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1.1 KRandom errors and gross errors

The mean u and standard deviation ¢ are frequently used as measures of the
statistical properties of a sample of data containing errors. These quantities

are often regarded as parameters of a random (Gaussian) distribution
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However, experimental and observational data are also prone to contamination by
errors which we refer to as gross errors having an uncertain non-random
distribution. Among the causes of gross errors are human observational errors
(e.g. a barometer observation 10 mb too high or too low), transmission or coding
errors (e.g. a pressure of 987 mb coded as 998.7 mb, or with transposed digits
as 976 mb), or errors of representativeness (e.g. a strong observed wind due to

a local squall at the time of observation).

For observations such as those from satellites, data processing can also be a
source of gross errors. Satellite instruments can only measure radiation since no
other information-carrying quantity can reach the instrument from the earth or
atmosphere, but most computer models and other applications still require
radiances to be converted into more familiar variables like temperature and
humidity. The necessary data processing can involve assumptions which may be
inappropriate for some observations. Examples are the assumption of a single
cloud layer when removing the effect of clouds from infra-red observations for
temperature soundings, and the selection of a vector wind from among several

possibilities all consistent with scatterometer observations (de-aliasing).

As the work described in this paper was carried out in connection with
research into monitoring the quality of satellite sounding data, the examples
will use this data but the theory and techniques are quite general and can find

application in verification or quality monitoring of data from a wide variety of

sources.,




1.2 Comtamination by gross errors

Use of the term 'gross error' does not necessarily imply errors which are of
large magnitude although as their distribution is usually broader than that for
random errors, points affected by gross errors will often appear as 'outliers' in
a sample of data. Detection and tlagging of these outliers is important for data
assimilation into numerical weather prediction models and for the retrieval of
temperature soundings from satellite data. These applications generally involve
statistical techniques which assume that observations and numerical model fields
have normally distributed errors. An observation with a large gross error can
therefore be a serious problem if it is not detected beforehand. Gross errors
comparable with or smaller than typical random errors are harder to detect but

are much less damaging if undetected.

An outlier is relatively easy to detect automatically or manually if a priori
values of the mean and standard deviation of the random errors are known. For
example, suppose ten sea level pressure observations are compared with a model
analysis and found to consist of nine ‘'good' ones with a zero mean error (u) and
a standard deviation (¢? of 1mb, and a single observation in error by 10mb.
Applying the frequently used criterion of flagging data more than three standard
deviations from the mean (which accounts for less than 0:3% of data from a
normal distribution), the knowledge that ¢ i1s Imb and g is zero immediately
causes flagging of the tenth observation as i1t deviates from the mean by ten

standard deviations.

Suppose, however, that the mean and standard deviation of the errors are not
known in advance and the available data provides the only way to estimate their

values. Then we estimate
M# = (9x0 + 1x10)/7/10 = 1:0 ,
o2 = (9x12 + 1x10%)/10 - u2 = 9:9,

The estimated standard deviation is then (9,9)'/2 = 3:146. The 3¢ criterion only
flags errors outside the range -8:44 to +10:44 so fails to identify the outlying

observation.

Figure 1| shows a histogram of the difference between the radiances measured
by a satellite instrument and those computed froma numerical model. (Some cloud

contaminated data which would normally be ignored is included in the histogram.)




Also shown is a normal distribution with the same mean and standard deviation as
the data: clearly the long non-Gaussian tail of the distribution has caused the

computed standard deviation to be too large and the mean to be displaced.
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Figure IT Histogram of observed-minus-computed radiances and a normal distribution having the
same mean and standard deviation, (Data is for channel 5 of the HIRS instrument on NOAA-TI
north of 50°N and includes cloud contaminated data,)

These examples illustrate the need for a more flexible error model such as a
normal distribution combined with a simple model of gross errors to soak up the
outliers. A technique for fitting the model to a given data distribution is also
required, This report describes a method for meeting these needs. Naturally there
will always be awkward data distributions where the method fails but 1if gross
errors are not too frequent and the underlying distribution not too different
from normal, better estimates of the mean and standard deviation will result than

would otherwise be available.




An error model combining random and gross errors 1s derived in the next
section, and section 3 describes the iterative technique used to fit the model to
a given data distribution, Section 4 outlines a second level of iteration used to
determine a suitable data range for the fitting and a method of choosing a good
first guess to start things off. Section § gives examples of the performance of

the method, and conclusions are presented in section 6.

The data to be fitted is assumed to be available as a frequency distribution
having been sorted into 'bins’ of uniform width 4. For generality, the computer
programs work entirely in 'bin' units returning final values of mean and standard

deviation in bin widths,

2. Error models

2.1 Combined normal and gross error distribution

Our model of the probability density function (PDF) for the errors consists
of a weighted sum of two components; a normally distributed random component and
a non-random ‘gross error' distribution. Denoting the observed variable by x, the

mean of the normal distribution by u and its standard deviation by o, we have

1
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Normal component =

In the absence of any information about the shape of the distribution of gross

errors, we assume a constant value over a tinite range, namely

T ﬁ € %% zl'_h &
Gross error component = €2.2)

0 elsewhere.

The sudden cut-off of this function at *1/<(2h) required for normalisation is
rather unrealistic but is of little more than academic interest because we shall

assume that this cut-off occurs outside the range of the data being processed.




If the probability of an observation having a gross error is p, the combined

PDF is

P(x) = (1-p) (Normal component) + p(Gross error component)

(Strictly speaking, we should also expect observations with gross errors to
contain random errors as well, but the approximation involved in ignoring this
complication is negligible and falls to zero if the gross error distribution is

truly flat). Substituting from Equations (2.1) and (2.2), we find

1.-.
P(x) = (—&?E)B,—,—;) exp(-L x-ul2/202) + ph. (2.3)

At first sight, this appears to contain four unknown parameters (u, o, p and A
but the next section shows that with proper normalisation p and h can be

combined into a single parameter.

2.2 Expected frequency distribution

The problem now is to fit a probability density function of the form (2.3) to
a given data distribution. We assume that the data has been sorted into 'bins' of
width & covering a total range 4. If x, is the minimum x-value and Xx,. and X.

are the limits of the i*" bin, we have

Xia XA (T =15F
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and the probability of a data item in the range x, to x,+4 falling within the *"
bin (P> is given by

M- Xot A
Po= [ Px)dx [ Px)dx. 2.4)
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We can evaluate this by substituting from Eq. (2.3). If we assume that the range
of integration in the denoninator includes essentially all of the normal

component, this simplifies to



XotA4
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Eq. (2.4) then becomes
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I, can also be written in the form
I, = %[erf (X E) - erf(x‘—-L )] 2.8)
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which is the most suitable form if the error function is available as a standard

function on the computer.

If we define a non-dimensional bin width y (= 4/4, the reciprocal of the
number of bins) and combine p and £~ into a single gross error parameter p
defined by

= _pha_
P 1-p> ’ (2.2
Eq. (2.4) then reduces to
e s X pn
P, R 2.10

This is a function of only three unknown pararmeters, u and ¢ (via I, ) and p.
The parameter p can be interpreted as the ratio of the probability that a data
item falling in the range X, to x, +4 has a gross error to the probability that

it has no gross error.




3. Fitting to actual frequency distributions

3.1 Fitting criterion

Initially, attempts were made to fit a distribution of the form (2.10) to
data distributions using a least squares approach. This involves minimising a

cost function S given by

s=3 (- r) (3. 1)
1

where n;, is the actual frequency in the i*" bin and ¥ is the total number of data
in all bins. P, is the theoretical probability of an observation falling in
the 1*™ bin and has the form of Eq. (2.10). Introducing a non-dimensional

frequency m; equal to n,/N, this becones,

S=3m - P)e, (3:2)
i

The approach eventually adopted, however, is a ‘maximum probability' fit. The
probability of getting the observed distribution if the actual PDF gives an
expected probability of P; for the i*" bin is

Probability e ﬂ(g)P,”’u—P,)””". (3.3)
1 i
Taking logarithms, we find
Log(probability) = constant + »(mlogP, + (1-m)log(1-P) )
1
which leads to a different cost function
§= Y(mlogP, + (1-mp)log(1-P)) ). (3.4)

1

With P, given by Eq. (2.10) and I, by Eq.(2.8), the problem is now reduced to
finding values of u, ¢ and p which maximise this value of S (In the least

squares formulation we minimise the cost function (3,1).)



3.2 Maximising the cost function, S

Newton's rule was used iteratively to find the maximum value of the cost

function. This involves setting the three partial derivatives of S to zero, i.e,

25 DS _ 08 - 0. (3.5)

This leads to the set of three equations

m‘—P, 0P, = =0
i(P,(l-P,) s 0, J=1,2,3 (3.6)

where (@, 92, @) is the vector (u,0,p) which will be denoted by ®. [The least
squares technique leads to the equation

Scm-Po2E = 0, y=1,2,3.]

i D¢J

Equations (3.6) are solved iteratively using Newton's Rule
(3. 7)

0‘(.) = 01 B (S;’)-' S{‘

where S, is a column vector of the derivatives of S in Eq.(3.5) and S;” is the

corresponding Hessian matrix given by
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To alleviate problems with poorly conditioned matrices, the increments applied at



any iteration are restricted in size to maximum values which are currently set

as follows:
b oy =4l & 0.20;
1Oy —oyl ¢°0.30, £3..9)
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where p,,, is the minimum value of p which prevents P, from becoming negative
for any bin in which there is at least one observation (m, > 0). This is the
point at which singularities appear in the computation of terms in Eq. (3.6). In

practice, p.;» 15 a small negative quantity.

Newton's Rule only converges to an absolute maximum of § if all the
eigenvalues of the Hessian (3.8) are negative (Z.e, if the negative of the Hessian
is positive definite). If this is not the case, the procedure may converge to a
minimum or a saddle point. If negative eigenvalues are detected in any iteration,
the values for the next iteration are found by taking a step up the local
gradient of S5, the size of the step being the maximum within the constraints
(3.9, Similarly, if any of the diagonal terms of the Hessian (3.8) are positive, a
step is made in the corresponding variable in the direction of increasing S and

within the same constraints.

A further constraint during the iteration is to prevent p from becoming
negative. If any iteration would tend to make p negative, the increments to all
three variables are reduced by the same factor so as to make p zero for the next
iteration. If p is already zero and the increment for the next iteration turns
out to be negative, p is fixed at zero and increments for u and ¢ are recomputed

using Newton's Rule on these two variables alone.

3.4 Convergence criterion

After each iteration of Newton's Rule, several checks are done to see if
satisfactory convergence has been achieved and, if not, to ensure that the
procedure is still converging. The currently used criterion for convergence are

as follows (where u and ¢ are in units of bin width):




* Test on change in Filly =gyl 49 009,
» Test on change in o¢ |0, —0,.,1 ¢ 0,005,
* Test on change in cost function, S

| ;=S| [#CS, +S5,.,) € 104

If all these conditions are satisfied, the iteration process is terminated and the

values from the last iteration are taken as the solution.

The checks for divergence of the iteration are:

¢ Excessive number of iterations (currently limited to ten).

* Mean within 3 standard deviations of range of data (either u,~30, < 1

or M;+30; > number of bins).

¢ Decreasing cost function (S, -S,., < —107?), This test 1s not applied
before the third iteration.

o Iteration could not be performed because the system of equations (3.7)
was singular or too unstable. (This corresponds to an error code in the

NAG routine used to solve these equations.)

If any of these conditions are satisfied the iteration process is terminated and

an error code is set,

3.5 Appropriateness of the solution

The solution produced by the procedure described in this section may be
mathematically correct but may not be the optimum for fitting the actual data
distribution because we have not considered the possibility that the range of
values over which the fit is done may be inappropriate. The test on u* 3¢
referred to above ensures that the data range is not too small but no check has
been made for excessively large ranges which could mean large amounts of bad
data being used in the fitting. Furthermore, experience showed that successful

convergence of the fitting technique is aided by a good first guess, especially

if data volumes are small. The next section addresses these problems.




4. Data selection and first guess

4.1 Selection of data range

In order for the fitting described in section 3 to perform well, the range of
bine into which the data are classified must include essentially all of the
normal component of the distribution. However, inclusion of a significant range
outside this region may degrade the fitting as our assumption that the height of
the gross error distribution is constant over the fitted range is less likely to
be valid, Moreover, in most cases interest centres on the mean and standard

deviation of the normal component rather than details of the gross errors.

If a prior estimate of the range of the normal component of errors is not
available, the range of bins can be overestimated initially and the fitting
routine allowed to reduce the range as it learns more about the characteristics
of the data. This implies a second iteration to converge on a suitable bin range

executed outside the Newton's Rule iteration described in the last section.

Initially, the fitting 1is done for the full range of bins, a first guess
solution is chosen (see section 4.2) and a ‘'maximum probability' fit is carried
out using the method of section 3 to find best values for u, ¢ and p. From the
results, the range of bins covering the region u-40 to ut4o is computed. If this
contains less bins than that previously used, the fitting is repeated for the new
range using the parameters from the last fit as the new first guess. The whole
process is iterated until the number of bins being used no longer decreases. The
outer iteration is continued regardless of whether the inner one converges,
except that, if it does not converge, the value of o used for the new bin range
is the maximum of the values from the last two inner iterations. This is done to
minimise occasions when a much reduced bin range is generated from a spuriously
low o taken from an iteration with convergence difficulties; an overestimate of

the bin range is clearly safer than an unedrestimate in these circumstances.

4.2 The first guess

The example in section 1 indicated that the use of a mean and standard
deviation computed from an entire data distribution may be unrepresentative of
that for the normal component of errors since a relatively small amount of data
with gross errors has a disproportionate effect on the calculation. A first

guess which is more representative of the parameters of the normal component can

31
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reduce the likelihood of convergence problems with the Newtonian iteration. A
scheme was therefore devised for generating a reasonable first guess from the

data distribution alone without any prior information.
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~ Figure 2, The histogram of Fig, | with the mean height marked (dashed line), Area ﬂ”equals e
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If, as we have assumed, the gross error distribution has a constant value
throughout the range of bins used, this will certainly be less than the average
height of the distribution in that range. Therefore, if a horizontal line is drawn
at average height in an ideal data distribution (Fig.2, where area A equals the
sum of B and (), the only variation above this line is due to the normal error
component, The mean and standard deviation for area A (u, and ¢,)> will then be
unaffected by gross errors. Since the normal curve is symmetrical, u, is a
suitable first guess for the mean of the normal component of the distribution
but ¢, will obviously be an underestimate of the true standard deviation so
further retinement is necessary, A method for extracting an improved first guess

o from g, and a corrersponding first guess p 1s described in Appendix A.




5. Examples

Figure 3 shows the effect of using the fitting procedure on a distribution
which is fairly symmetrical but which falls off more slowly than a normal
distribution in the region away from the peak. (The distribution represents
differences between cloud cleared brightness temperatures from two independent
cloud detection and removal schemes [Met. Office and NESDIS] for channel 11 of
the HIRS instrument on the NOAA-11 satellite.) The data distribution shown by the
histogram is the same for each part of the figure. Each diagram also shows a
fitted curve plotted over the range of data used for the fitting. Diagram (a)
shows that corresponding to the first guess (which used data in the range
-20°<x<20° or four times the range shown); (b), (), (d) and (e) show how the
fit to the central part of the distribution is improved after 2, 3, 5 and 6
iterations of the data range (section 4.1) respectively, and (f) shows the best
fit after the final (eighth) iteration. The following table shows details of the

convergence of the iteration procedure.

Iteration u o P fitted range (°C)
1st guess 0.141 1.452 0.186

1 0.193 1.769 0.097 -20.0 to 20.0

2 0.077 1::1b582 0.320 =6.9 b0 7.3

3 0.036 0.852 0.530 ~4.6 to. 4.7

4 0.036 0.683 0.719 =3.4 to 3.5

5 0.037 0.599 0.808 =il tO 08

6 0.037 0.567 0.831 =2.4 to 2.5

7 0.036 0:553 0.854 =23 -to 2.4

8 0.036 0.542 0.865 ~g.e to 2.8

The diagrams show that the final result is a good fit the central peak of

the distribution and ignores data well away from the peak.

The quantity p should be interpreted with care. It is not representative of
the level of gross errors in the entire distribution but is only affected by the
region near the peak. Even then, the apparent gross error level may contain a
contribution from the non-Gaussian shape of the distribution. In Fig.3 for
example, p is inflated because the distribution falls off less rapidly than a
Gaussian curve, the "wings" of the distribution contributing to the apparent

gross error component.

13
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Figure 4 shows the fit for an asymmetrical data distribution. Clearly, with
the symmetrical assumed distribution, the fitting must make a compromise in this
case. The curve shows that the fitted mean is displaced but quite close to the
peak of the histogram and the standard deviation is representative of the spread

while the 'noise' at low x-values has been successfully ignored.

14
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Figure 4. Gaussian curve fitted to an asymmetrical distribution.

6. Conclusions

An iterative method of fitting a combined normal and gross error probability
curve to given data distributions has been developed. This has enabled objective
computation of estimates of the means and standard deviations of the normal
components of the distributions ignoring the effect of outliers and data with
gross errors. Results have proved satisfactory, especially for distributions with
a single peak and a degree of symmetry, though convergence difficulties can

occur with distributions having broad or multiple peaks.

The method has applications in the monitoring of observational data where
means and standard deviations are required without contamination by the
occasional outlier. These may be needed for quality control purposes, for
estimating model biases and variances, for input data for analysis or satellite
sounding retrieval schemes etc. Another potential application is the detection and

monitoring of changes in the quality of reports from individual stations.



Appendix A

Computation of first guess o

In section (4,2) an initial estimate of the mean u and standard deviation ¢
of the Gaussian part of a distribution was obtained by computing these
quantities tor the portion of the distribution above the mean <(area A in
Fig. (A. 1)), The mean 1s indicated in the diagram by the horizontal line PQ
whose height is AN/4, N being the number of data points and 4 the total range of
data used. Denoting the mean and standard deviation of area A by u, and 0, we

have u= u, in an ideal distribution, so that u, can be used as an estimate of .
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Figure Al, Geometry of combined Gaussian and gross error distribution,

According to our error model, the distribution normalised over the range 4 is

given by Eq. (2, 10) which for small bins of width dx becomes (using Eq. (2.7))

Py . de = (.1’/7{)(,;_1? exp[-(i;_’o_&.f] + ‘f‘).&x (A 1)




[f uy—& and u.te are the

the curve, we have

Fluste) = 1/4

which becomes on substituting from Eq. (A. 1),

€= 20" 103‘2 (d’?ﬁ)

If the number of data points corresponding to the area A is N, we have

| N ,4L+£
e
M-E
Similarly,
Ny 02 e .
e J <P(_x) - 'A'—)(x-/k) doc |
P e

Using Eq. (A. 1> these become

(7) (of [

]

N,

i

and

3 0N £ e gﬁ
ALUA (Hf )(er-f [ffz‘] a 3a’A).

Dividing (A.6) by (A.5) to eliminate A, and rearranging, we find

2683 e

30t (4 ef [55] - 2¢)
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Equations (A.7) and (A.2) enable a suitable first guess for o to be

computed, Taking o, as an approximate value of ¢, the latter equation can be used
to find an estimate of & which can be used in (A.7) to derive a better estimate
of oo This procedure can be iterated until convergence to provide even more
refined estimates of o, but as the result is required only for a first guess,

three iterations are considered sufficient and no convergence test 1s used.

Having found o, the first guess p can be computed from Egs. (A.5) and (A.6).

The simplest way is to eliminate the error function which leads to

26N 5

. (A 8)
P = 3aN, T o)

If this value of p turns out to be negative, it 1s replaced by zero and o is

relaxed towards ¢, to some extent.
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