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MET O 11 Technical Note No 142

An absorbing upper boundary condition for

atmospheric models

by

H.C. Davies (Vacation Consultant)

A local energy-absorbing, upper boundary condition is developed for
atmospheric models. The behaviour of the free modes of the bounded-atmosphere
are compared to those of an infinite atmosphere for the simple case of an
isothermal, quiescent, basic state. It is shown that, if the bounded-
atmosphere is sufficiently deep, the free oscillations of the two systems differ
in only relatively minor respects. Moreover, unlike the system with an upper
rigid-lid approximation, no spurious free oscillations occur for the bounded-
atmosphere system, and hence the possibility of spurious resonant response to

forcing is excluded a priori.
The boundary condition is also shown to allow substantial upward propagation

of wave energy out of the system for waves in a broad frequency and vertical

wavenumber band.

(This work was undertaken by Dr Davies while he was employed as a Vacation
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1. INTRODUCTION

The upper atmosphere acts both as an absorber and reflector of energy
propagated from lower altitudes, and the formulation of atmospheric numerical
models should be in accord with this fact. Thus an upper boundary condition
applied at some finite height should allow for the possible transmission of
energy through that level. This energy would correspond to that which in the
real atmosphere would be absorbed at altitudes above the top of the model.
Again,a model of the entire depth of the atmosphere must be sufficiently
detailed to absorb and reflect upward propagating wave energy without inducing

spurious reflection at any level.

An upper boundary condition that requires the vertical velocity ( wﬁ
or a pseudo-vertical velocity ('a> or 6~) to be set to zero at some finite
height, pressure, or pseudo-pressure level will effect a perfect reflection of

wave energy at that level. Again, due to truncation effects, setting ¢«v or o

‘to zero at the model's level of zero pressure will also induce reflection. It

is highly desirable to obtain an understanding of the possible effect of these
'rigid-lid' type of upper boundary conditions since virtually all GCMs and

numerical weather prediction models currently employ a condition of this genre.

Several repercursions arise from applying a rigid-lid type upper boundary
condition (u.b.c.) that are in addition to, or related to, the in general spurious
reflection of wave energy. The free modes of oscillation of the model will differ
somewhat from the corresponding atmospheric modes, and the model will alsc sustain
certain spurious modes (Lindzen et al, 1968). Thus for a linear model we would
infer that the projection of the initial data onto the model's free and forced
modes would be misrepresented. For example the partition between the forced and
free mode components might be in error (Kirkwood and Derome, 1977; Desmarais and
Derome, 1978) with the possibility of resonant response to the aforementioned
spurious modes (Lindzen et al, 1968; Hayashi, 1976). Again initial data
representing a non-horizental propagating mode would be misrepresented in terms

of both 'realistic' and spurious horizontally propagating modes. These misrepresent-

‘ations would give rise to forecast errors during the subsequent evolution of the

flow. The 'realistic'.free modes of oscillation will themselves have phase speeds
that are incorrect and will also contribute to the forecast error. These pcssidly
serious shortcomings emphasize clearly that the unjustifiable rigid-lid approxima-
tion to the upper boundary is open to suspicion unless the vertical resolution of

the numerical model is adequate. Recent theoretical studies with linear models




by Nakamura (1976) and by Derome and his collaborators tend to fuel this suspicioh.
One attractive possibility to alleviate the effect of the rigid-lid is to
artificially remove upward propagating wave energy before it can be reflected

at the top by including a region with Rayleigh friction (and/or Newtonian
cooling) or a layer of high viscosity beneath the rigid-lid. (In the upper
atmosphere Newtonian cooling does indeed contribute substantially to the removal
of wave energy.) This procedure has been employed in simple gravity wave

models (Houghton and Jones, 1969; Klemp and Lilly, 1978) in an inertia -gravity
wave model (Eliassen and Rekustad, 1971) and in a linear planetary wave model
{mokioka and Arakawa, unpublished). However care must be taken in using this
method since sharp gradients in the friction coefficient can induce spurious
reflection (Klemp and Lilly, 1978). The study of the latter authors demonstrates
that it is desirable to have of the order of eight model layers in the artificial
" damping zone. Computational considerations would suggest that the technique would

be unacceptable for all but the simpler numerical models.

The foregoing considerations provide the motivation for seeking an u.b.c.
that allows for the radiation of wave energy. A suitable radiation condition can
be derived for various linear wave problems (Eliassen and Palm, 1961; Charney and Drazin,
1961), but its application in'a time dependent problem requires knowledge of the
time history of the flow structure across the entire domain (Beland and Warn, 1975;
Bennett, 1976). It is therefore too complex for implementation in most numerical
models, and moreover its validity for the non-linear atmospheric situation is in
doubt (Belard, 1976). Again the validity of the pseudo-radiation condition preposed

by Orlanski; (1976) is not clear for the particular problem under consideration.

In the succeeding sections we derive on the basis of simple physical
reasoning a 'local' absorbing boundary condition for linear perturbations of the
atmosphere about an isothermal basic state of no motion. A rigorous analysis
of the free modes of oscillation of the system and an assessment of the reflectivity
of the u.b.c. illustrate both its potential and limitations. The proposed
condition is also examined in the context of the mathematical framework recently
provided by Engquist and Majda (1977) for deriving local absorbing boundary

conditions that approximate the theoretical nonlocal rédiation boundary condition.

Finally some comments are made regarding the implementation of the proposedqy,5.c.

in a numerical model. 3



2+ GENERAL CONSIDERATIONS

We consider the linear equations representing small perturbations of an
hydrostatic, compressible, and inviscid atmosphere about a basic isothermal and
quiescent state. The perturbations satisfy the following pseudo-energy constraint,
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where the overbarred and primed symbols refer respectively to the basic state
and perturbed variables, and remaining notation is conventional. It follows

immediately from Eq (1) that, if the domain is self contained in the horizontal,
the norm of the perturbation variables will decrease with time if conditions .

gt the upper and lower boundaries (.'t"‘ofﬁ) are such that,

w’: 1) at z=¢ corresponding to a rigid surface,

and p'w’ >0 at z-=Z; corresponding to upward energy transfer.

Thus an upper boundary condition of the form W’= f()") such that {P,{:(F’)} >0
. for all locations and for all time on Z =%+ will provide an energy absorbing

boundary condition. If our system was unbounded in the vertical then the free

medes would be either evanescent or wave-like in character in the vertical.

The application of an absorting upper boundary condition implies that the free

modes of the bounded system will be either wave-like or if a mixed type in their

vertical structure. The analysis in the next section illustrates and helps to

clarify this somewhat unusual feature.

%, FREE OSCILLATIONS OF THE BOUNDED. ATMOSPHERE

If our upper boundary condition is suitable then the governing equations of

our system can be separated in the usual manner into horizontal and vertical structure

equations. The latter equation takes the form,

xg"z' i )I'X-:O ) (2)
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is the atmospheric scale height and | is the separation constant (the so-called
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equivalent depth). On the sphere the solutions of the horizontal structure
equa'tion take the form of Hough functions. For simplicity we shall assume a
mid-latitude ﬂ -plane system in which case the trigonometric wave

solutions of the form ec,”{"(“x +ly - 0"*)} satisfy the frequency equation,

. o ¢[|¢ F-(qmt.;«")]% — Fﬁk = 0 ) (4)
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with F= 29A/(‘F°); ,3: ﬂc‘/(ﬁ;) , where a is the earth's radius.
Here 0, m, n represent the dimensionless frequency, zonal and meridional
wavenumbers defined such that o = O/f M= K%z , M= ta/y where o0, k

and ﬁ refer to the corresponding dimensional variables. Our problem then is

to determine X as an eigenvalue of Eq (2) subject to the boundary conditions,

W"O i.e. { S’z +<LZ—K7}7C = 0 at Z=0
and W= £(p) i.e. 2&{3—2 '(/"z“’()S)é—‘ —F*Z Bt

where F' is an, as yet, undefined operator. Then to obtain estimates of the
‘eigenfrequencies from Eq (4) we allow for the fact, alluded to earlier, that P
and hence L and may be complex. To derive these estimates we note,from Eq (3),
that h and A are related as follows,

Lo~ KH/(5-X) and f;x - (kHD2AN/GN) g0 (Mp )« 0 ()

It then follows that (F i / F r> &« [ and hence {o & good approximation the rocots
>f Eq (4) are given by the formulae,

~ o Al g — - -~
0. = =3 FemY/fE , 2= F:™ /b for the Rossby wave, (6 )
U e R , o= igE )/ A for the inertia-gravity waves (7 )

After some algebraic manipulation it can be shown that the imaginary and

-real parts of the vertical wavenumber are related by the following two relationships,

k- 200 s ANl S0l (8),
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where [ = (%-k) provided the value of L/ ie such that
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‘ , Here [  is the spectral coefficient of the operator £

} We shall verify 'a posteriori' that these inequalities are valid for the solutions
discussed hereafter. It can be readily deduced from Egs (8) and (9) that the
vaves are purely evanescient (i.e.'Ar3 O ) only in the limit of Z; —>
For finite Zr the vertical wavenumber (1) is complex, but we can determine
the form of the solutions by specifying 2Zr and [ and solving sequentially

- for A; (Eq8), h, (Eq5), 0+ (Eas 6,7), A~  (Eq9), h: (Eq5)
and 0 (Egs 6,7).

In Fig 1 the variation of Iz\;l is shown as a functionof the depth of the model
atmosphere. The dashed line refers to the comparable value for the unbounded
atmosphere subject to a radiation condition. It is evident that a very large
error in the value of A: is incurred if the model top is lower than Zr’ =6 (""v’ 48}(-“)
The variation of A with Z+ produces a related change in the value of the
" equivalent depth (1«) « The (2—:, L.) variation of the single-valued h of

our model, with an absorbing u.b.c., is displayed in Fig 2, and compared with

the variation of the multi-valued equivalent depths of models witha Ww=0 vu.b.c.
and an (V=0 U.b.c « The single-value of h for a given Z7 implies that
there are no spurious free modes, and it is seen that lh  is within & per cent of
its correct value for Zfr 2 8.2 .+ An incorrect value for the equivalent depth
implies that the frequency and phase speed of the waves will also be in error

(Eqs 6,7) and some indication of the magnitude of this error for Rossby waves

is given in Table 1. The percentage error in the irequency is seen to be 7 per cent,
or less, for Z-: g y but it must be remembered that the generating formulae

are themselves only approxima.ions..

To conclude cur study of the free modes we determine the values of the vertical
vavenumber (A-) and the time-decay rate (—0’;) « Table 2 is a plot of these
variables against the zonal wavenumber ( w) for 7= 6 , and we have set
= am for reasons that will become apparent later. We note that these
solutions are in accord with the assumptions made in deriving Eqs 8 and 9. Moreover
the implied vertical wavelength and e =-folding decay time are so large as to
effect little change in the structure of the free modes over the vertical domain
and for reasonable time periods. The absorbing u.b.c. is thus seen to produce
only modification of the free Rossby modes of the unbounded atmosphere, and if the

bounded atmosphere is sufficiently deep these modifications are only minor.

4, THE REFLECTIVITY OF THE UPPER BOUNDARY CONDITION

We consider an upward-energy propagating wave, with a given frequency ( %)

and vertical wavenumber ()\) , of the form

e e I Dy |
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impinging upon a boundary at 2= 2“7 where the following condition must be
satisfied,

'_3_{_3_ . (,47: _k>})( ” ‘IFKX (10)

¢ | 2e

The reflectivity of the boundary will be measured by the ratio R = | B/A ‘

where B is the amplitude of a downward-energy propagating wave of the form
i(mx+my -Ft) 4z
e

Xg - B e
letting A= ZA + X,s and substituting into Eq (10), we obtain, after some
manipulation, the following expression for Rl)
- 270 R 4
R e 0 o 2T (R ) w T (u)

TN w25 (v + P,
where f}:‘+ ('ZEA//“)

In particular if we assume that (L-/]\> « | i.e. the vertical wavelength is
much less than 300 km, then Eq (11) may be approximated by the relation,
poce % ~131
- y“/\ff‘l(/“-—zal>

= 9 1 Il)
R ' N\ #/UP(/JFI*-Z;'?A- ) ; (

In this limit R ir seen to become a function of &= (f’l/{") and this dependency is
illustrated in Table 3. Almost total absorption occurs for &= I(/"=5=1) and the
-~eflectivity is less than 'z and Y0 respectively for S in the ranges

{+4 509 and (-3)1—2) g

Thus the effectivensss of our absorbing boundary condition will depend upon
¥ ~
our 2bility to design the operator /7" such that Mz & A for the range of
atmospheric wave motions that propagate energy vertically through the level %= Z7

For the particular system considered herein we note that,

R )

: Wl o mE R fE N
and from Eq { 4) A BT ) ¢

(13 )

It follows that for geostrophic modes,
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If the main contribution to & is the purely advective elfect of the mean flow,

i.ee o a ~Uk (7T & -24 IO.IU'»»\) , then we infer that,
e - ~ _ Y,
&Nl ~ .48 loi(ﬂd)tﬂm,
i.e. l&Xl = e where X~ 0|
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Thus we require F . Xm s and the operator £ must be chosen

accordingly. One possible choice would be to set

F X o i {‘KH %——)f "% C} Ix® where (  would be given a
= :

very small, but non-zero, value to avoid a singularity in the response of the

operator. In principle an estimate of the value of « could be inferred from
theoretical studies of the vertical propagation of energy by planetary scale
waves (e.g. Charney and Drazin, 1961; Holton, 1975), but in practice it would
be probably preferred to select a value of o( based upon experimentation with

the particular numerical model in hand.

We are now in a position to compare our 'ad hoc' approach with the
systematic framework proposed by Engquist and Majda (1977). The non-local boundary
condition X; Bt b applied at z*- 2T  would annihilate the
reflected wave, and Engquistand Majda propose that an approximate local, absorbihg
condition can be derived by some suitable expansion of Eq (13) for X . For the
particular case considered by them on expansion about the case of normal incidence
proved very effective. For the problem of the atmospheric u.b.c. for the
planetary scale waves thelimit of normal incidence (w — 0) is inappropriate
at least at the lowest order of approximation, since it corresponds ta non-
propagation in the vertical. Our approach indicates that a natural expansion
would be for (6»’ K) with Eq (10) providing the base formula. Moreover the

energy estimate of E¢ (1) demonstrates the well-posedness of our mixed initial

boundary value problem.
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