program Art 2. 
% Test requires the following Matlab data files: 
%  geo.mat  : geometry file generated by the functi on 
%             geogen.m containing the variables par a and 
%             szp 
%  bc.mat   : boundary conditions file generated by  the 
%             function bcgen.m containing the varia bles bc 
%             and T 
% Test requires the following ASCII data file: 
%  net.dat  : n records of 3 integers corresponding  to the 
%             vessel identification numbers, positi ve for 
%             'downstream' vessel ends and negative  for 
%             'upstream' vessel ends (n is the numb er of 
%             bifurcations) 
% Test returns the following variables: 
%  tst  : number of errors 
%  b    : numeric array of identifiers of vessel en ds that 
%         require boundary conditions (i.e. that ar e not 
%         connected to other vessels) 
 
% Display progress - "loading geometry" 
disp(' loading geometry') 
 
% Loads the geometry file generated by geogen.m 
load geo; 
 
% Display progress - "loading boundary conditions" 
disp(' loading boundary conditions') 
 
% Loads the boundary conditions file generated by b cgen.m 
load bc; 
 
% Display progress - "loading network data" 
disp(' loading network data') 
 
% Loads the network configuration from the network data 
% file 
load net.dat; 
 
% Initialise the number of errors variable tst 
tst=0;  % number of errors 
 
% Initialise the vessel ends requiring boundary con ditions 
% array b according to the size of the network 
b(1:size(szp,2),1:2)=ones; 
             % vessel ends that require boundary co nditions 
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% Display progress - "checking" 
disp(' checking...') 
 
% Repeat for each vessel end specified by the netwo rk 
% configuration 
for i=1:size(net,1) 
 for j=1:size(net,2) 
 
  % checks that each vessel end is not repeated 
 
  % Check that there are several vessels in the net work as 
  % a vessel 0 is only specified if the network is a single 
  % vessel 
  if net(i,j)~=0 
 
   % Check that this vessel end is not already spec ified; b 
   % is 0 if the vessel end has already been specif ied, 1 
   % if it has not 
   if b(abs(net(i,j)),round(sign(net(i,j))/2+1.5))= =0 
 
    % Increment the number of errors 
    tst=tst+1; 
 
    % Display error - "test error: repeated vessel end" 
    disp('test error: repeated vessel end') 
   end 
 
   % Identify with b that the vessel end is specifi ed 
   b(abs(net(i,j)),round(sign(net(i,j))/2+1.5))=0; 
  end 
 
  % checks that each vessel has at least one grid p oint 
 
  % Check that the network consists of a single ves sel 
  if net(i,j)==0 
 
   % Check that the single vessel has at least 1 gr id point 
   if szp(1)<1 
 
    % Increment the number of errors 
    tst=tst+1; 
 
    % Display error - "test error: vessel has no gr id 
    % point" 
    disp('test error: vessel has no grid point') 
   end 
 
   % In the case that the network consists of multi ple 
   % vessels check that each vessel has at least 1 grid 
   % point 



187 

  elseif szp(abs(net(i,j)))<1 
 
   % Increment the number of errors 
   tst=tst+1; 
 
   % Display error - "test error: vessel has no gri d point" 
   disp('test error: vessel has no grid point') 
  end 
 
 end 
end 
 
% checks that boundary conditions are specified 
 
% Boundary conditions are required at both ends of the 
% first vessel in the case of a single vessel netwo rk 
if sum(b(1,:))==2 
 
 % Check that a boundary condition has been specifi ed at 
 % both ends of the vessel 
 for j=1:2 
  if bc(1,1,j)==0 
 
   % Increment the number of errors 
   tst=tst+1; 
 
   % Display error - "test error: boundary conditio n is not 
   % specified" 
   disp('test error: boundary condition is not spec ified') 
  end 
 end 
 
% Check boundary conditions for a network of multip le 
% vessels 
else 
 
 % Repeat for each vessel 
 for i=1:size(para,2) 
 
  % Check if a vessel end needs a boundary conditio n 
  % specified 
  if sum(b(i,:))>0 
 
   % Check that a boundary condition has indeed bee n 
   % specified 
   if bc(1,1,i)==0 
 
    % Increment the number of errors 
    tst=tst+1; 
 
    % Display error - "test error: boundary conditi on is 
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    % not specified" 
    disp('test error: boundary condition is not spe cified') 
   end 
  end 
 end 
end 
 
% Display progress - "checks completed" 
disp(' checks completed.') 
 

lhsb.m 

function [pv,qv]=lhsb(lhs,bc,p,q,a,c,f,gr,dt) 
% LHSB function version 2.1c 
% C.E. SARRAN 2004 (c.e.sarran@dundee.ac.uk) 
% (c) University of Dundee 2004 
% (c) Tayside Flow Technologies Limited 2004 
% 
% The LHSB function solves the characteristic equat ion for 
% pressure and flow rate at a 'left-hand-side' boun dary. 
% The LHSB function is required by the program Art 2. 
% 
% The following variables are required to run the L HSB 
% function: 
% 
% lhs   : boundary type 
% bc    : boundary condition 
% p     : right-hand-side pressure at previous time  step 
% q     : right-hand-side flow rate at previous tim e step 
% a     : right-hand-side cross-sectional area 
% c     : right-hand-side wavespeed 
% f     : right-hand-side friction factor 
% gr    : density 
% dt    : time step size 
% 
% The following variables are returned by the LHSB 
% function: 
% 
% pv    : pressure at boundary characteristic point  
% qv    : flow rate at boundary characteristic poin t 
 
% If pressure is defined at the boundary compute fl ow rate 
if lhs==1  % pressure boundary 
 pv=bc; 
 qv=(bc-p+(gr*c/a-c*f*dt/a^2)*q)/(gr*c/a+c*f*dt/a^2 ); 
 
% If flow rate is defined at the boundary compute p ressure 
elseif lhs==2  % flow rate boundary 
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 qv=bc; 
 pv=p+gr*c/a*(bc-q)+c*f*dt/a^2*(bc+q); 
 
% If a resistance is defined at the boundary comput e 
% pressure and flow rate 
elseif lhs==3  % resistance boundary 
 A1=[1 bc/a;1 -gr*c/a-c*f*dt/a^2]; 
 A3=[0;p-(gr*c/a-c*f*dt/a^2)*q]; 
 A2=A1\A3; 
 pv=A2(1); 
 qv=A2(2); 
 
% If the boundary is defined to reflect incoming pr essure 
% waves compute pressure and flow rate with change in 
% pressure as a proportion of the incoming pressure  wave 
else  % reflection boundary 
 A1=[1 0;1 -gr*c/a+c*f*dt/a^2]; 
 A3=[(1-bc)*p;p-(gr*c/a-c*f*dt/a^2)*q]; 
 A2=A1\A3; 
 pv=A2(1); 
 qv=A2(2); 
end 
 

rhsb.m 

function [pv,qv]=rhsb(rhs,bc,p,q,a,c,f,gr,dt) 
% RHSB function version 2.1c 
% C.E. SARRAN 2004 (c.e.sarran@dundee.ac.uk) 
% (c) University of Dundee 2004 
% (c) Tayside Flow Technologies Limited 2004 
% 
% The RHSB function solves the characteristic equat ions for 
% pressure and flow rate at a 'right-hand-side' bou ndary. 
% The RHSB function is required by the program Art 2. 
% 
% The following variables are required to run the R HSB 
% function: 
% 
% rhs   : boundary type 
% bc    : boundary condition 
% p     : left-hand-side pressure at previous time step 
% q     : left-hand-side flow rate at previous time  step 
% a     : left-hand-side cross-sectional area 
% c     : left-hand-side wavespeed 
% f     : left-hand-side friction factor 
% gr    : density 
% dt    : time step size 
% 
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% The following variables are returned by the RHSB 
% function: 
% 
% pv    : pressure at boundary characteristic point  
% qv    : flow rate at boundary characteristic poin t 
 
% If pressure is defined at the boundary compute fl ow rate 
if rhs==1  % pressure boundary 
 pv=bc; 
 qv=(p-bc+(gr*c/a-c*f*dt/a^2)*q)/(gr*c/a+c*f*dt/a^2 ); 
 
% If flow rate is defined at the boundary compute p ressure 
elseif rhs==2  % flow rate boundary 
 qv=bc; 
 pv=p-gr*c/a*(bc-q)-c*f*dt/a^2*(bc+q); 
 
% If a resistance is defined at the boundary comput e 
% pressure and flow rate 
elseif rhs==3  % resistance boundary 
 A1=[1 gr*c/a+c*f*dt/a^2;1 -bc/a]; 
 A3=[p+(gr*c/a-c*f*dt/a^2)*q;0]; 
 A2=A1\A3; 
 pv=A2(1); 
 qv=A2(2); 
 
% If the boundary is defined to reflect incoming pr essure 
% waves compute pressure and flow rate with change in 
% pressure as a proportion of the incoming pressure  wave 
else  % reflection boundary 
 A1=[1 gr*c/a+c*f*dt/a^2;1 0]; 
 A3=[p+(gr*c/a-c*f*dt/a^2)*q;(1-bc)*p]; 
 A2=A1\A3; 
 pv=A2(1); 
 qv=A2(2); 
end 
 

bif.m 

function [pv,qv1,qv2]=bif(pl,ql,al,cl,fl,pr1,qr1,ar 1, ... 
 cr1,fr1,pr2,qr2,ar2,cr2,fr2,gr,dt) 
% Bif function version 2.0c 
% C.E. SARRAN 2004 (c.e.sarran@dundee.ac.uk) 
% (c) University of Dundee 2004 
% (c) Tayside Flow Technologies Limited 2004 
% 
% The Bif function solves the characteristic equati ons for 
% pressure and flow rate at a bifurcation with two 'right- 
% hand-side' vessels. 
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% The Bif function is required by the program Art 2 . 
% 
% The following variables are required to run the B if 
% function: 
% 
% pl    : left-hand-side pressure at previous time step 
% pr1   : pressure in first right-hand-side branch at 
%         previous time step 
% pr2   : pressure in second right-hand-side branch  at 
%         previous time step 
% ql    : left-hand-side flow rate at previous time  step 
% qr1   : flow rate in first right-hand-side branch  at 
%         previous time step 
% qr2   : flow rate in second right-hand-side branc h at 
%         previous time step 
% al    : left-hand-side cross-sectional area 
% ar1   : cross-sectional area of first right-hand- side 
%         branch 
% ar2   : cross-sectional area of second right-hand -side 
%         branch 
% cl    : left-hand-side wavespeed 
% cr1   : wavespeed in first right-hand-side branch  
% cr2   : wavespeed in second right-hand-side branc h 
% fl    : left-hand-side friction factor 
% fr1   : friction factor in first right-hand-side branch 
% fr2   : friction factor in second right-hand-side  branch 
% gr    : density 
% dt    : time step size 
% 
% The following variables are returned by the Bif f unction: 
% 
% pv    : pressure at bifurcation characteristic po int 
% qv1   : flow rate in first right-hand-side branch  at 
%         bifurcation characteristic point 
% qv2   : flow rate in second right-hand-side branc h at 
%         bifurcation characteristic point 
 
% Compute pressure at the bifurcation and the flow rates at 
% the bifurcation in each of the two 'right-hand-si de' 
% vessels 
A1=[1 gr*cl/al+cl*fl*dt/al^2 gr*cl/al+cl*fl*dt/al^2 ;1 ... 
 -gr*cr1/ar1-cr1*fr1*dt/ar1^2 0;1 0 -gr*cr2/ar2-cr2 * ... 
 fr2*dt/ar2^2]; 
A3=[pl+(gr*cl/al-cl*fl*dt/al^2)*ql;pr1-(gr*cr1/ar1- cr1* ... 
 fr1*dt/ar1^2)*qr1;pr2-(gr*cr2/ar2-cr2*fr2*dt/ar2^2 )*qr2]; 
A2=A1\A3; 
pv=A2(1); 
qv1=A2(2); 
qv2=A2(3); 
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bifb.m 

function [pv,qv1,qv2]=bifb(pl1,ql1,al1,cl1,fl1,pl2, ql2, ... 
 al2,cl2,fl2,pr,qr,ar,cr,fr,gr,dt) 
% BifB function version 2.0c 
% C.E. SARRAN 2004 (c.e.sarran@dundee.ac.uk) 
% (c) University of Dundee 2004 
% (c) Tayside Flow Technologies Limited 2004 
% 
% The Bifb function solves the characteristic equat ions for 
% pressure and flow rate at a bifurcation with two 'left- 
% hand-side' vessels. 
% The Bifb function is required by the program Art 2. 
% 
% The following variables are required by the Bifb 
% function: 
% 
% pl1   : pressure in first left-hand-side branch a t 
%         previous time step 
% pl2   : pressure in second left-hand-side branch at 
%         previous time step 
% pr    : right-hand-side pressure at previous time  step 
% ql1   : flow rate in first left-hand-side branch at 
%         previous time step 
% ql2   : flow rate in second left-hand-side branch  at 
%         previous time step 
% qr    : right-hand-side flow rate at previous tim e step 
% al1   : cross-sectional area of first left-hand-s ide 
%         branch 
% al2   : cross-sectional area of second left-hand- side 
%         branch 
% ar    : right-hand-side cross-sectional area 
% cl1   : wavespeed in first left-hand-side branch 
% cl2   : wavespeed in second left-hand-side branch  
% cr    : right-hand-side wavespeed 
% fl1   : friction factor in first left-hand-side b ranch 
% fl2   : friction factor in second left-hand-side branch 
% fr    : right-hand-side friction factor 
% gr    : density 
% dt    : time step size 
% 
% The following variables are returned by the Bifb 
% function: 
% 
% pv    : pressure at bifurcation characteristic po int 
% qv1   : flow rate in first left-hand-side branch at 
%         bifurcation characteristic point 
% qv2   : flow rate in second left-hand-side branch  at 
%         bifurcation characteristic point 
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% Compute pressure at the bifurcation and the flow rates at 
% the bifurcation in each of the two 'left-hand-sid e' 
% vessels 
A1=[1 gr*cl1/al1+cl1*fl1*dt/al1^2 0;1 0 gr*cl2/al2+ cl2* ... 
 fl2*dt/al2^2;1 -gr*cr/ar-cr*fr*dt/ar^2 -gr*cr/ar-c r* ... 
 fr*dt/ar^2]; 
A3=[pl1+(gr*cl1/al1-cl1*fl1*dt/al1^2)*ql1;pl2+(gr*c l2/ ... 
 al2-cl2*fl2*dt/al2^2)*ql2;pr-(gr*cr/ar-cr*fr*dt/ar ^2)*qr]; 
A2=A1\A3; 
pv=A2(1); 
qv1=A2(2); 
qv2=A2(3); 
 

point.m 

function [pv,qv]=point(pl,ql,al,cl,fl,pr,qr,ar,cr,f r,gr,dt) 
% Point function version 2.0c 
% C.E. SARRAN 2004 (c.e.sarran@dundee.ac.uk) 
% (c) University of Dundee 2004 
% (c) Tayside Flow Technologies Limited 2004 
% 
% The Point function solves the characteristic equa tions 
% for pressure and flow rate at a point in a vessel . 
% The Point function is required by the program Art  2. 
% 
% The following variables are required to run the P oint 
% function: 
% 
% pl    : left-hand-side pressure at previous time step 
% pr    : right-hand-side pressure at previous time  step 
% ql    : left-hand-side flow rate at previous time  step 
% qr    : right-hand-side flow rate at previous tim e step 
% al    : left-hand-side cross-sectional area 
% ar    : right-hand-side cross-sectional area 
% cl    : left-hand-side wavespeed 
% cr    : right-hand-side wavespeed 
% fl    : left-hand-side friction factor 
% fr    : right-hand-side friction factor 
% gr    : density 
% dt    : time step size 
% 
% The following variables are returned by the Point  
% function: 
% 
% pv    : pressure at characteristic point 
% qv    : flow rate at characteristic point 
 
% Compute pressure and flow rate 
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A1=[1 gr*cl/al+cl*fl*dt/al^2;1 -gr*cr/ar-cr*fr*dt/a r^2]; 
A3=[pl+(gr*cl/al-cl*fl*dt/al^2)*ql;pr-(gr*cr/ar-cr* fr* ... 
 dt/ar^2)*qr]; 
A2=A1\A3; 
pv=A2(1); 
qv=A2(2); 
 

population.m 

function population 
% POPULATION version 1.1c - reads and computes data  from 
% the AAA Study database 
% (c) University of Dundee 2005-2007 
% (c) NHS Tayside 2005-2007 
% C.E. SARRAN 2006-2007 (c.e.sarran@dundee.ac.uk) 
% 
% The program Population reads the anonymised extra cts from 
% the AAA Study database and computes primary and s econdary 
% data for each of the AAA Study participants. 
% Population requires the following Matlab function  file: 
%  rddat.m  : computes time series against age for every 
%             patient for a given parameter 
% Population requires the following comma-separated  ASCII 
% data files: 
%  part.csv  : study participants data 
%  meas.csv  : main clinical measurements data 
%  sten.csv  : stenoses data 
%  csd.csv   : cardiac stress data 
%  rp.csv    : resting pressure data 
%  sp.csv    : segmental pressure data  
%  pep.csv   : post-exercise pressure data 
%  ct.csv    : CT imaging cross-referencing data be tween 
%              the AAA Study measurement number and  the CT 
%              scan number 
% Each of the comma-separated ASCII data files cont ains the 
% variables listed as follows: 
% 
% requires: part.csv    -   SN      dob     gender  dor 
%                           ed 
%           meas.csv    -   MN      SN      d       ad 
%                           al      at      sp      dp 
%                           mp      pr      cho     hdl 
%                           u       c       cig     diab 
%                           renal 
%           sten.csv    -   MN      STp     STs     STa 
%           csd.csv     -   MN      CSDlpr  CSDhpr  CSDlsp 
%                           CSDhsp  CSDldp  CSDhdp 
%           rp.csv      -   MN      RPrb    RPlb    RPrpt 
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%                           RPlpt   RPrdp   RPldp 
%           sp.csv      -   MN      SPrb    SPlb    SPrt 
%                           SPlt    SPrc    SPlc    SPra 
%                           SPla 
%           pep.csv     -   MN      PEPrb   PEPlb   PEPra 
%                           PEPla 
% 
% The variables of the AAA Study database extracts are: 
%  SN      : participant study number 
%  dob     : date of birth 
%  gender  : gender 
%  dor     : date of aneurysm rupture 
%  ed      : participation end date 
%  MN      : measurement number 
%  d       : measurement date 
%  ad      : aneurysm diameter 
%  al      : aneurysm length 
%  at      : aneurysm type 
%  sp      : systolic pressure 
%  dp      : diastolic pressure 
%  mp      : mean pressure 
%  pr      : pulse rate 
%  cho     : total cholesterol level 
%  hdl     : HDL cholesterol level 
%  u       : urea level 
%  c       : creatinine level 
%  cig     : number of cigarettes smoked 
%  diab    : diabetes 
%  renal   : renal disease 
%  STp     : stenosis position 
%  STs     : stenosis side 
%  STa     : stenosis amount 
%  CSDlpr  : cardiac stress data lower pulse rate 
%  CSDhpr  : cardiac stress data higher pulse rate 
%  CSDlsp  : cardiac stress data lower systolic pre ssure 
%  CSDhsp  : cardiac stress data higher systolic pr essure 
%  CSDldp  : cardiac stress data lower diastolic pr essure 
%  CSDhdp  : cardiac stress data higher diastolic p ressure 
%  RPrb    : right brachial resting pressure 
%  RPlb    : left brachial resting pressure 
%  RPrpt   : right posterior tibial resting pressur e 
%  RPlpt   : left posterior tibial resting pressure  
%  RPrdp   : right dorsalis pedis resting pressure 
%  RPldp   : left dorsalis pedis resting pressure 
%  SPrb    : right brachial segmental pressure 
%  SPlb    : left brachial segmental pressure 
%  SPrt    : right thigh segmental pressure 
%  SPlt    : left thigh segmental pressure 
%  SPrc    : right calf segmental pressure 
%  SPlc    : left calf segmental pressure 
%  SPra    : right ankle segmental pressure 
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%  SPla    : left ankle segmental pressure 
%  PEPrb   : right brachial post-exercise pressure 
%  PEPlb   : left brachial post-exercise pressure 
%  PEPra   : right ankle post-exercise pressure 
%  PEPla   : left ankle post-exercise pressure 
% Population writes a Matlab data file dat.mat that  
% contains the following variables: 
%  dat   : cell array containing the time series fo r every 
%          patient for each parameter 
%  datR  : cell array containing the time series fo r 
%          patients with a ruptured aneurysm 
%  g     : numeric array containing the time series  of CT 
%          scan numbers for every patient 
%  gR    : numeric array containing the time series  of CT 
%          scan numbers for patients with a rupture d 
%          aneurysm 
 
%READ PARTICIPANT AND MEASUREMENT DATA 
 
% Load participant and measurement data and display  
% progress - "loading participant data..." "loading  
% measurement data..." 
disp('loading participant data...'), load part.csv,  
 disp('loading measurement data...'), load meas.csv  
 
% Display progress - "reading measurement data..." 
disp('reading measurement data...') 
 
% Compute time series of aneurysm diameters (1) and  
% aneurysm lengths (2) 
for d=1:2, [dat{d},datR{d}]=rddat(part,meas,meas,d+ 3,-.5); 
 end 
 
% Compute time series of aneurysm types (3) 
[dat{3},datR{3}]=rddat(part,meas,meas,6,.5); 
 
% Compute time series of systolic pressures (4), di astolic 
% pressures (5), mean pressures (6) and pulse rates  (7) 
for d=4:7, [dat{d},datR{d}]=rddat(part,meas,meas,d+ 3,-.5); 
 end 
 
% Compute time series of total cholesterol levels ( 9) and 
% HDL cholesterol levels (10) 
for d=9:10, [dat{d},datR{d}]=rddat(part,meas,meas,d +2,-.5); 
 end 
 
% Compute time series of urea levels (12) 
[dat{12},datR{12}]=rddat(part,meas,meas,13,-.5); 
 
% Compute time series of diabetes (13) and renal di seases 
% (14) 
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for d=13:14, [dat{d},datR{d}]=rddat(part,meas,meas, d+3,.5); 
 end 
 
% Compute time series of urea levels (63) and creat inine 
% levels (64) 
for d=63:64, 
 [dat{d},datR{d}]=rddat(part,meas,meas,d-50,-.5); e nd 
 
%OBTAIN SECONDARY MEASUREMENT DATA 
 
% Display progress - "computing secondary measureme nt 
% data..." 
disp('computing secondary measurement data...') 
 
% Calculate the systolic-diastolic pressure differe nce from 
% the systolic and diastolic pressures 
for i=1:size(meas,1) 
 if (meas(i,7)>-.5)&(meas(i,8)>-.5), 
  spdp0(i,:)=[meas(i,1) meas(i,7)-meas(i,8)]; else,  
  spdp0(i,:)=[meas(i,1) -1]; end 
end 
 
% Compute time series of systolic-diastolic pressur e 
% differences (8) 
[dat{8},datR{8}]=rddat(part,meas,spdp0,2,-.5); 
 
% Calculate the total to HDL cholesterol level rati o from 
% the total and HDL cholesterol levels 
for i=1:size(meas,1) 
 if (meas(i,11)>-.5)&(meas(i,12)>-.5), 
  chohdl0(i,:)=[meas(i,1) meas(i,11)/meas(i,12)]; e lse, 
  chohdl0(i,:)=[meas(i,1) -1]; end 
end 
 
% Compute time series of total to HDL cholesterol l evel 
% ratios (11) 
[dat{11},datR{11}]=rddat(part,meas,chohdl0,2,-.5); 
 
%READ STENOSIS DATA 
 
% Load stenosis data and display progress - "loadin g 
% stenosis data..." 
disp('loading stenosis data...'), load sten.csv 
 
% Display progress - "reading stenosis data..." 
disp('reading stenosis data...') 
 
% Compute time series of stenosis positions (60) an d 
% stenosis sides (61) 
for d=60:61, 
 [dat{d},datR{d}]=rddat(part,meas,sten,d-58,.5); en d 
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% Compute time series of stenosis amounts (62) 
[dat{62},datR{62}]=rddat(part,meas,sten,4,-.5); 
 
%READ CARDIAC STRESS DATA 
 
% Load cardiac stress data and display progress - " loading 
% cardiac stress data..." 
disp('loading cardiac stress data...'), load csd.cs v 
 
% Display progress - "reading cardiac stress data.. ." 
disp('reading cardiac stress data...') 
 
% Compute time series of lower pulse rates (15) and  higher 
% pulse rates (16) 
for d=15:16, 
 [dat{d},datR{d}]=rddat(part,meas,csd,d-13,-.5); en d 
 
% Compute time series of lower systolic pressures ( 18) and 
% higher systolic pressures (19) 
for d=18:19, 
 [dat{d},datR{d}]=rddat(part,meas,csd,d-14,-.5); en d 
 
% Compute time series of lower diastolic pressures (21) and 
% higher diastolic pressures (22) 
for d=21:22, 
 [dat{d},datR{d}]=rddat(part,meas,csd,d-15,-.5); en d 
 
%OBTAIN SECONDARY CARDIAC STRESS DATA 
 
% Display progress - "computing secondary cardiac s tress 
% data..." 
disp('computing secondary cardiac stress data...') 
 
% Calculate the average pulse rate, systolic and di astolic 
% pressures from the lower and higher pulse rates, systolic 
% and diastolic pressures 
for i=1:size(csd,1) 
 if csd(i,2)<-.5, csd(i,2)=csd(i,3); end 
 if csd(i,3)<-.5, csd(i,3)=csd(i,2); end 
 if csd(i,4)<-.5, csd(i,4)=csd(i,5); end 
 if csd(i,5)<-.5, csd(i,5)=csd(i,4); end 
 if csd(i,6)<-.5, csd(i,6)=csd(i,7); end 
 if csd(i,7)<-.5, csd(i,7)=csd(i,6); end 
 if sum(csd(i,2:3))>-.5, 
  CSDapr0(i,:)=[csd(i,1) mean(csd(i,2:3))]; else, 
  CSDapr0(i,:)=[csd(i,1) -1]; end 
 if sum(csd(i,4:5))>-.5, 
  CSDasp0(i,:)=[csd(i,1) mean(csd(i,4:5))]; else, 
  CSDasp0(i,:)=[csd(i,1) -1]; end 
 if sum(csd(i,6:7))>-.5, 
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  CSDadp0(i,:)=[csd(i,1) mean(csd(i,6:7))]; else, 
  CSDadp0(i,:)=[csd(i,1) -1]; end 
end 
 
% Compute time series of average pulse rates (17), average 
% systolic pressures (20) and average diastolic pre ssures 
% (23) 
[dat{17},datR{17}]=rddat(part,meas,CSDapr0,2,-.5); 
 [dat{20},datR{20}]=rddat(part,meas,CSDasp0,2,-.5);  
[dat{23},datR{23}]=rddat(part,meas,CSDadp0,2,-.5); 
 
%READ RESTING PRESSURE DATA 
 
% Load resting pressure data and display progress -  
% "loading resting pressure data..." 
disp('loading resting pressure data...'), load rp.c sv 
 
% Display progress - "reading resting pressure data ..." 
disp('reading resting pressure data...') 
 
% Compute time series of right brachial pressures ( 24), 
% left brachial pressures (25), right posterior tib ial 
% pressures (26), left posterior tibial pressures ( 27), 
% right dorsalis pedis pressures (28) and left dors alis 
% pedis pressures (29) 
for d=24:29, [dat{d},datR{d}]=rddat(part,meas,rp,d- 22,-.5); 
 end 
 
%READ SEGMENTAL PRESSURE DATA 
 
% Load segmental pressure data and display progress  - 
% "loading segmental pressure data..." 
disp('loading segmental pressure data...'), load sp .csv 
 
% Display progress - "reading segmental pressure da ta..." 
disp('reading segmental pressure data...') 
 
% Compute time series of right brachial pressures ( 30), 
% left brachial pressures (31), right thigh pressur es (32), 
% left thigh pressures (33), right calf pressures ( 34), 
% left calf pressures (35), right ankle pressures ( 36) and 
% left ankle pressures (37) 
for d=30:37, [dat{d},datR{d}]=rddat(part,meas,sp,d- 28,-.5); 
 end 
 
%OBTAIN SECONDARY SEGMENTAL PRESSURE DATA 
 
% Display progress - "computing secondary segmental  
% pressure data..." 
disp('computing secondary segmental pressure data.. .') 
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% Calculate the right and left brachial-thigh, thig h-calf 
% and calf-ankle pressure differences from the righ t and 
% left brachial, thigh, calf and ankle pressures 
for i=1:size(sp,1) 
 if (sum(sp(i,2:3))>-1.5)&(sp(i,4)>-.5), 
  SPrbtpd0(i,:)=[sp(i,1) max(sp(i,2:3))-sp(i,4)]; e lse, 
  SPrbtpd0(i,:)=[sp(i,1) -1]; end 
 if (sum(sp(i,2:3))>-1.5)&(sp(i,5)>-.5), 
  SPlbtpd0(i,:)=[sp(i,1) max(sp(i,2:3))-sp(i,5)]; e lse, 
  SPlbtpd0(i,:)=[sp(i,1) -1]; end 
 if (sp(i,4)>-.5)&(sp(i,6)>-.5), 
  SPrtcpd0(i,:)=[sp(i,1) sp(i,4)-sp(i,6)]; else, 
  SPrtcpd0(i,:)=[sp(i,1) -1]; end 
 if (sp(i,5)>-.5)&(sp(i,7)>-.5), 
  SPltcpd0(i,:)=[sp(i,1) sp(i,5)-sp(i,7)]; else, 
  SPltcpd0(i,:)=[sp(i,1) -1]; end 
 if (sp(i,6)>-.5)&(sp(i,8)>-.5), 
  SPrcapd0(i,:)=[sp(i,1) sp(i,6)-sp(i,8)]; else, 
  SPrcapd0(i,:)=[sp(i,1) -1]; end 
 if (sp(i,7)>-.5)&(sp(i,9)>-.5), 
  SPlcapd0(i,:)=[sp(i,1) sp(i,7)-sp(i,9)]; else, 
  SPlcapd0(i,:)=[sp(i,1) -1]; end 
end 
 
% Compute time series of right brachial-thigh press ure 
% differences (38), left brachial-thigh pressure 
% differences (39), right thigh-calf pressure diffe rences 
% (40), left thigh-calf pressure differences (41), right 
% calf-ankle pressure differences (42) and left cal f-ankle 
% pressures differences (43) 
[dat{38},datR{38}]=rddat(part,meas,SPrbtpd0,2,-.5);  
 [dat{39},datR{39}]=rddat(part,meas,SPlbtpd0,2,-.5) ; 
[dat{40},datR{40}]=rddat(part,meas,SPrtcpd0,2,-.5);  
 [dat{41},datR{41}]=rddat(part,meas,SPltcpd0,2,-.5) ; 
[dat{42},datR{42}]=rddat(part,meas,SPrcapd0,2,-.5);  
 [dat{43},datR{43}]=rddat(part,meas,SPlcapd0,2,-.5) ; 
 
%OBTAIN SECONDARY RESTING AND SEGMENTAL PRESSURE DATA 
 
% Display progress - "computing secondary resting a nd 
% segmental pressure data..." 
disp(['computing secondary resting and segmental’ . .. 
 ‘ pressure data...']) 
 
% Calculate the right and left ankle-brachial press ure 
% indices from the right and left brachial, posteri or 
% tibial and dorsalis pedis resting pressures 
for i=1:size(rp,1) 
 if (sum(rp(i,2:3))>-1.5)&(sum(rp(i,[4 6]))>-1.5), 
  rabpi0(i,:)=[rp(i,1) max(rp(i,[4 6]))/max(rp(i,2: 3))]; 
  if rabpi0(i,2)>1.2, rabpi0(i,2)=-1; end 
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 else, rabpi0(i,:)=[rp(i,1) -1]; end 
 if (sum(rp(i,2:3))>-1.5)&(sum(rp(i,[5 7]))>-1.5), 
  labpi0(i,:)=[rp(i,1) max(rp(i,[5 7]))/max(rp(i,2: 3))]; 
  if labpi0(i,2)>1.2, labpi0(i,2)=-1; end 
 else, labpi0(i,:)=[rp(i,1) -1]; end 
end 
 
% Calculate the right and left ankle-brachial press ure 
% indices from the right and left brachial and ankl e 
% segmental pressures 
for i=1:size(sp,1) 
 if (sum(sp(i,2:3))>-1.5)&(sp(i,8)>-.5), 
  rabpi0(size(rp,1)+i,:)=[sp(i,1) sp(i,8)/max(sp(i, 2:3))]; 
  if rabpi0(size(rp,1)+i,2)>1.2, rabpi0(size(rp,1)+ i,2)=-1; 
   end 
 else, rabpi0(size(rp,1)+i,:)=[sp(i,1) -1]; end 
 if (sum(sp(i,2:3))>-1.5)&(sp(i,9)>-.5), 
  labpi0(size(rp,1)+i,:)=[sp(i,1) sp(i,9)/max(sp(i, 2:3))]; 
  if labpi0(size(rp,1)+i,2)>1.2, labpi0(size(rp,1)+ i,2)=-1; 
   end 
 else, labpi0(size(rp,1)+i,:)=[sp(i,1) -1]; end 
end 
 
% Compute time series of right ankle-brachial press ure 
% indices (65) and left ankle-brachial pressure ind ices 
% (66) 
[dat{65},datR{65}]=rddat(part,meas,rabpi0,2,-.5); 
 [dat{66},datR{66}]=rddat(part,meas,labpi0,2,-.5); 
 
% Calculate the lower and higher ankle-brachial pre ssure 
% indices from the right and left ankle-brachial pr essure 
% indices 
for i=1:size(rabpi0,1) 
 if rabpi0(i,2)*labpi0(i,2)>0 
  habpi1(i,:)=[rabpi0(i,1) max([rabpi0(i,2) labpi0( i,2)])]; 
   labpi1(i,:)=[rabpi0(i,1) min([rabpi0(i,2) ... 
   labpi0(i,2)])]; 
 else, habpi1(i,:)=[rabpi0(i,1) -1]; 
  labpi1(i,:)=[rabpi0(i,1) max([rabpi0(i,2) labpi0( i,2)])]; 
  end 
end 
 
% Compute time series of lower ankle-brachial press ure 
% indices (47) and higher ankle-brachial pressure i ndices 
% (48) 
[dat{47},datR{47}]=rddat(part,meas,labpi1,2,-.5); 
 [dat{48},datR{48}]=rddat(part,meas,habpi1,2,-.5); 
 
% Calculate the right and left brachial-ankle press ure 
% differences from the right and left brachial, pos terior 
% tibial and dorsalis pedis resting pressures 
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for i=1:size(rp,1) 
 if (sum(rp(i,2:3))>-1.5)&(sum(rp(i,[4 6]))>-1.5), 
  rbapd0(i,:)=[rp(i,1) max(rp(i,2:3))-max(rp(i,[4 6 ]))]; 
 else, rbapd0(i,:)=[rp(i,1) -1]; end 
 if (sum(rp(i,2:3))>-1.5)&(sum(rp(i,[5 7]))>-1.5), 
  lbapd0(i,:)=[rp(i,1) max(rp(i,2:3))-max(rp(i,[5 7 ]))]; 
 else, lbapd0(i,:)=[rp(i,1) -1]; end 
end 
 
% Calculate the right and left brachial-ankle press ure 
% differences from the right and left brachial and ankle 
% segmental pressures 
for i=1:size(sp,1) 
 if (sum(sp(i,2:3))>-1.5)&(sp(i,8)>-.5), 
  rbapd0(size(rp,1)+i,:)=[sp(i,1) max(sp(i,2:3))-sp (i,8)]; 
 else, rbapd0(size(rp,1)+i,:)=[sp(i,1) -1]; end 
 if (sum(sp(i,2:3))>-1.5)&(sp(i,9)>-.5), 
  lbapd0(size(rp,1)+i,:)=[sp(i,1) max(sp(i,2:3))-sp (i,9)]; 
 else, lbapd0(size(rp,1)+i,:)=[sp(i,1) -1]; end 
end 
 
% Compute time series of right brachial-ankle press ure 
% differences (49) and left brachial-ankle pressure  
% differences (50) 
[dat{49},datR{49}]=rddat(part,meas,rbapd0,2,-.5); 
 [dat{50},datR{50}]=rddat(part,meas,lbapd0,2,-.5); 
 
% Calculate the brachial and right and left ankle p ressures 
% from the right and left brachial, posterior tibia l and 
% dorsalis pedis resting pressures 
for i=1:size(rp,1) 
 if sum(rp(i,2:3))>-1.5, 
  abp0(i,:)=[rp(i,1) max(rp(i,2:3))]; else, 
  abp0(i,:)=[rp(i,1) -1]; end 
 if sum(rp(i,[4 6]))>-1.5, 
  arap0(i,:)=[rp(i,1) max(rp(i,[4 6]))]; else, 
  arap0(i,:)=[rp(i,1) -1]; end 
 if sum(rp(i,[5 7]))>-1.5, 
  alap0(i,:)=[rp(i,1) max(rp(i,[5 7]))]; else, 
  alap0(i,:)=[rp(i,1) -1]; end 
end 
 
% Calculate the brachial and right and left ankle p ressures 
% from the right and left brachial and ankle segmen tal 
% pressures 
for i=1:size(sp,1) 
 if sum(sp(i,2:3))>-1.5, 
  abp0(size(rp,1)+i,:)=[sp(i,1) max(sp(i,2:3))]; el se, 
  abp0(size(rp,1)+i,:)=[sp(i,1) -1]; end 
 arap0(size(rp,1)+i,:)=[sp(i,1) sp(i,8)]; 
  alap0(size(rp,1)+i,:)=[sp(i,1) sp(i,9)]; 
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end 
 
% Compute time series of brachial pressures (44), r ight 
% ankle pressures (45) and left ankle pressures (46 ) 
[dat{44},datR{44}]=rddat(part,meas,abp0,2,-.5); 
 [dat{45},datR{45}]=rddat(part,meas,arap0,2,-.5); 
[dat{46},datR{46}]=rddat(part,meas,alap0,2,-.5); 
 
%READ POST-EXERCISE PRESSURE DATA 
 
% Load post-exercise pressure data and display prog ress - 
% "loading post-exercise pressure data..." 
disp('loading post-exercise pressure data...'), 
 load pep.csv 
 
% Display progress - "reading post-exercise pressur e 
% data..." 
disp('reading post-exercise pressure data...') 
 
% Compute time series of right brachial pressures ( 51) and 
% left brachial pressures (52) 
for d=51:52, 
 [dat{d},datR{d}]=rddat(part,meas,pep,d-49,-.5); en d 
 
% Compute time series of right ankle pressures (54)  and 
% left ankle pressures (55) 
for d=54:55, 
 [dat{d},datR{d}]=rddat(part,meas,pep,d-50,-.5); en d 
 
%OBTAIN SECONDARY POST-EXERCISE PRESSURE DATA 
 
% Display progress - "computing secondary post-exer cise 
% pressure data..." 
disp('computing secondary post-exercise pressure da ta...') 
 
% Calculate the right and left ankle-brachial press ure 
% indices from the right and left brachial and ankl e 
% pressures 
for i=1:size(pep,1) 
 if (sum(pep(i,2:3))>-1.5)&(pep(i,4)>-.5), 
  PEPrabpi0(i,:)=[pep(i,1) pep(i,4)/max(pep(i,2:3)) ]; 
  if PEPrabpi0(i,2)>1.2, PEPrabpi0(i,2)=-1; end 
 else, PEPrabpi0(i,:)=[pep(i,1) -1]; end 
 if (sum(pep(i,2:3))>-1.5)&(pep(i,5)>-.5), 
  PEPlabpi0(i,:)=[pep(i,1) pep(i,5)/max(pep(i,2:3)) ]; 
  if PEPlabpi0(i,2)>1.2, PEPlabpi0(i,2)=-1; end 
 else, PEPlabpi0(i,:)=[pep(i,1) -1]; end 
end 
 
% Compute time series of right ankle-brachial press ure 
% indices (56) and left ankle-brachial pressure ind ices 
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% (57) 
[dat{56},datR{56}]=rddat(part,meas,PEPrabpi0,2,-.5) ; 
 [dat{57},datR{57}]=rddat(part,meas,PEPlabpi0,2,-.5 ); 
 
% Calculate the right and left brachial-ankle press ure 
% differences from the right and left brachial and ankle 
% pressures 
for i=1:size(pep,1) 
 if (sum(pep(i,2:3))>-1.5)&(pep(i,4)>-.5), 
  PEPrbapd0(i,:)=[pep(i,1) max(pep(i,2:3))-pep(i,4) ]; 
 else, PEPrbapd0(i,:)=[pep(i,1) -1]; end 
 if (sum(pep(i,2:3))>-1.5)&(pep(i,5)>-.5), 
  PEPlbapd0(i,:)=[pep(i,1) max(pep(i,2:3))-pep(i,5) ]; 
 else, PEPlbapd0(i,:)=[pep(i,1) -1]; end 
end 
 
% Compute time series of right brachial-ankle press ure 
% differences (58) and left brachial-ankle pressure  
% differences (59) 
[dat{58},datR{58}]=rddat(part,meas,PEPrbapd0,2,-.5) ; 
 [dat{59},datR{59}]=rddat(part,meas,PEPlbapd0,2,-.5 ); 
 
% Calculate the brachial pressure from the right an d left 
% brachial pressures 
for i=1:size(pep,1), if sum(pep(i,2:3))>-1.5, 
 PEPabp0(i,:)=[pep(i,1) max(pep(i,2:3))]; else, 
 PEPabp0(i,:)=[pep(i,1) -1]; end, end 
 
% Compute time series of brachial pressures (53) 
[dat{53},datR{53}]=rddat(part,meas,PEPabp0,2,-.5); 
 
%READ CT GEOMETRY INDEX 
 
% Load the CT geometry index and display progress -  
% "loading CT geometry index..." 
disp('loading CT geometry index...'), load ct.csv 
 
% Compute time series of the CT geometry index and display 
% progress - "reading CT geometry index..." 
disp('reading CT geometry index...'), 
[g,gR]=rddat(part,meas,ct,2,.5); 
 
% Save variables dat, datR, g and gR to Matlab data  file 
% dat.mat 
disp('saving data...'), save dat dat datR g gR 
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rddat.m 

function [d,dR]=rddat(part,meas,v,c,t) 
% RDDAT version 1.0c - reads data from AAA csv file  
% (c) University of Dundee 2005-2006 
% (c) NHS Tayside 2005-2006 
% C.E. SARRAN 2005-2006 (c.e.sarran@dundee.ac.uk) 
% 
% The Rddat function takes data from the AAA Study database 
% comma-separated ASCII files to compute time serie s 
% information for every patient for a given paramet er. 
% The Rddat function is required by the program Pop ulation. 
% The following variables are required to run the R ddat 
% function: 
%  part  : study participants data 
%  meas  : main clinical measurements data 
%  v     : numeric array with the measurement numbe r in the 
%          first column containing the parameter sp ecified 
%          by c 
%  c     : column of v containing the parameter 
%  t     : type of parameter (-0.5 for numerical; + 0.5 for 
%          categorical) 
% The following variables are returned by the Rddat  
% function: 
%  d   : n by 3 numeric array with n the number of 
%        measurements and containing the participan t 
%        number, the age at the time of measurement  and the 
%        measurement itself 
%  dR  : n by 4 numeric array with n the number of 
%        measurements and containing the participan t 
%        number, the age at the time of measurement , the 
%        measurement itself and the time before rup ture for 
%        patients with a ruptured aneurysm 
 
% Initialise variables and counters 
d=0; dR=0; m=1; n=1; 
 
% For each measurement from each participant, compu te the 
% participant age and where applicable the time bef ore 
% rupture 
for i=1:size(v,1), if v(i,c)>t, for j=1:size(meas,1 ), 
 if v(i,1)==meas(j,1) 
    for k=1:size(part,1), if meas(j,2)==part(k,1) 
      if ~((part(k,5)>0)&(meas(j,3)>part(k,5))) 
       d(m,1)=part(k,1); 
        d(m,2)=(meas(j,3)-part(k,2))/365.25; d(m,3) =v(i,c); 
       if part(k,4)>0 
        dR(n,1)=d(m,1); dR(n,2)=d(m,2); dR(n,3)=d(m ,3); 
         dR(n,4)=(part(k,4)-meas(j,3))/365.25; n=n+ 1; 
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       end 
       m=m+1; 
      end 
      break; 
     end, end 
    break; 
   end, end, end, end 
 
% Sort the data by participant number and by age 
if size(d,2)>1, d=sortrows(sortrows(d,2),1); end 
if size(dR,2)>1, dR=sortrows(sortrows(dR,2),1); end  
 

wfunc.m 

function wfunc(t) 
% Program WFUNC version 4.1c - computes parameter a nd 
% differential estimates and associated weight func tions 
% (c) University of Dundee 2007 
% (c) NHS Tayside 2007 
% C.E. SARRAN 2007 (c.e.sarran@dundee.ac.uk) 
% 
% The Wfunc program takes the data generated by the  program 
% Population and the anonymised extract of particip ant data 
% from the AAA Study database to compute parameter and 
% parameter differential estimates and their associ ated 
% weight functions for each parameter and patient. 
% Wfunc requires the following Matlab data file: 
%  dat.mat  : data derived from the extracts of the  AAA 
%             Study database and computed by the pr ogram 
%             Population 
% Wfunc requires the following comma-separated ASCI I data 
% file: 
%  part.csv  : study participants data 
% part.csv contains the following variables: 
%  SN      : participant study number 
%  dob     : date of birth 
%  gender  : gender 
%  dor     : date of aneurysm rupture 
%  ed      : participation end date 
% Wfunc writes a Matlab data file mn.mat that conta ins the 
% following variables: 
%  ddat  : cell array of n by 5 numeric arrays cont aining 
%          the participant study number, the parame ter 
%          estimate, its associated weight, the 
%          differential estimate and its associated  weight 
%          for the date specified at the start of t he 
%          program 
%  par   : numeric array of the m parameter indices  
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%          referencing the parameter means mx and s um of 
%          weights mw 
%  mx    : m by 2 numeric array containing the mean s of the 
%          parameter estimates and of the different ial 
%          estimates 
%  mw    : m by 2 numeric array containing the sum of 
%          weights of the parameter estimates and o f the 
%          differential estimates 
% Wfunc writes one Matlab data file per study parti cipant, 
% with a filename of the format wf0000.mat where th e 4 
% digits are the participant study number, that con tains 
% where applicable the following transformed variab les, the 
% digits in the variable names identifying as detai led 
% below the parameter to which they relate: 
%  pwf1 to pwf64  : 30001 by 2 numeric arrays of pa rameter 
%                   estimates with associated weigh ts at 
%                   0.01 y intervals from -100 y to  200 y 
%  dwf1 to dwf64  : 30001 by 2 numeric arrays of 
%                   differential estimates with ass ociated 
%                   weights at 0.01 y intervals fro m -100 y 
%                   to 200 y 
%  tx1  to tx64   : n by 2 numeric arrays of the n 
%                   transformed parameter measureme nts with 
%                   age at measurement in the 1st c olumn 
% List of parameter indices: 
%  1   : aneurysm diameter 
%  4   : systolic pressure 
%  5   : diastolic pressure 
%  7   : pulse rate 
%  8   : systolic-diastolic pressure difference 
%  9   : total cholesterol level 
%  10  : HDL cholesterol level 
%  11  : total to HDL cholesterol level ratio 
%  47  : lower ankle-brachial pressure index 
%  48  : higher ankle-brachial pressure index 
%  63  : urea level 
%  64  : creatinine level 
% The following variable is required to run Wfunc: 
% 
% t -   time period for measurement significance (y ) 
% 
% A date can be specified to return the parameter a nd 
% differential estimates; here d=38142 corresponds to 1 
% March 2005. 
% 
% date =    1-3-2005    [d=38412] 
 
% Set date and load derived data and participant da ta 
d=38412; load dat, load part.csv 
 
% Set list of parameters to be included and initial ise 
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% variables mx and mw 
para=[1 4 5 7 8 9 10 11 47 48 63 64]; 
 mx=zeros(size(para,2),2); mw=mx; 
 
% Compute estimates and weight functions for each p arameter 
for h=1:size(para,2) 
 
 % Initialise list of valid participant study numbe rs and 
 % counter 
 clear id; id0=[dat{para(h)}(1,1) 0]; m=1; 
 
 % Repeat for each measurement record 
 for i=1:size(dat{para(h)},1) 
 
  % Add participant study number to list if not alr eady 
  % included 
  if id0(m,1)~=dat{para(h)}(i,1), m=m+1; 
   id0(m,:)=[dat{para(h)}(i,1) 0]; end 
 
  % Check with the participant data that there is n o 
  % participation end date or that the measurement was 
  % taken before the participation end date; increm ent the 
  % number of measurements where required 
  for j=1:size(part,1), if part(j,1)==id0(m,1), 
   if (part(j,5)<-.5)|(dat{para(h)}(i,2)*365.25+par t(j, ... 
    2)<part(j,5)-.5) 
     id0(m,2)=id0(m,2)+1; end, end, end, end 
 
 % Initialise counter and compile list of valid par ticipant 
 % study numbers from the temporary list 
 m=1; 
 for i=1:size(id0,1), if id0(i,2)>.5, id(m)=id0(i,1 ); 
  m=m+1; end, end 
 
 % Display progress in terms of the number of patie nts 
 % identified with measurements for each parameter 
 disp(['parameter ' num2str(para(h)) ' : ... 
  'num2str(size(id,2)) ' patients identified']) 
 
 % Compute estimates and weight functions for each patient 
 for g=1:size(id,2) 
 
  % Display progress in terms of the number of pati ents 
  % processed for each parameter 
  disp(['parameter ' num2str(para(h)) ... 
   ' : processing patient no. ' num2str(id(g)) ' ('  ... 
   num2str(g) '/' num2str(size(id,2)) ')']) 
 
  % Find date of birth of patient 
  for j=1:size(part,1), if part(j,1)==id(g), db=par t(j,2); 
   end, end 
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  % Initialise index in terms of specified date and  date of 
  % birth, transformed measurements variable and co unter 
  di=round(((d-db)/365.25+100)*100)+1; clear tx; m= 1; 
 
  % Extract ages and measurements from derived data  for 
  % given parameter and patient, ensuring that ther e is no 
  % participation end date or that the measurement was 
  % taken before the participation end date 
  for i=1:size(dat{para(h)},1), 
   if dat{para(h)}(i,1)==id(g), for j=1:size(part,1 ), 
   if part(j,1)==id(g) 
      if (part(j,5)<.5)|(dat{para(h)}(i,2)*365.25+ ... 
       part(j,2)<part(j,5)-.5) 
       tx(m,:)=dat{para(h)}(i,2:3); m=m+1; end, end , end, 
        end, end 
         
  % Log-transform the measurements if of a paramete r that 
  % follows a log-distribution 
  if (para(h)==1)|(para(h)==7)|((para(h)>=9)&(para( h)<= ... 
   11))|(para(h)==63)|(para(h)==64), 
   tx(:,2)=log(tx(:,2)); end 
 
  % Initialise the variables for the comprehensive analysis 
  % of time-line data 
  sw=zeros(size([-100:.01:200]',1),1); swx=sw; swxt =sw; 
   swt=sw; swt2=sw; ss1=sw; ss2=sw; 
 
  % Repeat for each measurement 
  for i=1:size(tx,1) 
 
   % Compute the weighting function, the sum of wei ghted 
   % measurements and the sum of weights 
   wi=t/pi./(([-100:.01:200]'-tx(i,1)).^2+t^2); 
    swx=swx+wi*tx(i,2); sw=sw+wi; 
 
   % Repeat again for each measurement to include t he 
   % interactions between measurements 
   for j=1:size(tx,1) 
 
    % Compute the second weighting function, the 
    % interaction factor and the independent and 
    % interacting parts of the weighting function 
    wj=t/pi./(([-100:.01:200]'-tx(j,1)).^2+t^2); 
     wij=t^2/((tx(i,1)-tx(j,1))^2+t^2); 
     ss1=ss1+wi.*wj*(1-wij); 
    ss2=ss2+wi.^2.*wj*wij; end 
 
   % If there are 2 or more measurements, compute t he terms 
   % of the locally estimated differential 
   if size(tx,1)>1.5, swxt=swxt+wi*tx(i,2)*tx(i,1);  
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    swt=swt+wi*tx(i,1); swt2=swt2+wi*tx(i,1)^2; end , end 
 
  % Compute the parameter estimate with its associa ted 
  % weight function and update the means and sum of  weights 
  % of the parameter estimates 
  pwf=[swx./sw ss1./sw+ss2./sw.^2]; 
   mx(h,1)=mx(h,1)+sum(prod(pwf,2)); 
   mw(h,1)=mw(h,1)+sum(pwf(:,2)); 
 
  % Repeat over the given range of time 
  for l=1:size(sw,1) 
 
   % Compute by weighted linear regression the diff erential 
   % estimate where the denominator is none-zero 
   if swt2(l,1)*sw(l,1)-swt(l,1)^2>1e-8, 
    dwf(l,1)=(swxt(l,1)*sw(l,1)-swx(l,1)*swt(l,1))/  ... 
     (swt2(l,1)*sw(l,1)-swt(l,1)^2); 
 
   % Assume a differential estimate of zero where t he 
   % denominator is zero 
   else, dwf(l,1)=0; end, end 
 
  % Compute the weight function associated with the  
  % differential estimate, update the means and sum  of 
  % weights of the differential estimates and recor d both 
  % parameter and differential estimates and their 
  % associated weights with the participant study n umber 
  dwf(:,2)=ss1./sw; mx(h,2)=mx(h,2)+sum(prod(dwf,2) ); 
   mw(h,2)=mw(h,2)+sum(dwf(:,2)); 
   ddat{para(h)}(g,:)=[id(g) pwf(di,:) dwf(di,:)]; 
 
  % Display the measurements (pink) and parameter e stimate 
  % (blue) on the top plot labelled P, the differen tial 
  % estimate (red) on the middle plot labelled D an d both 
  % associated weight functions (parameter in blue,  
  % differential in red) on the bottom plot labelle d W, 
  % with the set date indicated by a green vertical  line 
  tl=[-100:.01:200]'; subplot(311), 
   plot(tx(:,1),tx(:,2),'mo',tl,pwf(:,1),'b-'), xs= axis; 
   hold on, plot([d-db d-db]/365.25,xs(3:4),'g-'), hold off 
  axis([min(tx(:,1))-1 max(tx(:,1))+1 xs(3:4)]), 
   ylabel('P') 
  title(['parameter ' num2str(para(h)) ... 
   ' : patient no. ' num2str(id(g)) ' (' num2str(g)  '/' ... 
   num2str(size(id,2)) ')']) 
  subplot(312), plot(tl,dwf(:,1),'r-'), xs=axis; ho ld on, 
   plot([d-db d-db]/365.25,xs(3:4),'g-'), hold off 
  if abs(xs(4)-xs(3))<1e-7, xs(3)=xs(3)-1; xs(4)=xs (4)+1; 
   end 
  axis([min(tx(:,1))-1 max(tx(:,1))+1 xs(3:4)]), 
   ylabel('D'), subplot(313), 
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   plot(tl,pwf(:,2),'b:',tl,dwf(:,2),'r:'), xs=axis ; 
   hold on 
  plot([d-db d-db]/365.25,xs(3:4),'g-'), hold off, 
   axis([min(tx(:,1))-1 max(tx(:,1))+1 xs(3:4)]), 
   ylabel('W') 
  xlabel(['P: ' num2str(fix(sum(pwf(:,2))*.1)*.1) . .. 
   '; D: ' num2str(fix(sum(dwf(:,2))*.1)*.1)]), 
   pause(.001) 
 
  % Change variables' names to indicate the paramet er 
  % analysed and, either append to file if the file  already 
  % exists, or save to a new file, with the filenam e 
  % including the participant study number 
  eval(['pwf' num2str(para(h)) '=single(pwf); dwf' ... 
   num2str(para(h)) '=single(dwf); tx' num2str(para (h)) ... 
   '=single(tx); ' 'if exist(''wf' num2str(id(g)) . .. 
   '.mat'')==2, ' 'save wf' num2str(id(g)) ' pwf' . .. 
   num2str(para(h)) ' dwf' num2str(para(h)) ' tx' . .. 
   num2str(para(h)) ' -append, ' 'else, save wf' .. . 
   num2str(id(g)) ' pwf' num2str(para(h)) ' dwf' .. . 
   num2str(para(h)) ' tx' num2str(para(h)) ', end'] ); 
 
 end, end 
 
% Compute the means of the parameter and differenti al 
% estimates, save variables ddat, par, mx and mw to  Matlab 
% data file mn.mat and close the plot 
mx=mx./mw; par=para; save mn ddat par mx mw, close 
 

cwreg.m 

function cwreg(para,parap,parai,a) 
% Program CWREG version 3.1c - carries out a comple te 
% weighted multiple linear regression of AAA Study 
% parameters 
% (c) University of Dundee 2007 
% (c) NHS Tayside 2007 
% C.E. SARRAN 2007 (c.e.sarran@dundee.ac.uk) 
% 
% The Cwreg program takes the data generated by the  
% programs Population and Wfunc and the anonymised extract 
% of participant data from the AAA Study database t o carry 
% out a complete weighted multiple linear regressio n and 
% produce a comprehensive set of regression statist ics. 
% Cwreg requires the following Matlab data files: 
%  dat.mat  : data derived from the extracts of the  AAA 
%             Study database and computed by the pr ogram 
%             Population 
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%  mn.mat   : summary data including means and sums  of 
%             weights of parameters and parameter 
%             differentials computed by the program  Wfunc 
% Cwreg requires one Matlab data file per study 
% participant, if required by the regression analys is, with 
% a filename of the format wf0000.mat where the 4 d igits 
% are the participant study number, that contains w here 
% applicable the parameter and differential estimat es and 
% their associated weights. 
% Cwreg requires the following comma-separated ASCI I data 
% file: 
%  part.csv  : study participant data 
% part.csv contains the following variables: 
%  SN      : participant study number 
%  dob     : date of birth 
%  gender  : gender 
%  dor     : date of aneurysm rupture 
%  ed      : participation end date 
% Cwreg writes a Matlab data file d.mat that contai ns the 
% following variables: 
%  par   : parameter indices referencing the parame ter 
%          means 
%  mx    : means of the parameter and differential 
%          estimates 
%  xx    : X matrix 
%  xy    : Y matrix 
%  b     : regression coefficients 
%  sb    : standard errors of regression coefficien ts 
%  id    : list of patient study numbers 
%  SST   : total sum of squares 
%  SSR   : sum of squares due to regression 
%  SSE   : sum of squares due to error 
%  MSR   : mean sum of squares due to regression 
%  MSE   : mean sum of squares due to error 
%  ci    : regression coefficients confidence inter vals 
%  pb    : probability of type I error for a single  
%          regression coefficient 
%  pF    : probability of type I error for all regr ession 
%          coefficients 
%  v     : analysis of variance table 
%  T     : T-statistic 
%  s     : standard error for mean response and pre diction 
%          interval 
%  ddat  : parameter and differential estimates and  their 
%          associated weights for all the patients at the 
%          date set in the Wfunc program 
%  yw    : predicted parameter estimate and associa ted 
%          weight 
%  xw    : predictor parameter estimates and associ ated 
%          weights 
%  wi    : combined weight 
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%  pr1   : a probability of type I error for a corr elation 
%          coefficient between predicted and predic tor 
%          parameters 
%  pr2   : a probability of type I error for a corr elation 
%          coefficient between two predictor parame ters 
% The following variables are required to run Cwreg : 
% 
% para  -   predicted parameter 
% parap -   predictor parameters 
% parai -   predictor interactions 
% a     -   confidence interval (%) 
% 
% para should be at least and only one parameter in dex, 
% parap should be a list of parameter indices, para i should 
% be a list of couples of parameter indices (e.g. [ 4 5; 5 
% 7; 9 10]); '.5' indicates a parameter differentia l (e.g. 
% 1.5 for aneurysm diameter rate of change), from t he 
% following list. 
% List of parameter indices: 
%  1   : aneurysm diameter 
%  4   : systolic pressure 
%  5   : diastolic pressure 
%  7   : pulse rate 
%  8   : systolic-diastolic pressure difference 
%  9   : total cholesterol level 
%  10  : HDL cholesterol level 
%  11  : total to HDL cholesterol level ratio 
%  47  : lower ankle-brachial pressure index 
%  48  : higher ankle-brachial pressure index 
%  63  : urea level 
%  64  : creatinine level 
 
%************************************************** ******** 
 
% Load derived data and participant data 
load dat       % load data generated by program Pop ulation 
load part.csv  % load patient details 
 
% FIND PATIENTS WITH VALID PREDICTED PARAMETER MEAS UREMENTS 
% ************************************************* ******** 
 
% Initialise patient list, patient counter and post - 
% processing array 
id0=[dat{fix(para)}(1,1) 0];  % initialise patient list 
m=1;                          % initialise patient counter 
yxe=zeros(0,1+size(parap,2)+size(parai,1)); 
                         % initialise post-processi ng array 
 
% Add a patient to the list if a measurement of the  
% predicted parameter is found 
for i=1:size(dat{fix(para)},1) 
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       % search through measurements of predicted p arameter 
 
 if id0(m,1)~=dat{fix(para)}(i,1)    % 
  m=m+1;                             % add patient to list 
  id0(m,:)=[dat{fix(para)}(i,1) 0];  % 
 end                                 % 
 
 % Check that the measurements were made during the  
 % participating period and increment the count if valid 
 for j=1:size(part,1)                                   % 
  if part(j,1)==id0(m,1)                                % 
   if (part(j,5)<-.5)|(dat{fix(para)}(i,2)*365.25+ ...  % 
    part(j,2)<part(j,5)-.5)                             % 
    id0(m,2)=id0(m,2)+1;                                % 
   end                                                  % 
  end              % check that measurement was mad e during 
 end               % participating period 
 
end 
 
% Initialise a patient counter 
m=1;  % initialise patient counter 
 
% Only keep in the patient list those patients with  at 
% least 1 valid measurement where the predicted par ameter 
% is a primitive parameter or those with at least 2  valid 
% measurements where the predicted parameter is a 
% differential and derivative parameter 
if para-fix(para)<.2  % 
                      % 
 for i=1:size(id0,1)  % 
  if id0(i,2)>.5      % 
   id(m)=id0(i,1);    % 
   m=m+1;             % 
  end     % list patients with at least 1 measureme nt where 
 end      % predicted parameter is a primitive 
 
else                  % 
                      % 
 for i=1:size(id0,1)  % 
  if id0(i,2)>1.5     % 
   id(m)=id0(i,1);    % 
   m=m+1;             % 
  end    % list patients with at least 2 measuremen ts where 
 end     % predicted parameter is a derivative 
 
end 
 
% FIND PATIENTS WITH VALID PREDICTOR PARAMETER MEAS UREMENTS 
% ************************************************* ******** 
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% Check for each predictor parameter in turn 
for h=1:size(parap,2)  % check each predictor param eter 
 
 % Initialise patient lists and patient counter 
 id1=id;                           % 
 clear id;                         % initialise pat ient 
 id0=[dat{fix(parap(h))}(1,1) 0];  % lists 
 m=1;                          % initialise patient  counter 
 
 % Add a patient to the list if a measurement of th e 
 % predictor parameter is found 
 for i=1:size(dat{fix(parap(h))},1) 
       % search through measurements of predictor p arameter 
 
  if id0(m,1)~=dat{fix(parap(h))}(i,1)    % 
   m=m+1;                                 % 
   id0(m,:)=[dat{fix(parap(h))}(i,1) 0];  % 
  end                                 % add patient  to list 
 
  % Check that the measurements were made during th e 
  % participating period and increment the count if  valid 
  for j=1:size(part,1)                                % 
   if part(j,1)==id0(m,1)                             % 
    if (part(j,5)<-.5)|(dat{fix(parap(h))}(i,2)* .. .  % 
     365.25+part(j,2)<part(j,5)-.5)                   % 
     id0(m,2)=id0(m,2)+1;                             % 
    end                                               % 
   end             % check that measurement was mad e during 
  end              % participating period 
 
 end 
 
 % Initialise a patient counter 
 m=1;  % initialise patient counter 
 
 % Only keep in the patient list those patients wit h at 
 % least 1 valid measurement where the predictor pa rameter 
 % is a primitive parameter or those with at least 2 
 % measurements where the predictor parameter is a 
 % differential and derivative parameter 
 if parap(h)-fix(parap(h))<.2            % 
                                         % 
  for i=1:size(id0,1)                    % 
   for j=1:size(id1,2)                   % 
    if (id0(i,1)==id1(j))&(id0(i,2)>.5)  % 
     id(m)=id0(i,1);                     % 
     m=m+1;                              % 
    end  % list patients already with valid data an d with 
   end   % at least 1 measurement where predictor p arameter 
  end    % is a primitive 
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 else                                     % 
                                          % 
  for i=1:size(id0,1)                     % 
   for j=1:size(id1,2)                    % 
    if (id0(i,1)==id1(j))&(id0(i,2)>1.5)  % 
     id(m)=id0(i,1);                      % 
     m=m+1;                               % 
    end    % list patients already with valid data and with 
   end     % at least 2 measurements where predicto r 
  end      % parameter is a derivative 
 
 end 
 
end 
 
% FIND PATIENTS WITH VALID INTERACTION PARAMETER 
% MEASUREMENTS ************************************ ******** 
 
% Check for each interaction parameter in turn 
for h=1:size(parai,1)  % check each interaction par ameter 
 for g=1:2             % 
 
  % Initialise patient lists and patient counter 
  id1=id;                             % 
  clear id;                           % initialise patient 
  id0=[dat{fix(parai(h,g))}(1,1) 0];  % lists 
  m=1;                         % initialise patient  counter 
 
  % Add a patient to the list if a measurement of t he 
  % interaction parameter is found 
  for i=1:size(dat{fix(parai(h,g))},1) 
     % search through measurements of interaction p arameter 
 
   if id0(m,1)~=dat{fix(parai(h,g))}(i,1)    % 
    m=m+1;                                   % 
    id0(m,:)=[dat{fix(parai(h,g))}(i,1) 0];  % 
   end                                % add patient  to list 
 
   % Check that the measurements were made during t he 
   % participating period and increment the count i f valid 
   for j=1:size(part,1)                                  % 
    if part(j,1)==id0(m,1)                               % 
     if (part(j,5)<-.5)|(dat{fix(parai(h,g))}(i,2)*  ...  % 
      365.25+part(j,2)<part(j,5)-.5)                     % 
      id0(m,2)=id0(m,2)+1;                               % 
     end                                                 % 
    end            % check that measurement was mad e during 
   end             % participating period 
 
  end 
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  % Initialise a patient counter 
  m=1;  % initialise patient counter 
 
  % Only keep in the patient list those patients wi th at 
  % least 1 valid measurement where the interaction  
  % parameter is a primitive parameter or those wit h at 
  % least 2 measurements where the interaction para meter is 
  % a differential and derivative parameter 
  if parai(h,g)-fix(parai(h,g))<.2        % 
                                          % 
   for i=1:size(id0,1)                    % 
    for j=1:size(id1,2)                   % 
     if (id0(i,1)==id1(j))&(id0(i,2)>.5)  % 
      id(m)=id0(i,1);                     % 
      m=m+1;                              % 
     end   % list patients already with valid data and with 
    end    % at least 1 measurement where interacti on 
   end     % parameter is a primitive 
 
  else                                     % 
                                           % 
   for i=1:size(id0,1)                     % 
    for j=1:size(id1,2)                    % 
     if (id0(i,1)==id1(j))&(id0(i,2)>1.5)  % 
      id(m)=id0(i,1);                      % 
      m=m+1;                               % 
     end   % list patients already with valid data and with 
    end    % at least 2 measurements where interact ion 
   end     % parameter is a derivative 
 
  end 
 
 end 
 
end 
 
%************************************************** ******** 
 
% Display progress in terms of the number of patien ts 
% identified 
disp([num2str(size(id,2)) ' patients identified']) 
       % display number of patients with valid meas urements 
 
%************************************************** ******** 
 
% Initialise the X and Y matrices and the sum of y- squares 
xx=zeros(1+size(parap,2)+size(parai,1)); 
                                      % initialise X matrix 
xy=zeros(1+size(parap,2)+size(parai,1),1); 
                                      % initialise Y matrix 
Sy2=0;  % initialise sum of y-squares 
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% Load the means and sum of weights of parameters a nd 
% parameter differentials 
load mn  % load data estimates and descriptive stat istics 
         % generated by program WFunc 
 
% Repeat the following computation for each patient  in the 
% list 
for g=1:size(id,2)  % evaluate for each patient lis ted 
 
% FIND PREDICTED PARAMETER ESTIMATES ************** ******** 
 
 % Display progress in terms of the number of patie nts 
 % processed 
 disp(['processing patient no. ' num2str(id(g)) ' ( ' ... 
  num2str(g) '/' num2str(size(id,2)) ')']) 
 
 % Load the predicted parameter (variable starting with 
 % pwf) from the patient-specific data file if a pr imitive 
 % parameter 
 if para-fix(para)<.2 
 
  eval(['load wf' num2str(id(g)) ' pwf' ...              % 
   num2str(fix(para)) ' tx' num2str(fix(para)) ', '  ...  % 
   'yw=double(pwf' num2str(fix(para)) '); ' ...          % 
   'ty=double(tx' num2str(fix(para)) '); ' ...           % 
   'clear pwf' num2str(fix(para)) ' tx' ...              % 
   num2str(fix(para))]);                                 % 
          % load patient weighted functions where p redicted 
          % parameter is a primitive 
 
  % Remove the mean to avoid correlation with inter actions 
  for l=1:size(par,2)         % 
   if par(l)==fix(para)       % 
    yw(:,1)=yw(:,1)-mx(l,1);  % 
   end          % remove mean from function where p redicted 
  end           % parameter is a primitive 
 
 % Load the predicted parameter (variable starting with 
 % dwf) from the patient-specific data file if a 
 % differential and derivative parameter 
 else 
 
  eval(['load wf' num2str(id(g)) ' dwf' ...              % 
   num2str(fix(para)) ' tx' num2str(fix(para)) ', '  ...  % 
   'yw=double(dwf' num2str(fix(para)) '); ' ...          % 
   'ty=double(tx' num2str(fix(para)) '); ' ...           % 
   'clear dwf' num2str(fix(para)) ' tx' ...              % 
   num2str(fix(para))]);                                 % 
          % load patient weighted functions where p redicted 
          % parameter is a derivative 
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  % Remove the mean to avoid correlation with inter actions 
  for l=1:size(par,2)         % 
   if par(l)==fix(para)       % 
    yw(:,1)=yw(:,1)-mx(l,2);  % 
   end          % remove mean from function where p redicted 
  end           % parameter is a derivative 
 
 end 
 
% FIND PREDICTOR PARAMETER ESTIMATES ************** ******** 
 
 % Load each predictor parameter in turn 
 for i=1:size(parap,2)  % check each predictor para meter 
 
  % Load the predictor parameter (variable starting  with 
  % pwf) from the patient-specific data file if a p rimitive 
  % parameter 
  if parap(i)-fix(parap(i))<.2 
 
   eval(['load wf' num2str(id(g)) ' pwf' ...           % 
    num2str(fix(parap(i))) ', ' ...                    % 
    'xw(:,:,i)=double(pwf' num2str(fix(parap(i))) . ..  % 
    '); ' 'clear pwf' num2str(fix(parap(i)))]);        % 
          % load patient weighted functions where p redictor 
          % parameter is a primitive 
 
   % Remove the mean to avoid correlation with inte ractions 
   for l=1:size(par,2)             % 
    if par(l)==fix(parap(i))       % 
     xw(:,1,i)=xw(:,1,i)-mx(l,1);  % 
    end         % remove mean from function where p redictor 
   end          % parameter is a primitive 
 
  % Load the predictor parameter (variable starting  with 
  % dwf) from the patient-specific data file if a 
  % differential and derivative parameter 
  else 
 
   eval(['load wf' num2str(id(g)) ' dwf' ...           % 
    num2str(fix(parap(i))) ', ' ...                    % 
    'xw(:,:,i)=double(dwf' num2str(fix(parap(i))) . ..  % 
    '); ' 'clear dwf' num2str(fix(parap(i)))]);        % 
          % load patient weighted functions where p redictor 
          % parameter is a derivative 
 
   % Remove the mean to avoid correlation with inte ractions 
   for l=1:size(par,2)             % 
    if par(l)==fix(parap(i))       % 
     xw(:,1,i)=xw(:,1,i)-mx(l,2);  % 
    end         % remove mean from function where p redictor 
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   end          % parameter is a derivative 
 
  end 
 end 
 
% FIND INTERACTION ESTIMATES ********************** ******** 
 
 % Load each interaction parameter in turn 
 for j=1:size(parai,1)  % evaluate for each interac tion 
 
  for k=1:2  % check each interaction parameter 
 
   % Load the interaction parameter (variable start ing with 
   % pwf) from the patient-specific data file if a 
   % primitive parameter 
   if parai(j,k)-fix(parai(j,k))<.2 
 
    eval(['load wf' num2str(id(g)) ' pwf' ...        % 
     num2str(fix(parai(j,k))) ', ' ...               % 
     'xwi(:,:,k)=double(pwf' ...                     % 
     num2str(fix(parai(j,k))) '); ' 'clear pwf' ...   % 
     num2str(fix(parai(j,k)))]);                     % 
        % load patient weighted functions where int eraction 
        % parameter is a primitive 
 
    % Remove the mean to avoid correlation with 
    % interactions 
    for l=1:size(par,2)               % 
     if par(l)==fix(parai(j,k))       % 
      xwi(:,1,k)=xwi(:,1,k)-mx(l,1);  % 
     end      % remove mean from function where int eraction 
    end       % parameter is a primitive 
 
   % Load the interaction parameter (variable start ing with 
   % dwf) from the patient-specific data file if a 
   % differential and derivative parameter 
   else 
 
    eval(['load wf' num2str(id(g)) ' dwf' ...        % 
     num2str(fix(parai(j,k))) ', ' ...               % 
     'xwi(:,:,k)=double(dwf' ...                     % 
     num2str(fix(parai(j,k))) '); ' 'clear dwf' ...   % 
     num2str(fix(parai(j,k)))]);                     % 
        % load patient weighted functions where int eraction 
        % parameter is a derivative 
 
    % Remove the mean to avoid correlation with 
    % interactions 
    for l=1:size(par,2)               % 
     if par(l)==fix(parai(j,k))       % 
      xwi(:,1,k)=xwi(:,1,k)-mx(l,2);  % 
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     end      % remove mean from function where int eraction 
    end       % parameter is a derivative 
 
   end 
  end 
 
  % Compute the interaction parameter and its combi ned 
  % weight from the 2 interacting parameters 
  xw(:,:,size(parap,2)+j)=[prod(xwi(:,1,:),3) ... 
   sqrt(2)./sum(1./xwi(:,2,:),3)]; 
                      % interaction and its combine d weight 
 
 end 
 
% ADD ESTIMATES TO X AND Y MATRICES *************** ******** 
 
 % Compute the combined weight, and the weighted su m of y 
 % as element 1 of the Y matrix 
 wi=sqrt(1+size(parap,2)+size(parai,1))./(1./yw(:,2 )+ ... 
  sum(1./xw(:,2,:),3));  % combined weight 
 xy(1)=xy(1)+sum(wi.*yw(:,1)*.01);  % weighted sum of y 
                                    %             - -> Y ` 1 
 
 % The following instructions can be included in th e 
 % program to plot predicted weighted functions and  
 % combined weighting function for each patient 
%-------------------------------------------------- -------- 
% tl=[-100:.01:200];                                  % 
% subplot(211)                                        % 
% plot(tl,yw(:,1),'b-')                               % 
% xs=axis;                                            % 
% axis([min(ty(:,1))-1 max(ty(:,1))+1 xs(3:4)])       % 
% ylabel('Y')                                         % 
% title(['patient no. ' num2str(id(g)) ' (' ...       % 
%  num2str(g) '/' num2str(size(id,2)) ')'])           % 
% subplot(212)                                        % 
% plot(tl,yw(:,2),'b:',tl,wi,'r:')                    % 
% xs=axis;                                            % 
% axis([min(ty(:,1))-1 max(ty(:,1))+1 xs(3:4)])       % 
% ylabel('W')                                         % 
% xlabel(['Y: ' num2str(fix(sum(yw(:,2))*.1)*.1) .. .  % 
%  ' ; Q: ' num2str(fix(sum(wi)*.1)*.1)])             % 
% pause(.001)   % instructions to plot predicted we ighted 
%               % functions and combined weighting function 
%               % for each patient if required 
%-------------------------------------------------- -------- 
 
 % Compute the sum of weights as element (1;1) of t he X 
 % matrix 
 xx(1,1)=xx(1,1)+sum(wi*.01);  % sum of weights 
                               %                -->  X ` 1 1 
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 % Build post-processing array (not used in this ve rsion) 
 we=0;                                        % 
 e=zeros(1,1+size(parap,2)+size(parai,1));    % 
 m=size(yxe,1)+1;                             % 
                                              % 
 for i=size(wi,1):-1:1                        % 
                                              % 
  we=we+wi(i)*.01;                            % 
  e(1)=e(1)+wi(i)*yw(i,1)*.01;                % 
                                              % 
  for j=1:size(parap,2)+size(parai,1)         % 
   e(j+1)=e(j+1)+wi(i)*xw(i,1,j)*.01;         % 
  end                                         % 
                                              % 
  if we>1                                     % 
   we=0;                                      % 
   yxe(m,:)=e;                                % 
   m=m+1;                                     % 
   e=zeros(1,1+size(parap,2)+size(parai,1));  % 
  end                                         % 
                                              % 
 end                          % build post-processi ng array 
 
 % Compute the weighted sum of x.y, the weighted su m of x 
 % and the weighted sum of x.x and include these in  the X 
 % matrix 
 for i=2:size(xx,1) 
 
  xy(i)=xy(i)+sum(wi.*xw(:,1,i-1).*yw(:,1)*.01); 
    % weighted sum of x.y                       -->  Y ` i 
  xx(i,1)=xx(i,1)+sum(wi.*xw(:,1,i-1)*.01); 
    % weighted sum of x                         -->  X ` i 1 
  xx(1,i)=xx(i,1);  %                           -->  X ` 1 i 
 
  for j=2:size(xx,1) 
   xx(i,j)=xx(i,j)+sum(wi.*xw(:,1,i-1).*xw(:,1,j-1) *.01); 
     % weighted sum of x.x                      -->  X ` i j 
  end 
 
 end 
 
 % Compute the weighted sum of y-square 
 Sy2=Sy2+sum(wi.*yw(:,1).^2*.01); 
                                 % weighted sum of y-square 
 
end 
 
% COEFFICIENTS OF CORRELATION ********************* ******** 
 
% Set the self-correlation coefficient to 1 for the  
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% predicted parameter and initialise the probabilit y of 
% type I error 
r2(1,1)=1; 
     % self-correlation coefficient for predicted p arameter 
pr2=nan; 
 
% Use the t-distribution if the degrees of freedom from the 
% equivalent number of measurements are less than 1 00 and 
% set the specific t-distribution with the sum of w eights 
% and using the gamma function 
if xx(1,1)-2<100 
 
 tdist=inline([num2str(gamma((xx(1,1)-1)/2)/sqrt(pi *...  % 
  (xx(1,1)-2))/gamma((xx(1,1)-2)/2)) '*(1+x.^2/' .. .     % 
  num2str(xx(1,1)-2) ').^' num2str(-(xx(1,1)-1)/2)] );    % 
        % t-distribution: 
        % f(t) = G((n+1)/2) / sqrt( pi n ) / G(n/2)  
        %       . ( 1 + t^2 / n )^-((n+1)/2) 
        % n = sum of weights - 2  (G is the gamma f unction) 
 
% Use the z-distribution if the degrees of freedom from the 
% equivalent number of measurements are greater tha n 100 
else 
 
 tdist=inline('exp(-x.^2/2)/sqrt(2*pi)');  % 
                         % normal z-distribution: 
                         % f(z) = e^-(z^2/2) / sqrt ( 2 pi ) 
 
end 
 
% Display a blank line for neatness 
disp(' ') 
 
% The correlation coefficients between predicted an d 
% predictor parameters are first evaluated 
for i=2:size(xx,1) 
      % evaluate correlation coefficients between p redicted 
      % parameter and predictor parameters 
 
 % By reducing the X and Y matrices to those elemen ts 
 % relevant to the parameters being considered, com pute the 
 % regression coefficients, the sum of squares due to 
 % regression, the total sum of squares and the coe fficient 
 % of determination 
 xxr=[xx(1,1) xx(1,i);xx(i,1) xx(i,i)]; 
                               % reduction of X mat rix (Xr) 
 xyr=[xy(1);xy(i)];            % reduction of Y mat rix (Yr) 
 br=xxr\xyr; 
          % reduced regression coefficient ( Xr . B r = Yr ) 
 SSRr=br'*xyr-xyr(1)^2/xxr(1,1); 
                         % sum of squares due to re gression 
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 SSTr=Sy2-xyr(1)^2/xxr(1,1);  % total sum of square s 
 r2(i,1)=SSRr/SSTr;  % coefficient of determination  
 r2(1,i)=r2(i,1);    % 
 
 % Compute the probability of type I error from the  t- 
 % distribution or z-distribution 
 pr1=1-quad(tdist,0,abs(sqrt(r2(i,1)*(xx(1,1)-2)/(1 - ... 
  r2(i,1)))))*2;  % probability of type I error (h0 :r=0) 
 
 % Display the parameter indices with the correlati on 
 % coefficient, whose sign is obtained from the reg ression 
 % coefficient, and its associated probability of t ype I 
 % error 
 disp([i 1 sign(br(2))*sqrt(r2(i,1)) pr1]) 
   % display parameter indices, correlation coeffic ient and 
   % p-value 
 
 % The correlation coefficients between predictor 
 % parameters are evaluated 
 for j=2:size(xx,1) 
      % evaluate correlation coefficients between p redictor 
      % parameters themselves 
  if j~=i  % 
             
   % By reducing the X and Y matrices to those elem ents 
   % relevant to the parameters being considered, c ompute 
   % the regression coefficients, the sum of square s due to 
   % regression, the total sum of squares and the 
   % coefficient of determination 
   xxr=[xx(1,1) xx(1,i);xx(i,1) xx(i,i)]; 
                               % reduction of X mat rix (Xr) 
   xyr=[xx(1,j);xx(i,j)];      % reduction of Y mat ric (Yr) 
   br=xxr\xyr; 
          % reduced regression coefficient ( Xr . B r = Yr ) 
   SSRr=br'*xyr-xyr(1)^2/xxr(1,1); 
                         % sum of squares due to re gression 
   SSTr=xx(j,j)-xyr(1)^2/xxr(1,1);  % total sum of squares 
   r2(i,j)=SSRr/SSTr;  % coefficient of determinati on 
 
   % Compute the probability of type I error from t he t- 
   % distribution or z-distribution and for one sid e only 
   % of the correlation coefficients table 
   if j>i  % one side only of diagonal of correlati on 
           % coefficients table 
    pr2=1-quad(tdist,0,abs(sqrt(r2(i,j)*(xx(1,1)-2) /(1- ... 
     r2(i,j)))))*2;  % probability of type I error (h0:r=0) 
 
    % Display the parameter indices with the correl ation 
    % coefficient, whose sign is obtained from the 
    % regression coefficient, and its associated 
    % probability of type I error 
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    disp([i j sign(br(2))*sqrt(r2(i,j)) pr2]) 
       % display parameter indices, correlation coe fficient 
       % and p-value 
   end 
 
  % The correlation coefficient is 1 for parameters  that 
  % are identical 
  else 
 
   r2(i,j)=1;  % self-correlation coefficient for p redictor 
               % parameters 
 
  end 
 end 
 
end 
 
% Display the coefficients of determination (r2) 
disp('r2 :')       % display coefficients of determ ination 
disp(num2str(r2))  % 
 
% COEFFICIENTS OF REGRESSION AND COEFFICIENT OF MULTIPLE 
% DETERMINATION *********************************** ******** 
 
% Compute the regression coefficients, the total su m of 
% squares, the sum of squares due to regression, th e sum of 
% squares due to error, the standard errors of the 
% regression coefficients, the coefficient of multi ple 
% determination and the adjusted coefficient of mul tiple 
% determination 
b=xx\xy;  % regression coefficient ( X . B = Y ) 
SST=Sy2-xy(1)^2/xx(1,1);  % total sum of squares 
SSR=b'*xy-xy(1)^2/xx(1,1); 
                         % sum of squares due to re gression 
SSE=SST-SSR;             % sum of squares due to er ror 
MSR=SSR/(size(parap,2)+size(parai,1)); 
                    % mean sum of squares due to re gression 
MSE=SSE/(xx(1,1)-size(parap,2)-size(parai,1)-1); 
                         % mean sum of squares due to error 
sb=sqrt(SSE*diag(inv(xx))/(xx(1,1)-size(parap,2)- . .. 
 size(parai,1)-1)); 
                 % standard error of regression coe fficient 
R2=SSR/SST;      % coefficient of multiple determin ation 
Ra2=1-(xx(1,1)-1)/(xx(1,1)-size(parap,2)-size(parai ,1)- ... 
 1)*SSE/SST; 
           % adjusted coefficient of multiple deter mination 
 
% Use the t-distribution if the degrees of freedom from the 
% equivalent number of measurements and the number of 
% parameters are less than 100 and set the specific  t- 
% distribution with the sum of weights and number o f 
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% parameters and using the gamma function 
if xx(1,1)-size(para,2)-1<100 
 
 tdist=inline([num2str(gamma((xx(1,1)-size(parap,2) -...  % 
  size(parai,1))/2)/sqrt(pi*(xx(1,1)-size(parap,2)- ...   % 
  size(parai,1)-1))/gamma((xx(1,1)-size(parap,2)-.. .     % 
  size(parai,1)-1)/2)) '*(1+x.^2/' ...                   % 
  num2str(xx(1,1)-size(parap,2)-size(parai,1)-1) .. .     % 
  ').^' ...                                              % 
  num2str(-(xx(1,1)-size(parap,2)-size(parai,1))/2) ]);   % 
                % t-distribution: 
                % f(t) = G((n+1)/2) / sqrt( pi n ) / G(n/2) 
                %       . ( 1 + t^2 / n )^-((n+1)/2 ) 
                % n = sum of weights - number of pa rameters 
                % (G is the gamma function) 
 
% Use the z-distribution if the degrees of freedom from the 
% equivalent number of measurements and the number of 
% parameters are greater than 100 
else 
 
 tdist=inline('exp(-x.^2/2)/sqrt(2*pi)');  % 
                         % normal z-distribution 
                         % f(z) = e^-(z^2/2) / sqrt ( 2 pi ) 
 
end 
 
% Compute the probability of type I error from the t- 
% distribution or z-distribution 
pr=1-quad(tdist,0,abs(sqrt(R2*(size(id,2)-2)/(1-R2) )))*2; 
                     % probability of type I error (h0:r=0) 
 
% Display the number of patients (n), the coefficie nt of 
% multiple determination (R2), the adjusted coeffic ient of 
% multiple determination (Ra2) and the probability of type 
% I error (p) 
disp(' '), disp('n         R2        Ra2       p')  % 
disp(num2str([size(id,2) R2 Ra2 pr],10))            % 
      % display number of patients, coefficient of multiple 
      % determination, adjusted coefficient of mult iple 
      % determination and p-value 
 
% COEFFICIENTS OF REGRESSION CONFIDENCE INTERVALS ********* 
 
% Only carry out the following iterative procedure if there 
% are sufficient degrees of freedom from the equiva lent 
% number of measurements and the number of predicto r and 
% interaction parameters 
if xx(1,1)-size(parap,2)-size(parai,1)>0 
       % check that there are sufficient degrees of  freedom 
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 % The following iterative procedure determines the  t- 
 % statistic from the t-distribution or the z-stati stic 
 % from the z-distribution for the confidence inter val 
 % specified 
%-------------------------------------------------- -------- 
 for i=.0001:10000                            % 
  T=i;                                        % 
  if quad(tdist,0,T)>a/200                    % 
   for j=1:10                                 % 
    T=i-1+j/10;                               % 
    if quad(tdist,0,T)>a/200                  % 
     for k=1:10                               % 
      T=i-1+(j-1)/10+k/100;                   % 
      if quad(tdist,0,T)>a/200                % 
       for l=1:10                             % 
        T=i-1+(j-1)/10+(k-1)/100+l/1e3;       % 
        if quad(tdist,0,T)>a/200              % 
         T=i-1+(j-1)/10+(k-1)/100+(l-1)/1e3;  % 
         break                                % 
        end                                   % 
       end                                    % 
       break                                  % 
      end                                     % 
     end                                      % 
     break                                    % 
    end                                       % 
   end                                        % 
   break                                      % 
  end                                         % 
 end                                          % 
     % recursive instructions to find a value t fro m the t- 
     % distribution or a value z from the normal z-  
     % distribution that satisfies the required con fidence 
     % interval 
%-------------------------------------------------- -------- 
 
% Default to 0 if there are insufficient degrees of  freedom 
else   % 
       % insufficient degrees of freedom 
 T=0;  % 
 
end 
 
% Compute the confidence intervals of the regressio n 
% coefficients 
ci=[b-sb*T b+sb*T]; 
             % regression coefficients confidence i ntervals 
 
%************************************************** ******** 
 
% Compute the probability of type I error for each 
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% regression coefficient 
for i=1:size(b,1)                            % 
 pb(i,1)=1-quad(tdist,0,abs(b(i)/sb(i)))*2;  % 
end                  % probability of type I error (h0:b=0) 
 
% Display the regression coefficients (b), their st andard 
% errors (sb), their confidence intervals’ lower (C I-) and 
% upper (CI+) bounds and their probabilities of typ e I 
% error 
disp(' ')                                          % 
disp('b         sb        CI-       CI+       p')  %  
disp(num2str([b sb ci pb],10))                     % 
  % display regression coefficients, their standard  errors, 
  % their confidence intervals and p-values 
 
% ANALYSIS OF VARIANCE **************************** ******** 
 
% Use the F-distribution to compute the probability  of type 
% I error for multiple regression if the degrees of  freedom 
% from the equivalent number of measurements and th e number 
% of parameters are less than 100 and set the speci fic F- 
% distribution with the sum of weights and number o f 
% parameters and using the gamma function 
if xx(1,1)-size(parap,2)-size(parai,1)-1<100 
 
 pF=1-quad([num2str(gamma((xx(1,1)-1)/2)*(size(para p,...  % 
  2)+size(parai,1))^((size(parap,2)+size(parai,1))/ ...    % 
  2)*(xx(1,1)-size(parap,2)-size(parai,1)-1)^((xx(1 ,...   % 
  1)-size(parap,2)-size(parai,1)-1)/2)/...                % 
  gamma((size(parap,2)+size(parai,1))/2)/gamma((xx( 1,...  % 
  1)-size(parap,2)-size(parai,1)-1)/2)) '*x.^' ...        % 
  num2str((size(parap,2)+size(parai,1))/2-1) '.*(' ...    % 
  num2str(xx(1,1)-size(parap,2)-size(parai,1)-1) '+ ' ...  % 
  num2str(size(parap,2)+size(parai,1)) '*x).^' ...        % 
  num2str(-(xx(1,1)-1)/2)],0,MSR/MSE);                    % 
    % probability of type I error (h0:b=0 for all 
    % coefficients b) 
    % 
    % F-distribution: 
    % f(F) = G((n1+n2)/2) n1^(n1/2) n2^(n2/2) / G(n 1/2) 
    %     / G(n2/2) . F^(n1/2-1) ( n2 + n1 F )^-((n 1+n2)/2) 
    % n1 = number of parameters - 1 
    % n2 = sum of weights - number of parameters 
    % (G is the gamma function) 
 
% Use the chi-square distribution to compute the 
% probability of type I error for multiple regressi on if 
% the degrees of freedom from the equivalent number  of 
% measurements and the number of parameters are gre ater 
% than 100 and set the specific chi-square distribu tion 
% with the number of parameters and using the gamma  
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% function 
else                                                    % 
                                                        % 
 pF=1-quad(['exp(-x/2).*x.^' ...                        % 
  num2str((size(parap,2)+size(parai,1))/2-1) '/' .. .    % 
  num2str(2^((size(parap,2)+size(parai,1))/2)*...       % 
  gamma((size(parap,2)+size(parai,1))/2))],0,MSR/MS E);  % 
              % probability of type I error (h0:b=0  for all 
              % coefficients b) 
              % 
              % CHI-square distribution: 
              % f(CHI^2) = e^-(CHI^2/2) (CHI^2)^(n/ 2-1) 
              %           / 2^(n/2) / G(n/2) 
              % n = number of parameters - 1 
              % (G is the gamma function) 
end 
 
% Save the total degrees of freedom, the total sum of 
% squares, the degrees of freedom for the regressio n, the 
% sum of squares due to regression, the mean sum of  squares 
% due to regession, the F-statistic and the probabi lity of 
% type I error for multiple regression in the first  two 
% lines of the analysis of variance table 
v(1:2,:)=[xx(1,1)-1 SST nan nan nan;size(parap,2)+ ... 
 size(parai,1) SSR MSR MSR/MSE pF]; 
                         % start analysis of varian ce table 
 
% Display the degrees of freedom (dof), the sums of  squares 
% (SS), the mean sums of squares (MS) the F-statist ics (F) 
% and the probabilities of type I error (p) from th e 
% analysis of variance table, as well as the coeffi cient of 
% determination displayed as a percentage 
disp(' '),                                              % 
 disp('dof       SS        MS        F         p')      % 
disp(num2str([xx(1,1)-1 SST],10))                       % 
disp([num2str([size(parap,2)+size(parai,1) SSR MSR ...  % 
 MSR/MSE pF fix(SSR/SST*100)],10) '%'])                 % 
                    % display start of analysis of variance 
 
% Use the F-distribution if the degrees of freedom from the 
% equivalent number of measurements and the number of 
% parameters are less than 100 and set the specific  F- 
% distribution with the sum of weights and using th e gamma 
% function 
if xx(1,1)-size(parap,2)-size(parai,1)-1<100 
                                                          % 
 fdist=inline([num2str(gamma((xx(1,1)-1)/2)*(xx(1,1 )-...  % 
  2)^((xx(1,1)-2)/2)/gamma(1/2)/gamma((xx(1,1)-2)/. ..     % 
  2)) '*x.^-(1/2).*(' num2str(xx(1,1)-2) '+x).^' .. .      % 
  num2str(-(xx(1,1)-1)/2)]);                              % 
              % F-distribution: 
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              % f(F) = G((n+1)/2) n^(n/2) / G(1/2) / G(n/2) 
              %       . F^-(1/2) ( n + F )^-((n+1)/ 2) 
              % n = sum of weights - 2 
              % (G is the gamma function) 
 
% Use a set chi-square distribution if the degrees of 
% freedom from the equivalent number of measurement s and 
% the number of parameters are greater than 100 and  using 
% the gamma function 
else 
                                                      % 
 fdist= ...                                           % 
  inline('exp(-x/2).*x.^-(1/2)/2^(1/2)/gamma(1/2)') ;  % 
                   % CHI-square distribution: 
                   % f(CHI^2) = e^-(CHI^2/2) (CHI^2 )^-(1/2) 
                   %           / sqrt(2) / G(1/2) 
                   % (G is the gamma function) 
end 
 
% For each predictor and interaction parameter, by reducing 
% the X and Y matrices to those elements relevant t o the 
% parameters being considered, compute the regressi on 
% coefficients, the sum of squares due to regressio n and 
% the mean sum of squares given all other parameter s 
for i=1:size(parap,2)+size(parai,1) 
      % analyse variance for each predictor and int eraction 
      % parameter 
 xxv=xx([1:i i+2:size(xx,1)],[1:i i+2:size(xx,2)]);  
                               % reduction of X mat rix (Xr) 
 xyv=xy([1:i i+2:size(xy,1)],1); 
                               % reduction of Y mat rix (Yr) 
 bv=xxv\xyv; 
          % reduced regression coefficient ( Xr . B r = Yr ) 
 SSRv=bv'*xyv-xy(1)^2/xx(1,1); 
                         % sum of squares due to re gression 
 MSRv=SSR-SSRv;  % mean sum of squares due to regre ssion 
                 % given all other parameters 
 
 % Compute the probability of type I error for the 
 % parameter given all other parameters from the F-  
 % distribution or chi-square distribution 
 pFv=1-quad(fdist,0,MSRv/MSE); 
      % probability of type I error (h0:b=0 given a ll other 
      % parameters) 
 
 % Save the degree of freedom for the regression, t he sum 
 % of squares and mean sum of squares due to regess ion, the 
 % F-statistic and the probability of type I error into the 
 % analysis of variance table 
 v(i+2,:)=[1 MSRv MSRv MSRv/MSE pFv]; 
                         % write analysis of varian ce table 
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 % Display the degree of freedom, the sum of square s, the 
 % mean sum of squares, the F-statistic and the pro bability 
 % of type I error from the analysis of variance ta ble, as 
 % well as the coefficient of determination display ed as a 
 % percentage 
 disp([num2str([1 MSRv MSRv MSRv/MSE pFv fix(MSRv/S ST* ... 
  100)],10) '%'])  % display analysis of variance 
end 
 
% Save the residual degrees of freedom, the sum of squares 
% due to error and the mean sum of squares due to e rror in 
% the last line of the analysis of variance table 
v(size(parap,2)+size(parai,1)+3,:)=[xx(1,1)-size(pa rap, ... 
 2)-size(parai,1)-1 SSE MSE nan nan]; 
                        % finish analysis of varian ce table 
 
% Compute the standard error for the mean response and 
% prediction interval 
s=sqrt(SSE/(xx(1,1)-size(parap,2)-size(parai,1)-1)) ; 
          % standard error for mean response and pr ediction 
          % interval 
 
% Display the residual degrees of freedom, the sum of 
% squares due to error and the mean sum of squares due to 
% error 
disp(num2str([xx(1,1)-size(parap,2)-size(parai,1)-1  SSE ... 
 MSE],10))  % display end of analysis of variance 
 
%************************************************** ******** 
 
% Save variables par, mx, xx, xy, b, sb, id, SST, S SR, SSE, 
% MSR, MSE, ci, pb, pF, v, T, s, ddat, yw, xw, wi, pr1 and 
% pr2 to Matlab data file d.mat and close the plot if 
% required 
save d par mx xx xy b sb id SST SSR SSE MSR MSE ci pb ... 
 pF v T s ddat yw xw wi pr1 pr2 
                               % save regression st atistics 
 
%close  % close figure plot if required 
 


