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Abstract 

The Met Office Unified Model is modified to include diffusion based on the Smagorinsky-Lilly 
sub-grid model and tested for a case of convective boundary layer turbulence at 50 m resolution. 
Comparison with the Met Office Large-eddy model reveals that, by using a smaller mixing length 
to compensate for damping from interpolation, this semi-Lagrangian model can produce a good 
convective turbulence simulation. 

1 Introduction 

With the arrival of more powerful supercomputers, operational weather centres can now run limited area 
models at horizontal grid lengths as small as a few kilometres. For example, the 4 km resolution Met Office 
Unified Model (UM) provides high resolution forecasts of, among other things, severe convective precipitation 
and fog for domains covering the UK. In order to improve this capability, there is increasing need for new 
critical tests. One approach is to perform reruns of real case studies (May et al., 2004). A complementary 
approach is to prescribe idealised (but still realistic) forcings and initial conditions and compare with analytical 
or well established scaling laws. Moreover, it is crucial that the model converges to the correct limit at even 
higher resolutions. 

With these motivations in mind, this paper describes tests of the UM at 50 m resolution. A simple case 
of a dry convective boundary layer (CBL) case is adopted. The use of these idealised forcings and removing 
moisture from the problem enables an isolation of the role of the dynamical core and the diffusion. It is 
intended to build on this with moist convective cases in the future. The dry convective boundary layer has 
also been much studied using independent Large-eddy models (Nieuwstadt et al., 1992; Mason and Brown, 
1999). One of these models, the Met Office Large-eddy model (LEM), is used here as a reference. 

Large-eddy simulation (LES) is appropriate for a high Reynolds flow such as a dry CBL as it simulates the 
resolved scale and parametrizes the diffusion associated with the unresolved turbulence. Some of this diffusion 
is provided by the sub-grid model. However, there is also diffusion implicit in the advection scheme and this 
needs to be balanced against that provided by the sub-grid model. In fact, there is a body of literature which 
argues that the implicit diffusion associated with the advection scheme can perform the same role as the 
sub-grid model (Drikakis, 2003). The interpolation in semi-Lagrangian advection provides an implied diffusion 
which may need to be taken into consideration when configuring the sub-grid model. The authors are not 
aware of a dry CBL LES being performed using a semi-Lagrangian model before. 
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2 Method 

The case used is one of free convection over a homogeneous land surface. This involves prescribing a weak 
wind and a large surface sensible heat flux. The initial potential temperature is a mixed layer up to an inversion 
height (zi0), and then an overlying stratification above: 

κ = κ0 z < zi0 

= κ0 + �(z − zi0) z > zi0 

κ0 = 293K ; zi0 = 1000m ; � = 0.003Km−1 (1) 

where � is the overlying vertical temperature gradient. The Coriolis parameter (f0) is 0.0001 s−1 . The initial 
wind in the x direction is 2 ms−1 and zero in the y direction. A random perturbation of amplitude 0.1 K is 
applied below 250 m to initiate turbulence. Roughness lengths of 0.1 m for momentum and 0.01 m for heat 
are used, typical of a rural land surface. The surface sensible heat flux is constant at 300 Wm−2 . A domain 
of 5 km x 5 km x 5 km is used to allow reasonable room for convective eddies, with 50 m resolution in the 
horizontal. The simulation is run for 10 hours, typically generating a mixed layer which deepens to 3.5 km, 
and warming of the mixed layer by about 6 K. 

Table 1 compares the UM and LEM model configurations. The LEM uses the Smagorinsky-Lilly model 
(Smagorinsky, 1963; Lilly, 1967) as described in Mason and Derbyshire (1990). A very similar sub-grid model 
was implemented the UM, with an identical formulation for 3D sub-grid eddy viscosity (�) and thermal diffusion 
(�h): 

1 1 1 
� = �2Sfm(Ri) ; �h = �2Sfh(Ri) ; = + ; �0 = Cs� (2)

�2 [�(z + z0)]2 �2 
0 

where �, �, S, Ri, �, z0, fm(Ri) and fh(Ri) are the mixing length, horizontal grid length, shear tensor 
magnitude, Richardson number, von Karman constant, momentum roughness length, momentum and heat 
stability functions respectively. �0 is the neutral mixing length and, following Lilly (1967), scales with the grid 
length multiplied by the Smagorinsky constant (Cs). Assuming an isotropic inertial sub-range and sharp cut-off 
sub-filter, Lilly (1967) calculated a value of Cs of 0.17. In practical LES, the turbulence is non-isotropic and 
contains sources of diffusion beyond the sub-grid model, notably the advection scheme. Thus, the Smagorinsky 
constant is often adjusted in the region of 0.17 for different applications. The value used in the LEM is 0.23. 
Following Mason and Callen (1986), this value is sufficiently large to dampen grid scale numerical noise (from 
finite difference errors for example), whilst not too large to waste the resolution used. 

The UM implementation of the sub-grid model differs slightly from Lilly (1967) in that it only multiplies 
the diffusion by the diagonal components of the shear tensor for calculating the sub-grid stress. The existing 
explicitly time-stepped horizontal viscosity and thermal diffusion (which is normally set constant in the hori­

zontal) is modified to vary in the horizontal and set to the horizontal components of � and �h (�
hor , �

h

hor). 
Since the horizontal diffusion is explicitly time-stepped, its value is limited to prevent numerical instability: 

�2 

�hor, �h

hor 
� (3)

16�t 

where �t is the UM timestep. The existing boundary layer vertical diffusion is extended to all model levels 
and set to the vertical components of � and �h. Since the time-stepping for the boundary layer diffusion is 
implicit, no limiting is applied to it. Identical forms of the stability functions fm(Ri) and fh(Ri) are used in 
the LEM and UM. 
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Model aspect control UM LEM

Dynamical formulation Compressible; Anelastic; 

non-hydrostatic non-hydrostatic 
Coordinate system Cartesian Cartesian 
Advection scheme semi-Lagrangian; centred differences 

cubic interpolation; for momentum; 
monotone κ monotone κ 

Time step 5 s variable (0.8 s average) 
Time stepping semi-implicit explicit 
Pressure solver GCR iterative Helmholtz FFT Poisson solver 
Vertical staggering Charney-Phillips Lorenz 
Horizontal staggering C-grid C-grid 
Smag. constant (�0/�x) 0.23 0.23 

Table 1: A comparison of the model configurations used in the LEM and control UM simulations. Smag. 
stands for Smagorinsky. �0 and � are the maximum mixing length and the horizontal grid length respectively. 
The LEM timestep varies during the simulation so that the sum of the viscous and velocity Courant numbers 
is 0.4. 

Both the LEM and UM use identical horizontal grid lengths. Whilst the LEM uses a uniform vertical grid 
length of 50 m, it became apparent that this was not ideal for the UM dynamics. The control UM run uses 
a quadratically varying vertical grid (to give good accuracy of the semi-Lagrangian scheme) with a vertical 
grid length near the surface of 1 m, increasing to 99 m at height 5 km, giving a similar vertical resolution 
to the LEM in the interior of the convective boundary layer (about height of 1 km). The additional near 
surface vertical resolution in the UM was required to give a good representation of the super-adiabatic surface 
layer in the dry CBL, since the UM semi-Lagrangian dynamics applies an isentropic assumption to potential 
temperature between the first level and the surface. 

3 Results 

Vertical cross sections of the vertical velocity 3 hours into the simulations are shown in Fig. 1. These both 
show gravity wave activity above the inversion (height 1300 m), entrainment near the inversion and convective 
plumes within the boundary layer. Although both simulations show convective mixing over similar depths, the 
entrainment, convective plume and gravity wave fields are qualitatively smoother in the UM than the LEM, 
despite using the same mixing length in the sub-grid model. 

A useful summary measure of the turbulence is the time-area average velocity variance and third moments. 
Figure 2 compares vertical profiles of the mean vertical velocity variance and third moments for the 4-5 hour 
averaging period. Both the variances and the mean transports (given by the third moment profiles) have a 
similar shape and span very similar depths; the UM has slightly greater variance and transport in the interior 
of the boundary layer compared with the LEM. 

A significant source of dissipation for large-eddy simulations is the sub-grid model. Both the LEM and 
the control UM are configured with the same filter scale (via the Smagorinsky constant (Cs) of 0.23). Figure 
3 demonstrates how the sub-grid model can be adjusted in the UM to give different smoothness of vertical 
velocity fields. Decreasing Cs to 0.115 (Fig. 3a) gives more smaller scale structure, closer to the LEM 
simulation. Conversely, increasing Cs to 0.46 gives smoother fields. 
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Figure 1: Vertical cross-sections of instantaneous vertical velocity through the domain centre at time 3 hours 
for: (a) the LEM, (b) the UM. Contour interval 1 ms−1, dotted values negative. Values greater than 1.5 
ms −1 shaded red, values less that -1.5 ms−1 shaded blue. 
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Figure 2: Time-area averaged vertical velocity variance (top) and third moment (bottom) profiles for LEM 
(red) and UM (black) valid averaging from 4 to 5 hours. 
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UM C_s=0.115 UM C_s=0.46 
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Figure 3: Horizontal cross-sections of instantaneous vertical velocity at height 1km at time 3 hours for (a) 
Cs=0.115, (b) Cs=0.46, (c) Cs=0.23, (d) The LEM with Cs=0.23. Contour interval 1 ms−1, dotted values 
negative. Values greater than 1.5 ms−1 shaded red, values less that -1.5 ms−1 shaded blue. 
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Figure 4: Normalised vertical velocity power spectra (averaged between hour 1 and 2) at height 1 km for 
50 m horizontal resolution dry convective boundary layer runs. Thin line is the inertial subrange -2/3 power 
law. The wavenumber (k) is defined as 1/wavelength. zi = 1325m is the inversion height of the control 
simulation and w� is the convective boundary layer velocity scale. kzi = 2 corresponds to a wavelength of 
13�, where � is the horizontal grid length. 

A complementary assessment of the sensitivity to sub-grid model is provided by the vertical velocity 
power spectra within the convective boundary layer. Figure 4 shows spectra for different UM sub-grid model 
configurations compared with the LEM. The LEM spectrum has a maximum near kzi � 1, a wavelength close 
to the depth of the mixed layer. It follows the inertial subrange up to wavenumbers kzi � 3, and then falls 
off smoothly with increasing wavenumber. It was found by Mason and Brown (1999) that such a fall off was 
close to much higher resolution results, and thus can be considered a robust reference for this study. 

The control UM spectrum (Cs = 0.23, Fig. 4) decays more rapidly with increasing wavenumber than 
the LEM simulation, despite the use of the same mixing length. The spectrum of the control UM simulation 
decays from the LEM simulation at values above kzi � 2, wavelengths of 13�. The UM simulation with 
Cs = 0.46 falls off even more severely, from kzi � 1, wavelengths of 26�, clearly a configuration of the UM 
which is too dissipative. The best match to the LEM is achieved with Cs = 0.115 with only a slight fall off 
from the LEM spectrum, starting at kzi � 6, a wavelength of 4�. So, the UM requires approximately half 
the mixing length to compensate for other sources of dissipation in the semi-Lagrangian advection scheme. 

Similar spectra were calculated (not shown here) for sensitivity to decreasing the UM timestep from 5 s 
to 1 s and also making the implicit timestepping weights less off centred; both changes had little effect on the 
spectrum. The UM and LEM simulations consumed similar amounts of computational time. 

4 Conclusions 

This paper described a comparison between the Met Office Unified Model and Large-eddy model at a turbulence 
resolving resolution of 50 m. For a dry convective boundary layer case with prescribed surface heat flux, it 
was demonstrated that a close match between the two could be achieved by using a smaller mixing length in 
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the UM. The UM run with a Smagorinsky constant of 0.115 produced the best match in terms of spectra. 
Presumably the smaller mixing length compensates for the extra dissipation provided by the semi-Lagrangian 
cubic interpolation. This study has confirmed in the context of the UM the need to consider the numerical 
dissipation from the both the advection scheme and sub-grid model when configuring it as a Large-eddy model 
(Brown et al., 2000). It is pleasing that the UM can produce a good convective boundary layer turbulence 
simulation. 
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