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INTRODUCTION 

Background 

Asthma is a respiratory illness manifested by an inflammation and or subsequent 
obstruction of air flow within the respiratory system [1, 2]. It is known that the 
inflammation of the air ways of an individual may result in asthmatic symptoms. 
Alternatively, the inflammation may lead to an obstruction of the air flow directly 
or indirectly by causing a hyperresponsiveness1 of the air way, which may then 
cause an obstruction of the air ways. This cycle is partly illustrated in Figure 1 
below. 
 
There are two categories of factors that can affect the manifestation of asthmatic 
symptoms described above. These are factors that are either known to be partly 
responsible for the development of the disease in an individual, or are risk factors 
that exacerbate asthma. In either group, they include air quality and weather 
related factors as well as tobacco consumption (either in a passive or active 
manner) and the exposure to allergens (e.g. molds, pollen, cockroaches) [3-7]. Other 
risk factors that exacerbate asthma include respiratory infections (bacterial and 
viral), physical exercise and its related condition of hyperventilation2, as well as 
bronchoconstriction3 [8-10]. Race, gender, socio-economic status /family size [11-
14] and extreme emotional expression [15] have also been strongly associated with 
asthma events in different studies. Predicting asthma episodes in an ideal situation 
would require that we account for all the known potential predictors/indicators, 
however, the availability of data that is useable is a common limitation. 
 
This study focuses on asthma episodes and how they are related to weather and 
air quality factors. The purpose of the study was to use the existing relationships 
to predict daily asthma admissions, and to explore the chances of predicting 
extreme asthma events in London.   
 
The approach to developing tools for asthma forecasting was wholly quantitative. 
There are known associations /relationships between environmental (weather and 
air quality) factors and asthma. There are also available longitudinal datasets on 
some of these weather and air quality indicators, as well as asthma episodes 
statistics. Hence the choice of time series modeling, using total asthma daily 
admissions in London as the dependent variable and all others as potential 
predictors was appropriate. Distributions of asthma hospital admissions were 
statistically matched to weather and air quality factors to provide a multivariate 
description of the daily admissions risks [16]. 
 
Suitable statistical models and methods were considered because the anticipated 
predictive models comprised many variables that respond in different ways to the 
dependent variable (particularly for categorical variables). The findings from these 

 
1 A state characterized by easily triggered contraction of the small airways (spasm). 
2 Breathing in excess of what the body needs i.e. rapid or deep breathing that can occur with 
exercise, anxiety or panic.  
3 The constriction of the airways in the lungs due to the tightening of surrounding smooth muscle, 
with consequent coughing, wheezing, and shortness of breath. 
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modeling techniques provide some important tools needed in formulating an 
asthma forecast. 
 

Figure 1 The Relationship between Factors in Asthma 
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Asthma 

Asthma is a condition of great public health concern here in the UK and globally 
[17-21]. It is reported that the disease affects people of all races and ethnic groups 
worldwide, from infancy to old age, but with slightly more boys than girls affected 
and, after puberty, more women than men [17, 22]. This is consistent with some 
earlier findings in the United Kingdom (England & Wales), where a similar pattern 
was reported from data on patients consulting their General Parishioners for 
asthma [2]. Currently global estimates suggest that as many as 300 million people 

are affected worldwide [17, 22, 23], and the global burden of the condition is rising 
particularly among children [17, 20]. 
 
Asthma has a predictable prognosis; that is to say, the course of the disease is well 
understood [24]. However its diagnoses remain a challenge, as the disease is not 
clearly defined by particular set of conditions, but a mix of several factors [18, 25]. 
There are numerous and quite unpredictable underlying causes of asthma, some 
of which include genetic and environmental factors [26, 27]. As a result of the 
complex nature of the condition, some of the diagnostic techniques commonly 
employed range from the history and patterns of symptoms, physical examination 
and lung function measurements including spirometry, to the skin test 
identification of allergens [28].  
 
Several studies have shown changes in the global epidemiology of asthma. 
Developed countries have consistently shown dramatic increases in the prevalence 
and this change has, more recently been observed in some less-developed countries 
[20, 29-31]. In 2001 the (UK) National Asthma Campaign [32] reported that asthma 
affected over five million people, about one in five households. Later reports 
indicated that the United Kingdom had one of the highest prevalence rates of more 
than 15% [21], with the latest estimates supporting this [17]. In England 67,077 
people were hospitalized for asthma between April 2006 and March 2007, of whom 
more than 40% were children under the age of 15 years [33]. According to the 
Hospital Episode Statistics of the Department of Health (January 2001 - December 
2006), London which is the busiest and most densely populated areas in the UK 
had about 56,832 asthma related hospital admissions recorded over that period 
giving a crude annual rate of 9,472. This situation presents asthma as an 
important condition of public health concern with dimensions not just limited to 
the individual(s) affected, but also posing a significant burden on the health care 
resources as well as the society more broadly.  
 
In spite of rising prevalence and a significant socioeconomic burden, the 
fundamental biology or pathophysiology of asthma remains poorly or inaccurately 
defined with no clear consensus [23, 34, 35]. Notwithstanding this, the diagnosis 
of asthma based on physician’s assessment and recorded as hospital admissions, 
is a vital source of data. These data capture those acute, severe episodes requiring 
hospital attendance. They supplement self reported morbidity [36] and general 
practice records [37], providing a comprehensive picture of the full scale of asthma 
morbidity.  
 
Asthma, like most respiratory illnesses, is strongly affected by environmental 
conditions. The association between asthma and some environmental factors have 
been modelled to identify some of the underlying causes, and this has been useful 
for mitigating asthma events particularly in the UK [38]. Nonetheless our 
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understanding of the exact mechanisms at play in this multi-complex condition are 
under-developed and do not permit a comprehensive prediction model.  

The Biology of Asthma 

Asthma is a chronic respiratory condition typified by obstruction and continuously 
persistent inflammation of the airways [39]. This obstruction to airflow, which is 
episodic within individuals with early or mild asthma, can cause symptoms of 
tightness and wheeziness in the chest [2]. Recently British and American asthma 
education, prevention and management guidelines also include acute or sub-acute 
episodes of progressively worsening shortness of breath, cough, wheezing and 
chest tightness or some combination of these symptoms. These symptoms are 
accompanied by decreases in expiratory airflow and objective measures of lung 
functioning that employ spirometry and peak flow [28, 40, 41]. 
 
Various biological models have been advanced to explain the processes involved in 
asthma morbidity generally relying on interplay between genetic and environmental 
factors, and the immune response. The details of this are described elsewhere1 [2, 
23, 42]. 
 
The UK Committee on the Medical Effects of Air Pollutants (COMEAP)2 in 1995, 
classified asthma as a disease of the lungs in which the airways are unusually 
sensitive to a wide range of stimuli, including inhaled irritants and allergens. They 
further elaborated on the role of environmental stimuli, particularly air pollutants 
in triggering or exacerbating the condition. The inherent interdependence or 
independent effects of known environmental determinants of ill health, particularly 
air pollutants and some weather factors has been reported by authors who have 
looked at the effect of the environment on asthma exacerbations [43-45].  
 
Some other biological changes that result in increasing an individual’s vulnerability 
to asthma exacerbation and are initiated by environmental changes may be of 
important note. A common one relates to inflammatory and structural changes in 
the airways in the lung, which contribute to the full manifestation of the chronic 
form of asthma [46-49]. This remodelling of the airways increases an individual’s 
predisposition to asthma [24, 46, 48, 50], and thus supports the proposition that 
environmental factors play a critical role in the inception and progression of the 
disease in genetically susceptible individuals [29, 30].  
 
Asthma is a complex multi-system condition, the appropriate prevention or 
management strategy of which transcend the known biological causes [51].  

The Epidemiology of Asthma 

Debates in the scientific literature on the epidemiology of asthma in England and 
Wales have often focussed on the asthma trends over the past few decades. Are 
increases or decreases in asthma prevalence due to changes in the environment, 
and if so what are those changes; are they attributable to changes in the 

 
1 The “Ontogeny of atopic asthma” as illustrated by the relationship between genetic and 
environmental factors in asthma, DH, 1995 pp16-18 
2 The Department of Health (DH) asked Committee on the Medical Effects of Air Pollutants 
(COMEAP), 1995 to advise on the possible links between outdoor air pollution and asthma, 
excluding biological pollutants such as pollen. This constituted the report: “ASTHMA AND 
OUTDOOR AIR POLLUTION” published by the HSMO  
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population; or is there another explanation entirely?  It has, for instance, been 
suggested that declines in prevalence of asthma that have sometimes occurred are 
entirely attributable to variations in diagnosis [52-54]. Arguments have been put 
forward about changes in diagnostic categories or misdiagnoses that could explain, 
say, rises or falls in the rates of acute bronchitis compared with asthma. The 
evidence for this in the literature, however, does not adequately account for the 
changes in asthma prevalence over the past decades.  
 
In recent years a number of studies published have identified environmental 
factors that appear to trigger asthma exacerbations or protect against the 
development of asthma. The “Genetic-Environment” interaction and resultant 
changes that affect asthma have equally been discussed by many authors. However 
the striking note highlighted in one of the debates is the fact that the expression of 
environmental and genetic determinants of a complex disease such as asthma, 
depends on the context in which this occurs [55]. Local environmental conditions 
are thus important in determining the likely impact or manifestation of asthma as 
some of these notable factors such as temperature, humidity, pressure as well as 
air pollutants do laterally interact and hence do not independently affect asthma/ 
asthma exacerbation [44, 56-62]. The discussion on asthma epidemiology beyond 
the genetic or environment link(s) is not exhaustive, hence for the purpose of this 
study; subsequent sections will highlight the relationship between asthma and 
some specific weather and air quality indicators. 

The Disease Burden of Asthma [Individual / Health Service (Cost and 
Infrastructure)] 

The severity of asthma has been classified into four different categories by the 
Global Initiative for Asthma [17]. According to its earlier report, these four 
categories were intermittent, mild persistent, moderate persistent or severe 
persistent asthma. These asthma classifications were based on the clinical features 
of the disease as well as the prescribed/ corresponding treatment plan [63]. 
Lately, the classification has considered the etiology as well as environmental 
factors [64, 65].  
 
On a per capita basis, the UK has the greatest burden of severe asthma of any 
country in Europe [66]. The Global Initiative for Asthma (GINA) currently reports 
that more than 18% of people in Scotland, 17% of people in Wales and 15.3% of 
people in England experience symptoms of asthma. This compare unfavourably 
with 8.2% of people in the US [67], 7% in Germany and 7% in France [68]. Of those 
asthma sufferers in the UK, some studies suggests the patients with severe asthma 
account for the majority of hospitalisations due to asthma [66]. This group of severe 
asthma sufferers consist of 2.6 million individuals  (i.e. 2.1 million adults and 
500,000 children) in the UK [69].  
 
Medical Practitioners in the UK are seeing 20,000 new cases of asthma each week 
and about 30% of children aged 13-14 years are known to have asthma symptoms 
[17]. In the UK in 2004, there were 75,000 emergency hospital admissions due to 
asthma and 1,500 fatalities [17]. It was recently reported that about 5.4 million 
people in the UK are currently receiving treatment for asthma, 1.1 million of these 
are children [33]. Despite these treatments, work done by Demoly and colleagues 
to describe the characteristics of “asthma control” in some European countries 
including the UK suggest, that a substantial portion of asthmatics are “not well-
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controlled” and thus need to be educated on the importance of asthma control and 
adherence to treatments [70]. 
 
The burden of Asthma, however, is not solely a health burden; there is also an 
associated economic burden.  In 2004, it was estimated that asthma cost the UK 
over £2.3 billion a year [19], including £1.2 billion in individual productivity losses 
[71].  The Office for Health Economics further estimated that the cost to the NHS 
alone in 2001 totalled £889 million. Most of that was associated with dispensing 
and prescriptions (£659 million), but around 5.5% of the cost was associated with 
hospital admissions. In addition, poorly controlled asthma appears to have a 
considerable impact on health care costs [72]. 

Relationship between Environmental factors and Asthma events 

The Department of Health and Health Protection Agency published a review of the 
health effects of climate change in 2008 [16].  In the report the two component 
issues of the environment with which we are principally interested, weather and 
air quality, were both considered.  
 
The constituent indicators (e.g. temperature, humidity, vapour pressure, wind, as 
well as atmospheric aerosols) and their prevailing regimes at some altitudes can 
promote the formation of mists, fogs and polluted environment [73]. Meanwhile 
environmental factors do have intricate interrelationships and their collective 
impact on health may even be more complicated to estimate. Hence when presented 
with this kind of environment with several emissions of various pollutants, there is 
a propensity to cause environmental pollution near ground or habitable levels. The 
environmental dynamics as well as its pollution can exacerbate asthma through 
many ways and some of the mechanisms involved have been discussed [74].  
 
Health conditions triggered by global environmental changes as well as 
occupational exposures vary considerably in symptoms and these are known to 
primarily depend on the individual’s susceptibility and level of exposure [75-78]. 
Vulnerable groups within given populations, particularly children and the elderly 
tend to be the hardest hit with the former experiencing both the direct and indirect 
effects of these changes [77, 79]. The evidence for environmental effects on health 
is based on five main types of empirical studies [80]: 
 

1. Health impacts of individual extreme events (e.g., heat waves/extreme cold, 
floods, storms, droughts);  

2. Spatial studies where climate is an explanatory variable in the distribution 
of the disease or the disease vector;  

3. Temporal studies assessing the health effects of inter-annual climate 
variability, of short-term (daily, weekly) changes in temperature or rainfall, 
and of longer-term (decadal) changes in the context of detecting early effects 
of climate change;  

4. Experimental laboratory and field studies of vector, pathogen, or plant 
(allergen) biology; and  

5. Intervention studies that investigate the effectiveness of public-health 
measures to protect people from climate hazards. 

 
These studies, and many others have demonstrated practically the need to deduce 
potential health effects from current and past climate and air quality variability 
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[81]. Thus the dynamic states of the weather and air pollutants, which have 
demonstrated some effect(s) on asthma and its severity in the past, is useful in 
predicting future occurrences of the condition. Probabilistic processes taking into 
account individual and collective effect of very specific modifiers do provide some 
opportunities for prediction [82, 83]. 

Asthma and Weather 

In 1995 the Intergovernmental Panel on Climate Change (IPCC) formally reported 
on the likely health effects of the rapidly changing climate and environment [84]. It 
was anticipated that the expected health risks from the changing global climate 
systems would transcend all national boundaries and hence affect large scales of 
populations. The indirect effects of these changes on the entire ecosystem and their 
resultant effects on diseases, which impact populations, is a matter of great Public 
Health concern. Forecasting these risks is complex and uncertain, but also requires 
specific data on a very long-term basis [85]. 
 
There is ample evidence on the effect of temperature changes, barometric pressure 
and relative humidity on the worsening of asthmatic symptoms [86-93]. Many of 
these studies have used the association of weather components with a range of 
disease incidence, hospitalization or mortality (of medical data) to examine their 
effects on the health condition. For instance the effect of temperature was observed 

with GP consultations for respiratory diseases, and it was evident that there could 
be up to 15 days delayed effect of cold temperatures on the incidence respiratory 
illness [94]. Also a constant seasonal variability in asthma admissions among 
children was found in Athens (Greece), where relative humidity and atmospheric 
pressure were established as key determinant meteorological factors [95]. This 
supports the fact that environmental drivers of asthma events could be effective in 
predetermining the occurrence or severity of the condition. 
 
It has been well established that there is a relationship between weather related 
factors and asthma events, and this is not a source of debate [56]. It is also well 
established that the relationship is affected in complex ways by changes in air 
quality and season, but again worth noting that these seasonal effects have 
different associated conditions depending on the location. Asthma events in 
Mexico, for instance, are associated with the rainy season, whilst in England and 
Wales asthma events are more strongly associated with seasonal change rather 
than rainfall [90, 93]. Furthermore, it has been observed in the UK and Taiwan 
that peaks in asthma events occur in the winter /autumn seasons but not in 
summer [94, 96, 97]. Under these circumstances, it becomes critical to understand 
the local relationships between asthma, weather, air quality, and season. However, 
even when local relationships are well understood, it remains difficult to predict 
extreme asthma events; that is, unusual peaks in asthma events that fall outside 
the usual fluctuations associated with seasonal changes as well as variations in 
weather and air quality. 

Asthma and Air Quality 

The evidence in literature for pollution related health events, particularly for 
respiratory ailments like asthma is considerable. The association between asthma 
events and notable air pollutants like nitrogen (iv) oxide, particulate matter, ozone, 
sulphur dioxide, smoke as well as household or natural environmental allergens is 
well known [44, 45, 57, 59, 98-100]. For instance, it has been observed that 
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susceptible individuals in particular get “asthma exacerbations” more frequently 
when exposed to pollutants than, would happen in initiating allergies among non-
susceptible individuals [101-103]. The known relationships between asthma and 
air quality, however, have not been successfully used to forecast or predict asthma 
events. This has largely been due to the difficulty in estimating very randomly 
distributed/dispersed air pollutants whose original sources (of pollution) are 
unknown [104, 105].  
 
Individual air pollutant effects on asthma are better understood than their 
collective effect. The interaction between air pollutants and other environmental 
factors further complicates their likely effect on asthma, and hence less 
understood. This complex situation makes the prediction and forecasting of 
asthma using air pollution information even more difficult. As a result of the 
shortfall in understanding the complexity of pollutants, the idea of associating 
“increased air pollution” to asthma /allergic symptoms of asthma has been 
criticized by few studies [106-108], even though some others do agree [109-118]. 

Modelling and Forecasting (Environmental Determinants of Health) 

Forecasting is an estimation process. It relies on modelling relationships in 
historical data to predict the likelihood and/or magnitude of a future unknown 
event. The scientific study and reporting of forecasting has been documented in 
literature dating as far back as the 1930s [119]. It is most strongly associated with 
the economic and financial literature; however, forecasting is an important policy 
tool in many areas.  Notwithstanding the potential of forecasting, its absence from 
the health literature is conspicuous. This is particularly surprising given the 
impact that forecastable environmental changes can have on health. 
 
There are several methods that could be used in developing forecasts and are 
described as either subjective or objective [120]. The main subjective method is 
judgemental, whilst the objective methods include time series, causal or 
multivariate models (including econometric methods) as well as various simulation 
or probabilistic procedures[121]. The strengths and weakness of these methods 
have been discussed elsewhere [122, 123]. Forecasting has often been done using 
analogies, and more recently, structured judgemental procedure where experts list 
analogies, rate their similarity to the target, and match outcomes with possible 
target outcomes [124]. A diagrammatic presentation of a forecasting “Selection 
Tree” is presented in Appendix A, [125]. 
 
As discussed in earlier sections, environmental factors (weather and air quality) 
have significantly affected health conditions. There are several time series studies 
that examined the distributions of these environmental factors, and a majority of 
these studies have subsequently described the patterns or trends of decomposition 
of the series in relation to the patterns of diseases (e.g. respiratory illnesses). For 
example, some recent studies reported significant health effects of air pollution at 
various levels, with some remarkable epidemiological models demonstrating 
consistent associations between respiratory illnesses and exposure to increased 
concentrations of airborne pollutants [110, 126-128]. These models have 
contributed in explaining the relationships between the environmental dynamics 
and the changing patterns of respiratory illnesses within various time frames and 
geographical areas. The models have equally generated some debates and 
questioning regarding the robustness of their methodologies, some inherent 
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inconsistencies in their findings [129]. Meanwhile the observed variations and 
some inconsistencies in the relationship(s) between weather/air quality factors and 
diseases have been attributed to poorly defined diagnosis of some particular 
conditions [58], or as a result of some location characteristics [128].  
 
Very significant developments in air pollution epidemiology has come from multi-
centre studies such as the “Air Pollution and Health: A European Approach” project 
- APHEA-2 [126-128] and the National Morbidity, Mortality and Air Pollution Study 
– NMMAPS [130] both of which addressed the challenging issues in their study 
designs. The details of these major studies have been discussed in the scientific 
literature [126, 127, 129, 131], and is worth noting that these methods have been 
revaluated using some common protocols which sought to identify possible 
heterogeneity in the findings of other previous multi-city studies carried out [132]. 
Even though much is said about the relationships, between 
environmental/pollution factors and disease occurrence, this has largely been 
limited to the decomposition of trends over time periods. There has not been 
sufficient work on forecasting diseases particularly in relation to hospital 
admissions episodes.  

Methodological Challenges in Forecasting 

Health forecasting is known to present very complex methodological challenges, 
given the nature of interdependent determinants of ill health. There are obviously 
many exposures or risk factors with different dimensions of complexity as well as 
complex human behaviors to consider in a health forecast model. Thus even for a 
particular health condition, it is quite difficult to pinpoint its cause(s).  
 
It is difficult to adequately collect data on both exposures and health outcomes in 
suitable locations [133, 134], or to find historical data of the sort that covers a wide 
range of time, suitable for forecasting disease episodes. Thus when faced with data 
insufficiency with regards to the precision and complexity in the distribution of 
individual indicators, forecasting a health condition can further be limited by the 
choice of potential analytical methods. Also the challenge of aggregating very widely 
dispersed indicators across wide geographical areas and times (i.e. a source of 
variation); could potentially hinder the prediction of disease episodes. Data and 
methodological shortfalls pose a serious challenge to health forecasting and can 
thus lead to substantial deviation or worse still, an inability to predict extreme 
events.  

Health Forecasting and Commerce 

Modelling and forecasting generally follow approaches that require some historical 
data (time series data in particular). The time trends of these data are then used to 
project future events. Even though the reported innovations in forecasting are 
strongly associated with finance and econometrics [122], their methods can be 
adapted in health forecasting. However, Health forecasting or weather /air 
pollution forecasting each bare some distinctive characteristics. Health forecasting 
assumes the conceptual perspective of disease causality, in the modeling and 
prediction of the outcome [135]. Though it also largely depends on historical data, 
the results of a health forecast are not usually shaped by recent events (except for 
catastrophic events), but by long term trends in the dataset. Health forecast 
provides a better understanding of the occurrence of a disease condition, and uses 
predictions to ease any potential extreme/unexpected risks [136]. 
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Commercialization of health forecast is relatively new, but well practiced by few 
organizations including the Met Office in Exeter. In the next section, the approach 
to health forecasting is briefly described considering the Met Office example. 

The Met Office Scenario: Approaches to Developing a Health Forecast  

The concept of Health Forecasting from a commercial perspective involves turning 
simple scientific concepts /ideas related to a health condition into business 
solutions for the well being of individuals.  
 
In the process of developing a health forecast, the negative impact of conditions 
surrounding the operational activities of potential clients is first observed and 
analyzed to establish the magnitude of the problem. A typical example is the 
forecast for COPD in the UK. It was observed that symptoms of COPD sufferers get 
worse during colder weather, and hence exacerbate the condition [137]. The 
environmental factors which could be directly related to such a health problem (i.e. 
the different measures of cold temperature) are related to the condition. A forecast 
is then developed using the relations. This forecast constitutes an environmental 
solution aimed at minimizing the disease burden, and hence is piloted and then 
repackaged to suit specific clients. 
 
The process of developing a health forecast service can be summarized in the 
following steps: 

1. Concepts and ideas that address an important health condition of great 
burden and /causing significant financial cost to the health service are 
identified. 

2. The true impact of this health condition is assessed from records 
/literature. The ideas are also investigated from the literature and hence 
a justification of the exercise or study is reached. 

3. Data is then sourced for most of the important or necessary parameters 
shown to be of essence in the scientific literature. 

4. The datasets are then prepared for analysis; and these include basic 
descriptive patterns as well as the development of algorithms  

5. The Model obtained is then validated using similar historical data 
6. The final list of parameters used in this model is again evaluated for the 

relative ease of their measure and predictability. 
7. Very specific and tailor-made disease forecast services are then developed 

for the client.  
 
The procedure outlined above is illustrated in Figure 2 below. For the Met Office, 
this is an important activity, which has corporate management and support. There 
is also a Health Forecast Team directly responsible for all its activities in health 
forecasting ranging from scientific research to commerce and clients.  
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Figure 2 The Met Office Health Forecasting Team Disease Model 
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Aims and Objectives of study 

The Aims of the study 

The study on asthma and the environment was commissioned by the Met Office 
Health Forecast Team as part of the preliminary development of tools which could 
be used to forecast asthma hospital admissions. The aim of the study was to 
investigate the extent to which meteorological and air quality factors could be used 
to forecast hospital admissions.  There was a particular interest in forecasting 
extreme levels of asthma admissions; that is, peaks in admission well above the 
expected value given seasonal variation.  In view of the highly contextual nature of 
the interaction between weather and air quality to affect asthma events, this 
preliminary investigation focussed on asthma admissions in the London area (i.e., 
asthma admissions occurring in the area circumscribed by the M25 motorway). 

General Objectives of the study 

The general objectives of this study were to: 
 Merge independent hospital admissions, weather, and air quality datasets; 
 Ensure that the merged dataset was suitable for time series analyses and 

included appropriate dummy variables to study unmeasured effects of 
month, seasonality, etc.; 

 Undertake a descriptive analysis of key variables;  
 Undertake time series modelling, focusing on Generalised Linear regression 

Models (GLM) including the Poisson and Negative binomial regression count 
models, and Logistic Regression Models (LRM) as well as Quantile Regression 
Models (QRM); and 

 Validate predictive models, using conventional clinical statistical tests and 
suggested error measurements. 

Specific Activities 

 We examined the data type and distribution of all continuous variables as 
well as their probability plots for normality and missing values. Ordinary 
frequency tables were examined for nominal qualitative or categorical 
variables.  

 Time series datasets were generated by collapsing data records of individual 
hospital admissions into records of daily counts of hospital admissions. 
Independent weather and air quality data collected from multiple stations 
were combined to produce average daily weather and air quality. 

 Descriptive analyses were conducted to identify longitudinal trends in the 
continuous weather and AQ data and in the distribution of daily hospital 
admissions.  

 A pool of target independent variables was developed using Negative 
Binomial Regression to explore the individual relationship between each of 
the available weather and AQ data and hospital admissions. The same 
procedure was used to establish suitable time-series lags that might be 
required for subsequent multivariate modelling. 

 Preliminary multivariate analyses were then conducted using Negative 
Binomial Regression (NegBin) to pre-select temperature and air quality 
variables best suited for modelling, since the NegBin regression model was 
more suitable compared to the Poisson. 
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 Three separate methodologies to predict daily asthma hospital admissions 
were contrasted.  Two of the modelling techniques (Poisson and Logistic 
regression) model expected values. Quantile regression can be used to model 
expected values (50th percentile), as well as values at any arbitrary percentile, 
and can be used to model extreme events. Standard model tests (Link test, 
HL Goodness of fit) were used to assess the fitness of the models. 

 We applied a simple conventional clinical statistical test to determine the 
predictive value of each model. The reduction in Root Mean Square Error was 
used in the cross validation of each predictive model.  

Rationale for the study 

The global rise in the incidence and/ prevalence of asthma is well known [17, 20-
23, 29-31, 33, 138-141]. Even though there are notable differences in the diagnoses 
of asthma regionally [142], it is still notable that the number of susceptible 
individuals have increased globally. This has subsequently led to an increased 
demand for limited health care resources like hospital beds.  
 
Studies that have reported on the likely causes or determinants of asthma globally 
have associated asthma to atopic factors [143], ethnic and domestic factors [11-14, 
144-147], allergens and allergies [3-7] as well as the weather and air quality factors 
[2, 44, 45, 57, 59, 98-103, 148]. In the United Kingdom, the disease burden of 
asthma and its management disproportionately affects the vulnerable populations 
and demographics [144, 149]. 
 
The effects of the weather and air quality factors on asthma have been extensively 
discussed but the exact mechanism and role they play to either cause or exacerbate 
the condition is not clearly understood. Another conspicuous gap in the literature 
is the forecast of the disease episodes using these environmental components. 
There isn’t sufficient information to guide health care/service providers on the 
likely occurrence of asthma events; be they normal or extreme/unexpected events. 
Some commissioned studies (by the Department of Health) on air pollution and 
asthma in the UK recommends among other things that further investigation on 
the epidemiology of asthma in relation to air pollution and weather, be conducted 
to close the knowledge gap [2]. 
 
This study is thus important because it provides some tools for developing the 
asthma forecast using the weather and air quality factors. The research carefully 
describes suggested methodologies that could be used in creating or selecting 
suitable predictors for asthma hospital admissions based on weather and air 
quality datasets as well as asthma hospital records. Furthermore, innovative ways 
of testing and validating forecast models have been provided. This study provides 
information that may be useful to health service providers as well as policy makers 
to optimize services for asthma patients. 
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METHODS 

The effect of meteorological factors on hospital admission for asthma was 
investigated. We specifically sought to develop tools for predicting and forecasting 
hospital admissions for asthma. Our key questions related to the feasibility of 
forecasting asthma based admissions on weather and air quality factors.   The 
motivating questions were: 
 
 To what extent can meteorological and air quality factors be used in forecasting 

asthma hospital admissions? and  
 Can daily hospital admissions for normal and extreme asthma episodes be 

predicted from the changes in the meteorological and air quality mediating 
factors? 

 
We examine three methodologies for predicting and forecasting asthma hospital 
admissions for normal and extreme events, and evaluate the fit and predictive 
capacity of each method. 

Literature 

The review of literature on this section was limited to the extent that it informed 
the key factors (i.e. the daily hospital admissions, daily weather and air quality 
indicators) under investigation in the dataset. The nature and distribution of these 
measures guided our selection of the literature, in support of the statistical 
methods used. Our key dependent variable (daily hospital admissions) consisted of 
count data entries, which were not normally distributed. The other independent 
variables were quite varied in both their data types and distributions. These 
variables are discussed in detail below.  
 
Generalised Linear Models (GLM), specifically count models (poisson and negative 
binomial regression), and Quantile Regression Models (QRM) were used in different 
approaches to modelling the predictors of asthma daily admissions. These methods 
and their reference literature are subsequently discussed. 

Data Sources 

Three independent datasets were sourced. These included asthma hospital 
admission data from the Hospital Episode Statistics database sourced through the 
Met Office; Weather data and estimates of Air Pollutants. Even though these 
datasets each presented a collection of indicators with a corresponding time (date) 
record, they were not organised in the usual format of time-series data. Hence we 
generated independent time-series datasets for each of the three sets mentioned 
above by summarizing and ordering the daily records. These three new time-series 
datasets were then combined into one dataset and used in the development of the 
forecasting models. The Asthma admissions, Weather, and Air quality data sets are 
each discussed in turn. 

Asthma Admissions 

The Hospital Episode Statistics (HES) is a record-level data warehouse managed by 
the NHS Information Centre for Health and Social Care Data.  The data included a 
record of all asthma admission in hospitals within London from January 1, 2005 
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to December 31, 20061. Our operational definition for Asthma Admission was any 
diagnosis with a primary diagnostic ICD-10 code. Data from the HES are extracts 
from routine data flows exchanged between healthcare providers and 
commissioners via the Secondary Uses Service[150]. The data entry and quality 
checks involved have been described elsewhere[150]. Asthma hospital admission 
in this dataset was indicated by a unique variable, which contains the 
“anonymised” personal identity of the individual hospitalized. 
 
The strengths and weaknesses of the HES data source and similar hospital 
admissions /episode statistics have been discussed extensively in the literature; in 
particular issues have been highlighted regarding the compilation and purpose of 
the dataset [150-157]. The HES data is known to have some shortfalls in maternity 
and psychiatric data for example, but again provides a tool to handle any lapses. 
This tool is the Data Quality Indicator (DQI)2 which enables both users and 
providers of HES data to analyse the data quality at the level of the NHS Trust[150]. 
Even though DQI reports on asthma for our dataset were not available, an issue of 
generic concern in dealing with data on the morbidity has always been the difficulty 
associated with its diagnosis. Nonetheless, it is no reason for withholding the data 
on asthma hospital admissions, or going ahead to using it in developing tools for 
forecasting. 
 
Mindful of these discussions and the nature of some inherent deficiencies in the 
dataset on asthma hospital admissions, we proceeded to examine dataset and 
explore the possible associations between asthma admissions as a key dependent 
variable and other independent factors within other datasets. This data assessment 
was focussed on predicting and forecasting asthma admissions. 
 
We examined the probability plots (normal distribution) of the key dependent 
variable (Asthma hospital admissions) and other selected variables in the HES 
dataset, and checked for outliers as well as the proportion of missing entries. A 
comprehensive list of the variables in the HES dataset are listed in the attached 
codebook (Appendix C) and fully described elsewhere[153]. Individuals (patients) 
were identified by a unique ID number3 across all data years [150]. This unique ID 
number did not identify any individual’s number of visits within the study time 
frame and hence we treated each hospital visit on any occasion as unique. 

Climate 2005 & 2006 

The daily Meteorological factors4 for all weather monitoring sites (and their 
respective postcode areas in London), as well as their location coordinates and 
altitudes were sourced through the UK Met Office database (Methodology for data 

 
1 The HES data was procured by the Met Office Health Forecasting Team  
2 The Data Quality Indicator provide a summary of HES data quality, and should identify issues 
that need to be addressed by data providers, and taken account of by analysts 
3 It is generated by matching records for the same patient using a combination of NHS Number and 
local patient identifier, plus the patients' postcode, sex and date of birth; but maintaining 
anonymity. 
4 Meteorological factors: Maximum Temperature (deg C); Minimum Temperature (deg C); Night 
Minimum Temperature (deg C); Night Maximum Temperature (deg C); Day Maximum Temperature 
(deg C); Day Minimum Temperature (deg C); Mean Wind Speed (m/s); Wind direction; Ambient Air 
Temperature (deg C); Wet Bulb Temperature (deg C); Dew Point Temperatures (deg C); Vapour 
Pressure (HPa); Humidity (%); 
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collection is described elsewhere1). This dataset was matched to all postcodes by 
their respective nearest (distance) monitoring station postcode. 
 

Figure 3 The synoptic and climate stations within the London area 

 

 
 
The key meteorological indicators in this dataset were: Maximum Temperature, 
Minimum Temperature, Night Minimum Temperature, Night Maximum Temperature, 
Day Maximum Temperature, Day Minimum Temperature, Mean Wind Speed, 
Ambient Air Temperature, Wet Bulb Temperature, Dew Point Temperatures, Vapour 
Pressure, and Humidity. These were presented as daily records. The weather 
stations (Fig 3) in the UK as a whole report a mixture of snapshot hourly 
observations of the weather condition and this is known /referred to as synoptic 

 
1 http://www.metoffice.gov.uk; http://badc.nerc.ac.uk/home 
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observations. Also the daily summaries of the weather measures are however 
known /referred to as climate observations[158]. The detailed description of 
individual weather elements and how they were quantified over the period as been 
described [159]. 

Air Quality Estimates  

Air quality is monitored across the UK through a variety of sites at strategic 
locations which continuously capture ambient air quality levels for selected 
pollutants. In London, about 16 functional sites located across the region (Fig. 
below) provide air quality measures for various pollutants. The UK Air Quality Data 
Archive provides this information, and details on the location and characteristic 
nature of each site as well as the measures they provide 
(http://www.airquality.co.uk/detailed_zone.php?zone_id=15). This additional 
information also includes a description of the mode and frequency of quantification 
of all the respective pollutant measures.  
 

Figure 4 The Greater London air quality monitoring sites 

 

 
 
 
In this study we had access to two air quality datasets, and these were provided 
as: 
(1) Daily values derived from the Air Quality Archive (AURN) in situ measurements 
for 2001-2006, matched to postcode districts by closeness, up to 50 km; 
(2) Daily values from the Met Office NAME atmospheric dispersion model for 
postcode districts for 2005-2006 [160]. 

Greater London Air Quality Monitoring Sites 

 
Source: UK Air Quality Archive 
Available at: http://www.airquality.co.uk/detailed_zone.php?zone_id=15 
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Our analysis was based on the second dataset, from the NAME which consisted of 
daily estimates of Carbon monoxide, Formaldehyde (HCHO), Nitrogen dioxide, 
Nitrogen oxide, Ozone, Sulphur dioxide, and Particulate matter (pm10). These 
modelled daily air quality estimates1 for respective postcode areas also do account 
for both accident and episode analysis, and as well used for pollution forecasting 
[160].  

Additional Predictor Variables 

We generated additional potential predictor variables to account for monthly and 
seasonal variations as well as the rate of temperature drop. The monthly variation 
indicator was generated form the date variable whilst the seasonal variable was 
created by categorizing the days of the year into the four known astronomical 
seasons (spring summer autumn winter) [161]. We created variables to represent 
the rate of temperature drop by evaluating the temperature differences (i.e. for day, 
night and maximum/minimum daily temperatures). 

Creating the Time Series 

The use of the term time series, in this investigation, refers to a sequence of 
observations that are ordered in time. Three time series datasets were generated 
from the three datasets described above. For each original dataset, the 
corresponding time series dataset generated consisted of a time variable, which was 
designated by the date as well as independent variables representing daily averages 
of various measuring stations. 

Time Series for Asthma Hospital Admissions 

London is by far the most densely populated regions of England. The impact of 
various human and natural activities on the environment and /health is 
considerably high and hence an issue of great public health importance. We 
restricted the analysis to the available dataset, which recorded events in London 
from January 1, 2005 to December 31, 2006. 
 
A new time-series variable was created from the HES data. This was a count of all 
unique, hospital admissions with a primary diagnosis of asthma for each day from 
January 1 2005 to December 31 2006 to hospital in London. This was done by 
collapsing the total number of daily admissions (of all individuals) for asthma. 
Hence the new time series dataset from this manipulation mainly consisted of the 
time indicator and new asthma variables for the period described above. 

Time Series for Climate 

The Weather dataset sourced from the Met Office database consisted of several 
indicators recorded daily over the period (January 1, 2005 to December 31, 2006). 
These indicators included:  
 

Maximum Temperature (degrees Celsius),  
Minimum Temperature (degrees Celsius), 
Night Minimum Temperature (degrees Celsius), 

 
1 Daily mean values of Carbon monoxide; Nitrogen Dioxide; Nitrogen oxide; Ozone; Particulate 
matter10; Formaldehyde and Sulphur dioxide in SI units; Estimates used by UK Met Office in 
accordance with the National Statistics Code of Practice (See appendix for further information on 
NAME) 
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Night Maximum Temperature (degrees Celsius), 
Day Maximum Temperature (degrees Celsius), 
Day Minimum Temperature (degrees Celsius), 
Mean Wind Speed (knots) 
Ambient Air Temperature (degrees Celsius), 
Wet Bulb Temperature (degrees Celsius), 
Dew Point Temperatures (degrees Celsius), 
Barometric Vapour Pressure (hectoPascals), 
Humidity (%), 
 

Even though the weather dataset included a total of eight weather stations, only 
five were actually within the London1 area and thus representative.  
 
The weather data from each of the five selected weather stations in London 
(Heathrow, High Wycombe, London Weather Centre, Northolt and South 
Farnborough) were averaged, to produce a single daily summary of London 
weather. In the analysis of time series data there is often a trade-off between 
creating usable data sets and information loss. Averaging data as described here 
necessarily results in a loss of information. The strategy, however, was supported 
by a preliminary analysis, in which generally high correlations in the weather 
indicators data was observed between the different weather stations.  There is 
precedent for this kind of approach [e.g., [162]]. 

Time Series for Air Quality 

Air Quality data was obtained from the Met Office’s Numerical Atmospheric-
dispersion Modelling Environment (NAME) database, which accounts for both 
accident and episode analysis, and also used for pollution forecasting [160]. The 
listed indicators included: 
 

Carbon monoxide (kgm-3),  
Formaldehyde (kgm-3),  
Nitrogen dioxide (kgm-3),  
Nitrogen oxide (kgm-3),  
Ozone (kgm-3),  
Particulate Matter [PM10] (kgm-3) and  
Sulphur dioxide (kgm-3)  

 
Some air quality readings, such as PM2.5, black smoke etc, that are known to be 
causally related to asthma events were not available in this dataset. Preliminary 
investigations carried out to examine the relationship between the patterns of 
distributions of air quality measures across several stations in London showed very 
wide variations. These variations largely reflected the different types and locations 
of the measuring stations. Urban Background measures are known to account for 
urban locations that are distanced from potential sources of direct emissions 
(pollutants), and therefore broadly representative of city-wide background 
conditions [163]. Hence we sought to use only recognised “Urban Background” 
measuring stations for the purpose of comparing sites and generalising some area 
measures. 
 

 
1 See appendix for “London Weather Stations Records” 
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In the London Air Quality dataset, a process, which converts the dataset in memory 
into a dataset of means or sums and described by the Stata statistical package as 
collapse, was used in producing our time series dataset. We collapsed daily average 
values and subsequently generated a new dataset, which included daily average air 
quality measures for all the representative areas. Hence we generate a new 
representative air quality variable for the entire London region. 

Combined Time Series Dataset 

The final time series data set on which all analyses were based comprised the count 
of daily asthma admissions (dependent variable), the averaged daily weather data, 
and the averaged daily air quality data.  This represented a complete dataset with 
no missing data for any day between 1 January 2005 and 31 December 2006. The 
combined time series dataset was created by merging the three separate time series 
datasets described earlier. Additional dummy variables, which were generated to 
account for seasonality, rate of daily temperature change, monthly effects as well 
as other categorical variables formed part of this combined dataset.  Although the 
approach taken here to the data analysis is not entirely for the strict purpose of 
hypothesis testing, nor is it strictly parameter estimation, we nonetheless use the 
general convention of referring to the count of asthma admissions as the dependent 
variable; all other variables collectively are called the independent variables. 
 

Data Analysis  

Descriptive Analysis 

General Distribution of Parameters, Summary Statistics by Categories 

The distributions of probability plots of the continuous variables were examined. 
Summary statistics were also calculated by suitably categorizing each indicator 
based on either known recommended categories, percentiles or a suitable fit. 
 
We examined the probability plots (normal distribution) of the key dependent 
variable (i.e. Asthma hospital admissions) and other selected variables in the HES 
dataset, and checked for outliers. The same analysis was done for the other 
datasets (Weather and Air Quality). We outlined variables according to the scales 
of data type1 and on this basis identified the appropriate bivariate statistical tools 
[164, 165] for preliminary descriptive analysis.  

Distribution of meteorological indicators across measuring stations  

The patterns and correlations in the distribution of meteorological and air quality 
indicators across measuring stations in London were observed by scatter plots and 
correlation matrices. Thus we examined the individual relationships between the 
dependent variable and each of the independent variable (graphical).  

Basic associations for daily Asthma hospital admissions 

Basic associations for daily Asthma hospital admissions with meteorological and 
other indicators were presented in categories. This was done using cross tabulation 

 
1 see appendix on “Data Types and Methods” 
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of basic frequencies suitably categorized. Also separate binomial models for each 
exposure variable (uncategorized) were used for bivariate comparisons. 

Distributions of Asthma Admissions by Demographics & Spell related factors  

We examined the basic associations between individual daily hospital admissions 
for asthma and the categories of demographic factors using cross tabulations and/ 
correlations. The same statistical analyses were conducted for categories of asthma 
spell related factors (time and duration of hospitalization, related secondary 
diagnosis, type of health facility, etc.)  

The Lag Effects of Exposures 

In order to understand the nature of the compensatory period required to fully 
experience the cumulative effect of an exposure we compared the lag properties of 
independent variables in the dataset. We followed an approach to generate single 
lag models that provide estimates for the effect of a unit increase in an exposure 
over a single day. Hence the lag properties of individual meteorological and air 
quality factors were explored for modelling asthma daily hospital admissions in 
London for up to a 21-day lag period. The output of each of these bivariate tests for 
meteorological and air quality factors were further examined and the suitable lags 
selected based on their relative p-values and regression coefficients. Hence for each 
parameter (e.g. regression coefficients), the general distribution was observed and 
the peak estimate selected. Other parameters (like the Alpha, Loglikelihood and 
PseudoR2) were only used for the purpose of comparing lags for each individual 
variable. 
 
The process of generating, testing and selecting lags is necessary because it 
provides an additional resource for the cross validation stage for the dataset, which 
we will describe shortly. 

Time Series Forecast Models  

The forecasting of daily asthma hospitalisations in London given meteorological 
and air quality factors was investigated using generalised linear modelling (GLM) 
techniques[166], and quantile regression [167, 168]. The GLM techniques include 
a range of statistical linear models, which have non-normal probability 
distributions, such as the Poisson, Binomial, Multinomial, etc. These set of models 
easily fit the data because they do not usually require the variance to be constant 
/ equal to the mean, in hypothesis testing. The selected GLM techniques used as 
well as the general approach to health forecasting are discussed shortly. 

Forecasting 

Forecasting, as opposed to traditional hypothesis testing and causal analysis, is 
principally concerned with the prediction of future events, rather than explaining 
the relationships between variables.  This is a distinctly instrumental approach to 
data, which in the domain of health is usually directed towards practical outcomes 
such as early warning for peaks in service demand.  In the selection of a good 
model, some important criteria and tests that have often been referred to and used 
include attributes like the predictive power, theoretical consistency, goodness of 
fit, “identifiability” and parsimony [169]. However causal modelling is not at issue, 
concerns with confounding, or the perfect choice of data model or parameterisation 
of variables can be relaxed.  The value of a forecasting model is based on (a) its 
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predictive rather than its explanatory power, and (b) the simplicity/cost of its 
implementation. 
 
Predictive power of a forecast model is related to the forecast error, a measure of 
the difference between the actual value and the forecast value for a corresponding 
period [170]. Forecast error can be estimated by a number of methods1 including 
the Root Mean Squared Error (RMSE). The RMSE is the square root of the average 
squared error.  That is, the squared difference between each actual and predicted 
value is calculated; the square root of the mean of the squared differences is then 
calculated.  RMSE estimates the accuracy of a single predictive measure. Equation 
(1) below illustrates the estimation of RMSE.  
 

 
 
The suitability of the predictive model generated for asthma hospital admissions 
was tested using a hold-out sample of the available dataset. We predicted asthma 
daily hospital admissions for London from the dataset holding out a third for cross 
validation. Subsequently, we cross-validated the predicted model with a second 
holdout sample of similar proportion of observations. Thus the errors in these 
predictions as determined by the means were used in the estimation of RMSE. The 
figure bellow illustrates this process 
 

 
 
Forecasting asthma (hospital admission) events, however, is not simply a question 
of estimating a daily figure. It is also potentially a matter of alerting services about 
days of peak demand. In this case one is making a binary forecast: a day of peak 
demand or a day of normal demand. The value of this approach to forecasting can 
be examined with a traditional analysis of clinical -test accuracy; that is, the 
positive (normal) and negative (extreme) predictive value of the test. Predictive 
values, sensitivity and specificity tests have been used extensively in many different 
ways to assess the accuracy of determining an event [26, 171]. 
 
Taking into consideration the actual and predicted distributions of asthma 
admission, we dichotomized both indicators. This was done with the assumption 
that the upper 10% of the distribution of actual asthma hospital admissions were 
extreme events. Hence our cut-off for dichotomizing both the predicted and actual 
asthma admissions was the corresponding entry of daily admissions at the 90th 

 
1 Mean squared error (MSE), Percent mean absolute deviation (PMAD), Mean absolute percentage 
error (MAPE), Forecast skill, Mean absolute error and the Root Mean Squared Error (RMSE) 

RMSE = {(∑Nt=1E2t)/N} 1/2. . . . . (1) 
 
Et=Yt-Ft 

 
Where: E is the forecast error in a given period of time t 

Y is the actual value at a given period of time t 
F is the forecast value at a given period of time t 
N is the number of observations 

PERIOD: 01/01/2005 to 31/12/2006 in Days (Total 730dys) RMSE 

1  122  243     486  608  730 days  

Whole Sample Prediction ? 

1st Holdout Prediction     ? 

    2nd Holdout Prediction ? 

  3rd Holdout Prediction   ? 
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percentile. We then cross tabulated the two categorized indicators to obtain the 
predictive validities. This test illustrates the positive (normal) and negative 
(extreme) predictive values for asthma admissions in the given model, as illustrated 
in the matrix below. 
 

Table 1 Matrix for estimating the predictive values 

 

 
 
A, B, C&D are estimates of the number of daily hospital admissions based on the 
cross tabulation of the dichotomised actual and predicted models. 
 
The following parameters (,  and likelihood ratios) were then estimated from the 
above matrix as part of the diagnostic test to provide further information on the 
probability that the test will give the correct diagnosis [172-174]: 
 

 

Generalised Linear Models with Count Models 

Poisson regression and negative binomial regression were used as the techniques 
of choice for modelling the asthma (hospital admissions) events data. Poisson 
regression is well suited to the modelling of count data, and one of the most 
common techniques used for modelling asthma events [166, 175-177].  However, 
in causal modelling and hypothesis testing, it is not suitable when there is over-
dispersion in the data - that is when the variance exceeds the rate of daily asthma 
events. In these circumstances, negative binomial regression is the preferred 
modelling technique. This is discussed in greater detail shortly. 
 
The Statistical analysis conducted thus involved regression analysis of the daily 
time-series data in which we evaluated the likely associations between the 
probability of asthma-related hospitalisation and the various exposure variables. 
We explored the short- and relatively longer-term effect(s) of these exposure 
variables using their lags. Core adjusted models involving ALL the likely covariates 
with significance at 95% CI were thus generated. 

Count Models  

The total number of daily hospital admissions for asthma was generated from the 
HES dataset. These episodes were count records of non-negative integers ranging 

 Actual Asthma 
Admissions Predictive 

Value 
<40 ≥40 

Predicted 
Asthma 

Admission 

<40 A B 
Normal 
= A/[A+B] 

≥40 C D 
Extreme 
= D/[D+C] 

 Sensitivity 
= A/[A+C] 

Specificity 
= D/[D+B] 

 

 
False Normal rate () = 1-Specificity = B/ [B+D] 
False Extreme rate () = 1-Sensitivity = C/ [C+A] 
Normal Likelihood-ratio = Sensitivity / [1-Specificity] 
Extreme Likelihood-ratio = [1-Sensitivity] / Specificity 
NB: Power = Sensitivity = 1- 
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from 6 admissions per day to 130 admissions per day. Considering the entire range 
of this dependent variable, its distribution was observed to be slightly skewed. 
 
Poisson regression (equation 2) is one of the basic parameterised count models. It 
predicts the expected number of hospital admissions for asthma assuming that the 
variance equals the mean (P2 = u) [178]. The predicted rate of daily admissions can 
estimated as:  
 

 
 
where the probability of observing a specific count (of total daily hospital 
admissions for asthma), given y (i.e. the predicted rate of daily admissions) is 
computed as: 
 

 
 
Assuming there is no over dispersion or under-dispersion (i.e., assuming that P2=u), 
the expected value of y is determined by the coefficient of the exposure variables 
(β). That is, β explains the marginal change in the number of hospital admissions 
given a one-unit change in the exposure variable. 
 
It is, however, not uncommon to observe over dispersion of the variance (i.e. P2>u) 
in these kinds of models.  Under these circumstances, the negative binomial 
regression model is preferred [178-182]. In a negative binomial model, the 
probability of observing a specific count of asthma events estimated by: 
 

 
 
In the Negative binomial regression model, the count dependent variable is 
generated by a Poisson-like process, except there is an additional parameter to 
account for variation that is greater than in a Poisson model. This additional 
variation is referred to as over-dispersion. The preference for the negative binomial 
model over poisson model is largely determined by the value of the dispersion 
parameter (α). If α is statistically, significantly greater than zero (α>0) then the 
negative binomial model is preferred [178, 180]. The post estimation tests (vuong 
test and robust options in STATA) provide better estimates of the marginal effects 
for the standard error terms in the final model [178, 180]. The robust standard 
errors adjust for the heterogeneity in the model, and also provide better estimation 

y= Pr(Yi = A|E) = exp(Eβ) 

Pr(Asthmai = A|y) = e−yyA /A! , A= 0, 1, 2, . . . (2) 
 
Where: 

Pr (Asthmai) = probability of asthma admission for a given day, i 
E= given exposure for i 
β = coefficient of a given exposure measure 
y = predicted rate of daily admissions 

Pr(Asthmai= A|xi) ={Γ(A+α−1)/A!Γ(α−1)}(α−1/α−1+y)α−1 (y/[α−1+y])k, . . . . .(3) 
A=0, 1, 2 … 
 
Where: 

α = increased variance in the predicted counts 
Γ = mathematical function “gamma” 
xi = independent variables (exposure)   
y = predicted rate of daily admissions 
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coefficients for the model. Hence this additional model diagnostic procedure is 
useful in further identifying and eliminating predictors that are not significant in 
the model. 
 
Further tests involving the “goodness of fit” and “link test” in STATA, were used for 
the purpose of checking the model specification. The procedure for the goodness of 
fit test provides the deviance statistic, which is used in deciding on the preference 
for the poisson regression or the negative binomial regression. In the case of the 
latter, the Link test performs a link specification of the model, and this is preceded 
by the negative binomial regression single-equation estimation. The significance of 
the Link test is determined by the p-values of both the predicted variable (hat) as 
well as the square of the predicted variable (hatsq). Hence the hat should be 
significant since it is the predicted value. Meanwhile, the p-value for the hatsq 
should not be significant, (since the squared predictions should not have much 
explanatory power) when the model is specified correctly. 

Quantile Regression 

Quantile regression technique was introduced by Koenker and Bassett in 1978 as 
an extension of the linear-regression model. The quantile regression does not 
assume normality of the dependent variable and it models the conditional quantiles 
as functions of predictors; specifying changes in any conditional quantile [167, 
183]. Unlike the linear-regression, quantile regression models have the ability to 
characterize the relationship between the dependent variable and the independent 
variable(s) particularly in the extremes of the distribution.  
 
In theory, the nth quantile of the dependent variable Y is the value, Q(n), for which 
its given probability is P[Y<Q(n)]=n. This given probability is assumed to have a 
distribution with corresponding quantile estimates for n, which exclusively range 
from zero to one (i.e. 0<n<1) [184]. The corresponding quantile regression model 
which explains the relationship between the dependent variable, Y can then be 
expressed as 
 

 
 
Quantile regression techniques have been used for estimating several extreme 
outcomes and they include modelling the effect of meteorological factors on some 
environmental pollutants [185], describing the sea level trends at different tides 
[186], modelling the factors that affect ecological processes [187-189], and even the 
effect of school quality on student performance [190]. 
 
In this study, we used quantile regressions to estimate extreme variations in 
asthma hospital admissions resulting from the changing patterns of selected 
meteorological and air quality indicators in London. We compared the default 
median quantile regression estimates to estimates at other percentiles (0.80, 0.85 

Yi = β(p)0 + β(p)1xi + (p)i  . . . . . . (4) 
 
Where:  

Yi is Asthma hospital admissions for a given day, i 
β(p)0 is a constant term 
β(p)1 is the coefficient of exposure term 
xi is the exposure term  
(p) is the error term 
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quantiles). The optimization process for the QRM was controlled by selecting the 
best weighted least-squares iteration numbers (wlsin), which matched the quantile 
(these were: 278 & 280). The wlsin number is the estimator of the response variable 
(in this case the Daily asthma admissions). The weighted least squares iteration 
identifies the best estimator for the regression before generating the output. It is 
obtained by minimizing the sum of the squares of the weighted residuals, taking 
into account that each residual is weighted by the inverse of the local variance of 
the response variable. Hence this was done to be able to achieve a convergence in 
the estimation of the maximum-likelihood model. 
 
The goodness of fit test was used to assess the model fitness [191]. 

Logistic Regression 

Logistic Regression Model (LRM) was used in this case because the outcome 
variable was dichotomised. In principle the logit of a proportion p is the log odds, 
described in the relation below in equation 5a [165, 166]. Given the assumption 
that the relationships being investigated are linear on the logistic scale (equation 
5b), the effect(s) of the predictor variable(s) are found as log odds ratios in the 
output. 
 

 
 
We dichotomized the continuous data on daily asthma hospital admissions to 
study the extreme events. Extreme events were classified as those which occurred 
above and within the upper 10th quartile. Hence we examined the effects of the 
independent variables on the two categories of the dependent variable using a 
logistic regression, since a linear model was not necessary in demonstrating the 
relation between the outcome and predictor variable [192]. For this purpose, we 
regenerated non-time series version of the lagged variables in the model. This was 
necessary because of the choice of the post-estimation model fitness test (Hosmer-
Lemeshow). 
 
The Hosmer and Lemeshow goodness-of-fit test and p-value were used in 
determining the overall fitness of the model. The significance of the p-value for the 
goodness-of-fit test as well as the relative proportions of the number of covariate 
patterns to the number of observations was used to inform this choice. 
 

logit(p) = loge (p/1-p) . . . . . . . . (5a) 

loge (p/1-p) = b0 + b1x1 + b2x2 + … + bmxm . . . . (5b) 

Where:  
x1, …, xm are predictor variables  
p is the proportion to be predicted 
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RESULTS 

This section describes time series pattern of the total daily asthma admissions in 
London and compares it to the patterns of some potential predictors (month, 
seasons, weather, air quality). 
 
Asthma daily admissions are associated with the weather, air quality as well as 
monthly and seasonal effects. These associations can be used to predict and 
forecast normal and extreme asthma events. 
 
Selected lags of the independent weather and air quality factors, which were 
obtained from bivariate analysis, are presented. The selection includes twenty four 
lagged independent variables, however, only four of these (i.e. 9-day lag 
temperature; 7-day lag humidity; 14-day lag ozone; and 3-day lag nitrogen oxide), 
in addition to the monthly and seasonal variations, were considered suitable and 
used in modelling. 
 
Five different multivariate models from the selected variables were used to estimate 
both normal and extreme asthma events. These were then compared for their 
predictive values. The findings show that the Negative binomial regression model 
had the least RMSE (0.16%) compared to the quantile regression models (QRMs). 
On the other hand, the QRMs had higher predictive coefficients as well as predictive 
values for both normal and extreme events. Air temperature and humidity were 
significant weather factors that were associated to asthma events. Also Nitrogen 
oxide and ozone were significant in most of the models. 
 

Daily Asthma Hospital Admissions in London (2005-2006) 

The total daily asthma admission in London is illustrated in the time series plot in 
Figure 5. Two major extreme events were observed; around the end of spring 2005 
and same period in 2006. Generally the summer periods appear to have the lowest 
admission rates whilst the highest were reported in the autumn months. Both the 
winter and spring periods had moderate rates of admissions. Even though these 
observations do not clearly show any peaks and troughs as may be suggested by 
the illustration above, they do attempt to present the distribution of asthma daily 
admissions seasonally. There are very wide variations in the autumn, compared to 
the winter and spring periods. 
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Figure 5 Daily Asthma hospital admissions in London (2005-2006) 

 

 
 

Figure 6 Daily Asthma hospital admissions in London (2005-2006) 

 
Arrow marks /divisions represent the seasons in a year 
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Asthma Admissions and Temperature (London, 2005-2006) 

The mean air temperature distribution is presented alongside the asthma daily 
hospital admissions for London in Figure 7. The higher temperatures were recorded 
in summer whilst the lower temperatures were recorded in the winter months. The 
other specific temperature readings like the daily maximum/minimum 
temperature, dew point or wet bulb temperatures followed the same patterns (see 
Figures 18-21 in the appendix). 
 

Figure 7 Asthma Admissions and Mean Air Temperature Distribution (London, 
2005-2006) 

 

 
 

Asthma Admissions and Air Quality (London, 2005-2006) 

Apart from Ozone all the other air pollutants do not appear to have any regular 
seasonal or occasional trend(s). Taking Carbon monoxide as an example, the 
pattern distribution with reference to the seasonal marks (red lines) with vertical 
monthly grids (Figure 8), do not show any regular seasonal or monthly effect. This 
is same for the other pollutants (Nitrogen dioxide, Nitrogen oxide, Sulphur dioxide 
Formaldehyde and PM10) except ozone. Ozone shows some seasonal trends with 
notable peaks in the summer period and low records in the winter (See Figure 9). 
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Figure 8 Mean Daily Carbon monoxide distribution (London, 2005-2006) 

 
 

 
Arrow marks /divisions represent the seasons in a year 
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Figure 9 Asthma Admissions and Ozone Distribution (London, 2005-2006) 

 

 
 

Asthma Admissions and Other Indicators (London, 2005-2006) 

 
The other indicators whose distribution patterns have been plotted with that of the 
Asthma daily admissions are presented in Figures 10 to Figure 12. These include 
Humidity, Barometric vapour pressure and Wind speed. Both Humidity and 
Pressure show some seasonal patterns whilst Wind speed does not. 
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Figure 10 Asthma Admissions and Humidity Distributions (London, 2005-2006) 

 
 

Figure 11 Asthma Admissions and Mean Wind speed Distributions (London, 2005-
2006) 
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Figure 12 Asthma Admissions and Barometric vapour pressure Distributions 
(London, 2005-2006) 
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Bivariate Analysis  

Exploring Lag Days for the Explanatory Factors 

We explored lags from 1 to 21 days for each key independent variable through a 
bivariate test with asthma hospital admission as a dependent variable. The most 
appropriate lag-day was selected for modelling the effect(s) of the independent 
variables. The following were selected for consideration: 
 

Table 2 List of best selected lag days of the bivariate analysis (independent 
variables) generated from the NegBin model given that the alpha coefficient of each 
>0 

 
Variable LagDay Coef. P|>|z [95% Conf. Interval] 

Maximum temperature L15. -0.00943 0.000 -0.01306 -0.0058 
Minimum temperature L8. -0.01004 0.000 -0.01453 -0.00556 
Night minimum temperature L8. -0.00878 0.000 -0.01333 -0.00423 
Night maximum temperature L8. -0.00942 0.000 -0.01345 -0.00539 
Day Maximum temperature L15. -0.0094 0.000 -0.013 -0.0058 
Day Minimum temperature L9. -0.01062 0.000 -0.01463 -0.00661 
Night temperature drop L19. -0.03297 0.000 -0.04536 -0.02057 
Day Temperature drop L13. -0.02492 0.000 -0.03811 -0.01174 
Temperature drop L19. -0.01841 0.000 -0.02589 -0.01093 
Mean wind speed L2. -0.01145 0.006 -0.01956 -0.00334 
Air temperature L9. -0.01032 0.000 -0.01419 -0.00645 
Wet bulb temperature L9. -0.00886 0.000 -0.01334 -0.00438 
Dew point temperature L2. -0.00601 0.008 -0.01049 -0.00153 
Barometric vapour pressure L2. -0.00937 0.004 -0.01569 -0.00305 
Humidity L7. 0.007207 0.000 0.005318 0.009095 
Humidity L19. 0.008059 0.000 0.006146 0.009972 
Carbon monoxide L1. 969867 0.000 578761.6 1360972 
Formaldehyde L2. 1.85E+07 0.000 1.13E+07 2.57E+07 
Nitrogen dioxide L1. 5674741 0.000 2683235 8666247 
Nitrogen oxide L3. 4742168 0.000 2720752 6763584 
Ozone L14. -1.31E+07 0.000 -1.73E+07 -8981818 
Sulphur dioxide L3. 4143018 0.012 919360.7 7366675 
Particulate Matter (PM10) L2. 2568230 0.056 -68198.6 5204659 
Particulate Matter (PM10) L21. -4248289 0.003 -7058080 -1438497 
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Multivariate Analysis 

Comparison and Selection of Temperature Related Indicator(s): 

We included all the temperature related variables including some generated 
potential predictors in a single model to determine the one(s) best associated with 
asthma hospitalization. These independent temperature related variables were 
Maximum temperature, Night minimum temperature, Night maximum 
temperature, Day maximum temperature, Air temperature, Dew point 
temperature, Wet bulb temperature, Day temperature drop, Temperature drop, 
Minimum temperature, Day minimum temperature, and Night temperature drop. 
The Minimum temperature, Day minimum temperature, and Night temperature 
drop were dropped from the model because of collinearity. The effects demonstrated 
by these potential predictors (independent variables) represent their respective 
effect on the day of hospitalization. At a p-value of 0.05, those found to be 
significant were Night maximum temperature (p=0.002), Day maximum 
temperature (p=0.01), Air temperature (p=0.025), Temperature drop (p=0.036). 
 
The effect(s) of Environmental factors on health impacts like asthma hospitalization 
are cumulative, and not frequently instantaneous. We thus investigated the lagged 
effects of the above selected temperature related variables. The model was 
constructed with the best selected lags for each indicator. For the lagged model, at 
a p-value of 0.05, the significant predictors included the 8-day lag night maximum 
temperature (p=0.033), 9-day lag day minimum temperature (p=0.049), 9-day lag 
air temperature (p=0.001), 2-day lag dew point temperature (p=0.09) and a 9-day 
lag wet bulb temperature (p<0.0001). The NegBin output illustrates the expected 
change in log count for a one-unit increase in temperature. Thus for example in 
the un-lagged NegBin model (Table 3), every one degree increase in the “Night max 
temperature” there is an expected increase of 1.041 (~exp 0.04) daily asthma 
hospital admissions, given all other factors are held constant. Similarly, for every 
one degree increase in “Air temperature” there is an expected drop of 1.083 (~exp -
0.08) daily asthma hospital admissions. However in the lagged model (Table 4) one 
degree increase in the “Night max temperature” results in an increase of 1.031 
(~exp 0.03) daily asthma hospital admissions, accounting for all the other listed 
variables 
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Table 3 Negative binomial regression Asthma Model comparing the temperature 
related independent variables [alpha>0] 

 
Variable Log change Robust Std. Err 

Maximum temperature 0.03 0.03 
Night min. temperature 0.02 0.02 
Night max. temperature 0.04** 0.01 
Day max. temperature -0.09** 0.03 
Air temperature -0.08* 0.03 
Dew point temperature -0.01 0.03 
Wet bulb temperature 0.09 0.06 
Day temperature drop 0.02 0.01 
Temperature drop 0.03* 0.01 

Expected change in log count for a one-unit increase in temperature 
Coefficient: * p<0.1 ** p<0.01; Log psuedo-likelihood: -2508.86; Chi2: 101. 

 

Table 4 Negative binomial regression Asthma Model comparing the lagged(L) day 
temperature related independent variables  [alpha>0] 

 
Variable Log change Robust Std. Err 

L15.Maximum temperature 0.01 0.05 
L8.Minimum temperature -0.02 0.02 
L8.Night min. temperature 0.01 0.02 
L8.Night max. temperature 0.03* 0.01 
L15.Day max. temperature -0.02 0.04 
L9.Day min. temperature -0.04 0.02 
L19.Night temperature drop -0.01 0.01 
L13.Day temperature drop -0.01 0.01 
L19.Temperature drop -0.00 0.01 
L9.Air temperature -0.05** 0.02 
L9.Wet bulb temperature 0.07*** 0.01 
L2.Dew point temperature 0.01 0.00 

Expected change in log count for a one-unit increase in variable 
Coefficient: * p<0.1 ** p<0.01; *** p<0.001; Log psuedo-likelihood: -2035.88; Chi2: 86.03. 

Comparison and Selection of Air Pollutant Related Indicator(s): 

In selecting the appropriate air pollutants, we included all air pollutants (available 
in our dataset) in the negative binomial regression base model. These variables 
were Carbon monoxide, Formaldehyde (HCHO), Nitrogen dioxide, Nitrogen oxide, 
Ozone, Sulphur dioxide, and Particulate matter (pm10). Hence they were all treated 
as potential predictors so that we could subsequently determine the one(s) most 
strongly associated with asthma hospitalization. We observed Nitrogen dioxide 
(p=0.043) Ozone (p=0.001) Sulphur dioxide (p=0.002) were significantly associated 
with daily asthma hospital admissions.  



Developing Tools for Asthma Forecast in London  

37

Table 5 Negative binomial regression Asthma Model comparing the air pollutant 
related independent variables [alpha>0] 

 
Variable Log change in kgm-3 (µm-3) Robust Std. Err 

Carbon monoxide 6.5e+05      (0.00065) 4.10E+05 
Formaldehyde 1.0e+07      (0.01) 1.50E+07 
Nitrogen dioxide 7.4e+06*     (0.0074) 3.70E+06 
Nitrogen oxide -5.2e+05     (-0.00052) 4.20E+06 
Ozone -9.7e+06*** (-0.009.7) 2.80E+06 
Sulphur dioxide -1.2e+07**  (-0.012) 3.80E+06 
Particulate matter -2.3e+06     (-0.0023) 2.20E+06 

Expected change in log count for a one-unit increase in variable 
Coefficient: * p<0.1 ** p<0.01; *** p<0.001; Log psuedo-likelihood: -2626.79; Chi2: 44.41. 

 
We proceeded to assess the lagged effects of these pollutants. The lagged model 
was constructed with the best selected lags for each indicator. These lags were 1-
day lag Carbon monoxide 2-day lag HCHO, 1-day lag Nitrogen dioxide, 3-day lag 
Nitrogen oxide, 14-day lag Ozone, 3-day lag Sulphur dioxide, 2-day lag PM10, and 
a 21-day lag PM10. At a p-value of 0.05, 14-day lag Ozone (p<0.0001), 3-day lag 
Nitrogen oxide (p=0.012), 2-day lag PM10 (p=0.024), and a 21-day lag PM10 
(p=0.03) were significant. This preliminary predictive model also took into account 
other potential predictors e.g. the astronomical seasonal effect, monthly variations, 
humidity and wet bulb temperature. 
 

Table 6 Negative binomial regression Asthma Model comparing the lagged(L) day 
air pollutant related independent variables  [alpha>0] 

 
Variable Log change in kgm-3 (µm-3) Robust Std.Err 

L1. Carbon monoxide 3.5e+05      (0.00035) 3.20E+05 
L2.Formaldehyde 9.9e+06      (0.0099) 5.50E+06 
L1.Nitrogen dioxide 3.8e+06      (0.0038) 2.30E+06 
L3.Nitrogen oxide 4.8e+06*     (0.0048) 1.90E+06 
L14.Ozone -1.0e+07*** (-0.01) 2.20E+06 
L3.Sulphur dioxide -2.3e+06     (-0.0023) 2.90E+06 
L2.Particulate matter -4.4e+06*    (-0.0044) 2.00E+06 
L21.Particulate matter -3.0e+06*    (-0.003) 1.40E+06 

Expected change in log count for a one-unit increase in variable 
Coefficient: * p<0.1 ** p<0.01; *** p<0.001; Log psuedo-likelihood: --2538; Chi2: 79.99. 
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Modelling  

Negative Binomial Regression Predictive Model 

We constructed the first model; a negative binomial regression model for asthma 
admissions accounting for a 9-day lag air temperature, 14-day lag ozone, 13-day 
lag nitrogen oxide and 7-day lag humidity as well as seasonality and monthly 
variation. The output as shown in the Table 7 below indicates Asthma daily 
admissions within February-March and July-August are not significant in the 
model (i.e. p-value > 0.05).  
 

Table 7 An illustration of the predicted output for the Negative binomial regression 
model for Asthma hospital admissions in London (2005-2006) 

 
Variable Log change  Robust Std. Err  
Summer_2 0.14 -0.13 
Autumn_3 0.35*** -0.09 
Winter_4 0.32*** -0.07 
Feb_2 -0.06 -0.04 
Mar_3 0.02 -0.05 
Apr_4 0.37*** -0.09 
May_5 0.50*** -0.09 
Jun_6 0.47*** -0.11 
Jul_7 0.09 -0.11 
Aug_8 -0.07 -0.1 
Sep_9 0.27** -0.09 
Oct_10 0.23*** -7.00E-02 
Nov_11 0.23*** -0.05 
Dec_12 0.13** -4.00E-02 
L9.airtemp -0.01* 0.0 
L14.Ozone 5.5e+06*    (0.0055§) -2.40e+06  (-0.0024§) 
L3.Noxide 3.5e+06*** (0.0035§) -7.70e+05  (-0.00077§) 
L7.humidity 0.00** 0.0 

Expected change in log count for a one-unit increase in variable. §µm-3 
Coefficient * p<0.1 ** p<0.01 *** p<0.001; Log psuedo-likelihood: -2290.01; Chi2: 473.38 

 
The negative binomial regression model for daily asthma hospital admissions from 
the listed variables in Table 7 was statistically significant (chi-squared = 473.38, df 
= 18, p<.0001). All the predictors were statistically statically significant excluding 
the months February, March, July and August as well as the summer season. For 
all the data, the expected change in log count for a one-unit increase in each 
variable is indicated in the Table 7. The expected log count comparator for season 
and month variables are spring and January respectively; holding other variables 
constant. For instance, a one-unit (µm-3) increase in “L3.Noxide” (3-day lag 
exposure of nitrogen oxide) would result in a 1.008 asthma admissions, adjusting 
for all the other listed variables, and similarly, the months of May and June had 
expected log counts of 0.50 and 0.47 less than the month of January, holding all 
other variables constant. 
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The illustration below (Fig. 13) shows the distribution of the actual asthma daily 
admissions alongside the negative binomial regression predicted curve. Even 
though peak events failed to be captured by the predictive model, the average 
(expected daily admissions) appears to be reasonably well captured. This graphical 
presentation demonstrates the degree of accuracy to which the dependent factor 
could be predicted with this model. The nature of the predicted line of fit in relation 
to the original distribution is characteristic of any model, which predicts based on 
the mean. Hence this predicted model is useful mainly in estimations that are 
particularly interested in the normal events. 
 

Figure 13 Scatter plot of actual asthma daily admissions versus NegBin predicted 
line 
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The NegBin Model Diagnostic Test (Link test) 

The fitness of the negative binomial model was assessed using the Link test (Table 
8) and the fit of the model was determined by the p-value of “the square of the 
predicted variable” being >0.05 given that the entire model is significant as well as 
the p-value of the predicted variable. We further predicted asthma admissions on 
the basis of this model and this illustrated alongside a scatter plot of the actual 
daily asthma admissions for London (Fig. 13) 
 

Table 8 The NegBin Model specification test after estimation (Link test) 

 
Test Variable Coef. Std. Err. P>z [95% Conf. Interval] 
Predicted 0.05269 1.488789 0.972 -2.86528 2.970662 
(Predicted)2  0.14395 0.226094 0.524 -0.29918 0.587088 

 

The NegBin Model Predictive Value (Accuracy & Specificity) 

The negative binomial regression models expected values. Nonetheless, if the 
predictors fit the data well, even apparently extreme events will be well modelled.  
We assessed the predictive validity of the model by contrasting the number of days 
with predicted extreme numbers of asthma admissions against the actual number 
of days with extreme numbers of asthma admission. “Extreme” in this context used 
the 90th percentile of asthma admissions as the cut-off. This percentile 
corresponded to a maximum of 40 daily asthma admissions for London. Actual and 
predicted daily admissions were represented by dichotomous variables 
representing ≥40 or <40 admissions per day. A cross tabulation of these two 
indicators yielded the predictive values of asthma hospital admission. The results 
of the cross tabulation (Table 9) show 8 days of extreme events were predicted from 
the data, whilst 62 days were falsely predicted as days of extreme asthma events. 
On the other hand, 75 days of extreme asthma admissions were missed. Hence the 
predictive values for both the normal and extreme asthma events are 88.64% and 
11.43% respectively. 
 

Table 9 The Predictive Value of Asthma Daily Admissions using a Negative binomial 
regression mode. 

 
 Actual Asthma Admissions 

Predictive Value 
<40 ≥40 

Predicted 
Asthma 

Admission 

<40 585 75 
(Normal): 
88.64% 

≥40 62 8 
(Extreme): 

11.43% 
 Sensitivity: 

90.42% 
Specificity: 

9.64% 
 

False positive (): 11.36%   False negative (): 9.58% 
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Forecast Error and Cross validation of NegBin Model 

The forecast error was determined by estimating the RMSE for the negative 
binomial regression model. This was found out to be 1.6x10-3 (Table 10).  
 
A 3-fold cross validation of the model was done to examine the variation in RMSE 
value given a sub-sample of the dataset. This was done holding 2/3rd of the dataset 
as observations to predict for asthma events. The Root Mean Square Error (RMSE) 
was used as an indicative measure of the models accuracy. The results from this 
showed very wide variations in RMSE (Table 10). The first holdout sample had a 
RMSE of 4.1x10-3, which shows 156.25% increase compared to the original/total 
sample and the third holdout sample had a RMSE of 3.4x10-3 (i.e. 112.5% 
increase). However, the second holdout sample (RMSE of 3.2x10-5) had 98% drop 
compared to the whole sample. 
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Table 10 Summary Statistics of Actual and Predicted Asthma Admissions for various window periods using the NegBin Model 

 
Variable Window Period 

(Dates) 
Obs Mean Std. Dev. Range RMSE 

Min Max 

Whole Sample       1.6x10-3 

Asthma admissions (actual) 01/01/05-31/12/06 730 28.48493 9.846025 6 130  

Predicted asthma from actual 01/01/05-31/12/06 668 28.52901 5.490202 16.80289 42.76237  

1st Holdout Sample       4.1x10-3 

Asthma admissions from 1st holdout 01/01/05-01/05/06 486 27.8786 9.347786 10 130  

Predicted asthma from 1st holdout 01/01/05-01/05/06 440 27.96990 5.196354 16.49666 46.23573  

2nd Holdout Sample       3.2x10-5 

Asthma admissions from 2nd holdout 01/09/05-31/12/06 486 29.78807 9.614548 6 77  

Predicted asthma from 2nd holdout 01/09/05-31/12/06 454 29.78737 6.132507 16.64241 46.06879  

3rd Holdout Sample       3.4x10-3 

Asthma admissions from 3rd holdout 02/05/05-31/08/06 486 27.26543 10.49681 6 130  

Predicted asthma from 3rd holdout 02/05/05-31/08/06 454 27.34119 5.70974 15.26246 43.3106  

 
 
 
RE: ILLUSTRATION 
 

 
 
 

 
PERIOD: 01/01/2005 to 31/12/2006 in Days (Total 730dys) RMSE 

Day1  122  243    486  608  730 days  

Whole Sample Prediction 1.6x10-3 

1st Holdout Prediction     4.1x10-3 

    2nd Holdout Prediction 3.2x10-5 

  3rd Holdout Prediction   3.4x10-3 
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Quantile Regression Predictive Model(s) 

Quantile Regression Models (QRM) were constructed for asthma admissions 
accounting for a 9-day lag air temperature, 14-day lag ozone, 13-day lag nitrogen 
oxide and 7-day lag humidity as well as seasonality and monthly variation. Based 
on the scale of the dataset we selected some appropriate quantiles (0.80 & 0.85) for 
modelling the extreme asthma events. The optimization process for the QRM was 
controlled by the selecting the best weighted least-squares iteration numbers 
(wlsin). The wlsin number is the iteration that identifies the best estimator for the 
regression output. Two wlsin were identified in the simulations (these were: 278 & 
280). Following these selection criteria three feasible QRMs with a mix of 0.80/0.85 
quantiles and 278/280 wlsin were developed and used in the subsequent analysis 
and graphical presentations.  
 
As a result of some methodological limitations in the application of the earlier 
proposed cross validation technique, the procedure was not carried out in the 
QRMs. For each particular predictive QRM, a specific wlsin, based on the entire 
dataset was identified used to generate the regression output. Since the wlsin 
parameter changes with changes in the dataset, it was not possible to cross validate 
using different sub-samples of the dataset. 

The QRM at 85th quantile and 278 wlsin 

The QRM output for the 85th quantile (with a wlsin 278) is presented in Table 11. 
The last three months of the year (i.e. October November and December) as well as 
Air temperature, Ozone and Nitrogen oxide were highly significant.  
 
The Table 12 below illustrates the predictive values of the model for both normal 
(91.86%) and extreme (16%) asthma events. It also presents the sensitivity 
(61.05%) and specificity (57.83%) as well as the False normal (=8.14%) and False 
extreme (=38.95%) prediction of this model.  
 
The graphical presentation of the both the actual and predicted asthma admissions 
in Figure 14 show the contrast between the extremely distributed records and the 
predicted /fitted line. The predicted line is for extreme values beyond the 85th 
quantile, but visibly does not ideally capture all the extreme points, and hence the 
error estimations. A test of the RMSE of this model, i.e. comparing the actual 
asthma admissions to the predicted asthma admissions gave an error of 0.23074. 
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Table 11 Quantile regression estimates for 0.85 quantile (at wlsin 278) 

 
Variable Log change  Robust Std. Err 
Summer_2 6.07 4.12 
Autumn_3 -7.13 4.52 
Winter_4 1.18 3.53 
Feb_2 8.73* 4.18 
Mar_3 -0.33 4.25 
Apr_4 -7.45 5.80 
May_5 2.18 5.61 
Jun_6 4.32 5.80 
Jul_7 -14.72* 7.31 
Aug_8 -12.55 7.10 
Sep_9 16.97* 6.62 
Oct_10 26.96*** 5.43 
Nov_11 24.38*** 4.62 
Dec_12 20.83*** 4.02 
L9.airtemp -0.91*** 0.23 
L14.Ozone 1.3e+09***  (1.3§) 1.3e+08  (0.13§) 
L3.Noxide -4.0e+08*** (0.4§) 7.8e+07  (0.078§) 
L7.humidity -0.05 0.07 

Expected change in log count for a one-unit increase in variable OR: * p<0.1 ** p<0.01 *** p<0.001; §µm-3 
Expected change in log count for a one-unit increase or a change from 1-0 in the case of the dummy variable; 

 
 

Table 12 Predictive values of the Quantile regression estimates for 0.85 quantile (at 
wlsin 278) 

 
 Actual Asthma Admissions 

Predictive Value 
<40 ≥40 

Predicted 
Asthma 

Admission 

<40 395 35 
(Normal): 
91.86% 

≥40 252 48 
(Extreme): 

16% 
 Sensitivity: 

61.05% 
Specificity: 

57.83% 
 

False normal (): 8.14%   False extreme (): 38.95% 
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Figure 14 Scatter plot of asthma daily admissions and a 0.85 quantile fitted values 
at a 278 weighted least-squares iteration number (London 2005-2006) 
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The QRM at 85th quantile and 280 wlsin 

The second QRM model for the 85th quantile but with a slightly higher wlsin (280) 
presented a different result (compared to the 278 wlsin) as illustrated in Table 13. 
The month of April and a 14-day lag Ozone exposure had very significant p-values 
compared to the other variables. Thus when compared to the month of January, 
April is likely to have 13 times more daily admissions for asthma, given that all 
other factors are held constant. Also a one unit (µm-3) increase /change in a 14-
day lag exposure to ozone, is likely to cause a 0.37 reduction in daily asthma 
hospital admissions given that all other factors are held constant.   
 
The predictive values of the model for both extreme (19.2%) and normal (91.21%) 
asthma events are presented in Table 14. The model’s sensitivity and specificity are 
respectively 76.97% and 42.17%.below illustrates the. The model demonstrates a False 
normal (=8.79%) and False extreme (=23.03%) predictions.  
 
The graphical illustration of the predicted asthma admissions alongside the actual 
distribution is shown in Figure 15. The predicted line for the extreme events still 
misses the two outstanding peaks and a few isolated extreme events, even though 
many others are captured. In the estimation of the forecast error for this model, 
the RMSE was 0.22354. 
 

Table 13 Quantile regression estimates for 0.85 quantile (at wlsin 280) 

 
Variable Log change  Robust Std. Err 
Summer_2 2.91 3.36 
Autumn_3 8.20* 3.38 
Winter_4 4.15 2.22 
Feb_2 -1.58 3.06 
Mar_3 0.20 2.75 
Apr_4 13.23*** 3.62 
May_5 8.08 4.13 
Jun_6 10.09* 4.37 
Jul_7 2.00 5.18 
Aug_8 -0.30 4.87 
Sep_9 11.35* 4.74 
Oct_10 9.76* 4.55 
Nov_11 5.29 4.27 
Dec_12 -0.63 3.65 
L9.airtemp -0.40* 0.18 
L14.Ozone -3.7e+08** (0.37§) 1.3e+08  (0.13§) 
L3.Noxide -1.0e+08    (0.1§) 6.7e+07  (0.067§) 
L7.humidity -0.10 0.05 

Expected change in log count for a one-unit increase in variable; OR: * p<0.1 ** p<0.01 *** p<0.001; §µm-3 
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Table 14 Predictive values of the Quantile regression estimates for 0.85 quantile (at 
wlsin 280) 

 
 Actual Asthma Admissions 

Predictive Value 
<40 ≥40 

Predicted 
Asthma 

Admission 

<40 498 48 
(Normal): 
91.21% 

≥40 149 35 
(Extreme): 

19.02% 
 Sensitivity: 

76.97% 
Specificity: 

42.17% 
 

False normal (): 8.79%   False extreme (): 23.03% 
 
 

Figure 15 Scatter plot of asthma daily admissions and a 0.85 quantile fitted values 
at a 280 weighted least-squares iteration number (London 2005-2006) 
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The QRM at 80th quantile and 280 wlsin 

This QRM model was constructed for the 80th quantile with a wlsin of 280. As 
illustrated in Table 15, but for the seasonal effect, most of the variables displayed 
significant effect in the model. Though the effect size for the pollutants ozone and 
nitrogen oxide appeared to be small, the latter was quite significant. For a one unit 
(µm-3) increase in nitrogen oxide, there is a 0.3 times likely increase of asthma 
admission.  
 
At the 80th quantile and 280 wlsin, the QRM has a predictive value of 21% for 
extreme events and 94% for normal asthma events. The model is quite sensitive 
(69%) but has a beta-error (false prediction of extreme events) of about 31% (see 
Table 16).  
 
The graphical illustration of the predicted asthma admissions alongside the actual 
distribution is shown in Figure 16. The predicted line represents the 80th quantile, 
and has a RMSE of 0.28717.  
 

Table 15 Quantile regression estimates for 0.80 quantile (at wlsin 280) 

 
Variable Log change  Robust Std. Err 
Summer_2 -1.71 3.34 
Autumn_3 5.59 2.97 
Winter_4 2.79 2.50 
Feb_2 -7.86** 2.51 
Mar_3 -3.57 2.43 
Apr_4 7.50* 3.32 
May_5 10.84** 3.41 
Jun_6 9.63** 3.56 
Jul_7 8.78* 4.16 
Aug_8 18.32*** 3.87 
Sep_9 12.76*** 3.72 
Oct_10 8.80** 3.04 
Nov_11 11.58*** 2.45 
Dec_12 2.49 2.26 
L9.airtemp -0.69*** 0.14 
L14.Ozone 5.3e+07     (0.053§) 8.5e+07  (0.085§) 
L3.Noxide 2.6e+08*** (0.26§) 3.8e+07  (0.038§) 
L7.humidity 0.18*** 0.04 

Expected change in log count for a one-unit increase in variable; OR: * p<0.1 ** p<0.01 *** p<0.001; §µm-3 
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Table 16 Predictive values of the Quantile regression estimates for 0.80 quantile (at 
wlsin 280) 

 
 Actual Asthma Admissions 

Predictive Value 
<40 ≥40 

Predicted 
Asthma 

Admission 

<40 447 29 
(Normal): 
93.91% 

≥40 200 54 
(Extreme): 

21.26% 
 Sensitivity: 

69.09% 
Specificity: 

65.06% 
 

False normal (): 6.09%   False extreme (): 30.91% 
 
 

Figure 16 Scatter plot of asthma daily admissions and a 0.80 quantile fitted values 
at a 280 weighted least-squares iteration number (London 2005-2006) 
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Extreme Asthma Events [Logistic Regression Model] 

We dichotomized the actual asthma admissions at the 90th percentile to separate 
the upper 10th quartile as a category of extreme events. Thus the proportion of 
extreme to normal days was given as 70:660 days. A logistic regression output of 
the model constructed with this modified dependent variable (i.e. the dichotomised 
asthma daily admissions) together with robust error terms are presented in Tables 
34-35 (appendix). Table 17 further illustrates the coefficients for interpreting the 
relationships.  
 
The goodness-of-fit test gave a p-value (p=0.8274), which initially suggests that the 
model fits reasonably well (Table 18). However, because the number of observations 
is equal to the number of covariate patterns the Pearson test is not appropriate for 
these data1. Hence we sought to test the Hosmer and Lemeshow chi-square using 
2 degrees of freedom (i.e. on assumption that the table collapsed 4 quantile groups 
of estimated probabilities). The results displayed in Table 19, indicate a significant 
probability of the prediction involving 4 quantile groups (chi2=1.81 and p>0.1 
[p=0.4051]). These tests suggest that the data may not be sufficient to reliably 
predict the upper 10th quantile as an extreme event using the method of logistic 
regression. However, the results from the above analysis may suggest that 
categories of the dependent variable, at most 4, could be simultaneously modelled 
to predict potential outcome for each category.  
 
The predictive values and other statistics/parameters of the logistic regression 
model are summarised in Table 20. The model has a very low predictive value for 
extreme events (1.74%) and equally low model specificity. 
  

 
1 In the estimation of the Goodness of Fit (Pearson), it is usually assumed that the deviance statistic 
has a chi-square distribution, and this indirectly implies that the predictor(s) are categorical. Hence 
groups are defined by covariate patterns, which are not equal to the number of observations. If 
however the number of observations is equal to the number of covariate patterns, the Hosmer-
Lemeshaw Goodness of Fit test allows us to group the data using predicted values with the group 
option (with the data table collapsed on quantiles of estimated probabilities). 
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Table 17 Asthma daily hospital admissions Model: prediction of Extreme versus 
Normal events 

 
Variable Log change Robust Std. Err 
Summer2 -2.00* 0.91 
Autumn3 -4.40*** 1.27 
Winter4 -4.58*** 1.37 
Apr -21.00*** 1.46 
May -22.04*** 1.41 
Jun -21.17*** 1.51 
Sep -19.15*** 1.85 
Oct -18.27*** 1.99 
Nov -18.53*** 1.94 
Dec -17.33*** 1.99 
L9.airtemp 0.04 0.04 
L14.Ozone -3.1e+07     (0.031§) -3.20e+07  (0.032§) 
L3.Noxide -3.1e+07**  (0.031§) 1.10e+07   (0.011§) 
L7.humidity -0.01 0.02 

Expected change in log count for a one-unit increase in variable; §µm-3; OR: * p<0.1 ** p<0.01 *** p<0.001;  
Log Likelihood: -156.71; Chi2: 55.72 

 
 

Table 18 Pearson Goodness-of-fit test: Logistic model for extreme asthma events 

 
Pearson Goodness-of-fit test 

Number of observations 442 
Number of covariate patterns 442 
Pearson chi2(427) 399.36 
Prob > chi2 0.8274 

 
 

Table 19 Hosmer-Lemeshow Goodness-of-fit test: Logistic model for extreme asthma 
events 4 quantiles of estimated probabilities 

 
Hosmer-Lemeshow Goodness-of-fit test 

Number of observations 442 
Number of groups 4 
Hosmer-Lemeshow chi2(2) 1.81 
Prob > chi2 0.4051 
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Table 20 Predictive values of the Logistic regression estimates 

 
 Actual Asthma Admissions 

Predictive Value 
<40 ≥40 

Predicted 
Asthma 

Admission 

<40 364 78 
(Normal): 
82.35% 

≥40 283 5 
(Extreme): 

1.74% 
 Sensitivity: 

56.26% 
Specificity: 

6.02% 
 

False normal (): 17.65%   False extreme ():43.74% 
 

Summary Predictions from All Models 

Table 21 presents a summary of some important indicators that were used to 
compare five different predictive models. It compares the parameters for the 
expected change in log count for a one-unit increase in a variable for each model. 
Also the predictive values of each model, sensitivity and specificity are indicated in 
the table.  
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Table 21 Summary Predictions from All Models 

Variable/ 
Parameter 

NegBin LRM 
QRM l 

[0.80q /wlsin 280] 
QRM2 

[0.85q /wlsin 280] 
QRM3 

[0.85q /wlsin 278] 
Log 

change 
Robust 
Std. Err 

Log change Robust 
Std. Err 

Log change Robust 
Std. Err 

Log change Robust 
Std. Err 

Log change Robust  
Std. Err 

Summer_2 0.14 -0.13 -2.00* 0.91 -1.71 3.34 2.91 3.36 6.07 4.12 

Autumn_3 0.35*** -0.09 -4.40*** 1.27 5.59 2.97 8.20* 3.38 -7.13 4.52 

Winter_4 0.32*** -0.07 -4.58*** 1.37 2.79 2.5 4.15 2.22 1.18 3.53 

Feb_2 -0.06 -0.04 - - -7.86** 2.51 -1.58 3.06 8.73* 4.18 

Mar_3 0.02 -0.05 - - -3.57 2.43 0.20 2.75 -0.33 4.25 

Apr_4 0.37*** -0.09 -21.00*** 1.46 7.50* 3.32 13.23*** 3.62 -7.45 5.80 

May_5 0.50*** -0.09 -22.04*** 1.41 10.84** 3.41 8.08 4.13 2.18 5.61 

Jun_6 0.47*** -0.11 -21.17*** 1.51 9.63** 3.56 10.09* 4.37 4.32 5.80 

Jul_7 0.09 -0.11 - - 8.78* 4.16 2.00 5.18 -14.72* 7.31 

Aug_8 -0.07 -0.1 - - 18.32*** 3.87 -0.30 4.87 -12.55 7.10 

Sep_9 0.27** -0.09 -19.15*** 1.85 12.76*** 3.72 11.35* 4.74 16.97* 6.62 

Oct_10 0.23*** -7.00e-02 -18.27*** 1.99 8.80** 3.04 9.76* 4.55 26.96*** 5.43 

Nov_11 0.23*** -0.05 -18.53*** 1.94 11.58*** 2.45 5.29 4.27 24.38*** 4.62 

Dec_12 0.13** -4.00e-02 -17.33*** 1.99 2.49 2.26 -0.63 3.65 20.83*** 4.02 

L9.airtemp -0.01* 0.0 0.04 0.04 -0.69*** 0.14 -0.40* 0.18 -0.91*** 0.23 

L14.Ozone 5.5e+06* 
(0.0055§) 

-2.40e+06 
(-0.0024§) 

-3.1e+07 
(0.031§) 

-3.20e+07 
(0.032§) 

5.3e+07 
(0.053§) 

8.50e+07 
(0.085§) 

-3.7e+08** 
(0.37§) 

1.3e+08 
(0.13§) 

1.3e+09*** 
(1.3§) 

1.3e+08 
(0.13§) 

L3.Noxide 3.5e+06*** 
(0.0035§) 

-7.70e+05 
(-0.00077§) 

-3.1e+07** 
(0.031§) 

1.10e+07 
(0.011§) 

2.6e+08*** 
(0.26§) 

3.80e+07 
(0.038§) 

-1.0e+08 
(0.1§) 

6.7e+07 
(0.067§) 

-4.0e+08*** 
(0.4§) 

7.8e+07 
(0.078§) 

L7.humidity 0.00** 0.0 -0.01 0.02 0.18*** 0.04 -0.10 0.05 -0.05 0.07 

RMSE 0.0016 NA 0.28717 0.22354 0.23074 

EPV 11.43% 1.74% 21.26% 19.02% 16% 

NPV 88.64% 82.35% 93.91% 91.21% 91.86% 

 90.36% 17.65% 6.09% 8.79% 8.14% 

 9.58% 43.74% 30.91% 23.03% 38.95% 

Sensitivity 90.42% 56.26% 69.09% 76.97% 61.05% 

Specificity 9.64% 6.02% 65.06% 42.17% 57.83% 

Linktest 0.524     

Pearson GoF  0.8274    

HL GoF: 
ch2/pvalue 

 1.81/0.4051    

Expected change in log count for a one-unit increase in variable; OR: * p<0.1 ** p<0.01 *** p<0.001; §µm-3 
EPV – Extreme predictive value; NPV – Normal predictive value;  - False normal prediction;  - False extreme prediction 
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DISCUSSION 

This study provides tools for developing a health forecast for asthma in London. 
Quantitative methodologies were developed to study the relationships between 
asthma episodes and weather/air quality factors. Five different approaches of 
modelling and predicting normal and extreme asthma events were explored using 
seasonal, weather and air quality factors. It was identified that asthma daily 
admissions in London varied widely throughout the year (monthly and seasonally) 
and was associated with air temperature, humidity, ozone and nitrogen oxide. 
Developing statistically significant models was unproblematic; however, the 
practical value of these models for predicting normal and extreme asthma events 
would need further work and would depend ultimately on the policy goals to be 
achieved.    

Distribution of Parameters 

The distribution of daily asthma admissions over the study period appeared to have 
some monthly and seasonal patterns which we present in Figures 4.2.1a&b. Even 
though these patterns do not exactly match the patterns described by other studies 
[96], there are clear seasonal effects. Daily asthma admissions also had some 
relationship with the distributions of the temperature related measures as well as 
humidity and a few of the pollutants (Ozone, Nitrogen and PM10), which themselves 
had regular seasonal and annual patterns (Figure 4.2.2). However, for the wind 
speed and pollutants like Carbon monoxide and Formaldehyde, there were no 
noticeable relationships in their patterns and equally no seasonal, monthly or 
annual trends. These initial observations were important because, they gave a clue 
on the likely statistical effects and effect sizes of the selected indicators on their 
respective model output.  
 
In the preliminary bivariate analysis for the selection of suitable individual lag days, 
it was observed that for asthma episodes, the dose rate1 for exposure to lower 
temperature-related2 indicators was lower than for higher temperature-related3 
measures. As a result lower temperature-related measures (e.g. Night minimum 
temperature) had lesser number of lag days compared to the higher temperature-
related measures (e.g. Day maximum temperature), though on the whole, the 
average air temperature measure was most suitable for modelling (See Table 4.1.0). 
With the exception of Ozone and Particular matter, which had relatively higher lag 
days, all the other air pollutants had very low lags in the range of 1-3 days lag 
(Table 4.1.0). 
 
It is well known that weather factors may modify air quality factors and hence the 
effects of these modified factors may be different from anticipated [193]. Our 
proposed models for asthma events, accounted for the most significant weather 
and air quality measures that reasonably predict asthma.  The most significant 
weather indicators were the 9-day lag for temperature and the 7-day lag for 

 
1 This term is used to mean the strength of an exposure to independent weather or air quality factor 
over a period of time 
2 Lower temperature-related measures include: Minimum temperature, Day Minimum temperature, 
Night minimum temperature, Wet bulb temperature, Dew point temperature 
3 Higher temperature-related measures include: Maximum temperature, Day Maximum 
temperature, Night maximum temperature 
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humidity, whilst that for air quality were the 3-day lag for nitrogen oxide and the 
14-day lag for ozone. These were significant in predicting asthma events. 
 
Lagged models in time series analysis have consistently been used to describe the 
patterns of diseases based on previous exposures to effects [194-199]. These 
models are equally useful in forecasting anticipated disease episodes or trends. 
Depending on the duration of the lag, the model(s) guarantee a more reliable 
forecast, since already available data can be used in predicting /forecasting.  Hence 
the choice of variables depends critically on the amount of warning that is desired. 
 
Both lagged and un-lagged indicators were compared in multivariate models to 
determine the most statistically significant indicator for temperature (see Tables 
4.1.1b and 4.1.2b). The same was done for Air pollutants and the output is 
illustrated in Tables 4.1.3b and 4.1.3d. Lagged predictive models have a relative 
advantage compared to un-lagged models, and are more useful in predicting events 
because they make use of reliably measured / known indicators. These are 
available in databases of daily measures of weather and air quality factors (e.g. 
AURN datasets). 
 
In this study, we determined and included the best possible lags for temperature, 
humidity, ozone and nitrogen oxide in our multivariate predictive models. The lag 
days for the weather and air quality variables of the model ranged from 3 (nitrogen 
oxide) to 14 (ozone). This implies it is possible to predict asthma events with these 
models when given at least, a 3-day foreknowledge of data on nitrogen oxide 
measures (and similarly for the other indicators). 
 
Pulmonary function is sensitive ozone  and the resultant effect is also known to 
increase  bronchial hyperresponsiveness [175]. It appeared to be negatively 
associated with asthma events in two models and positive in the other three 
models. Some previous studies acknowledged the negative association of ozone 
with asthma particularly in the winter months and only positive in the summer 
months [97, 148]. This therefore suggests that a further segregated analysis may 
provide better parameters for seasonal forecast of asthma events.  

Modelling 

We used five different models to explore and establish the best predicted asthma 
daily admissions in London. These included one count model (i.e. a Negative 
binomial regression model); a logistic regression model and three quantile 
regression models selected for the 80th and 85th quantiles with a weighted least 
squares iteration numbers of 278 or 280, interchangeably. The study thus led to 
the development of testable methodologies that could be used in health forecasting. 
These methods and tests show that the meteorological and air quality datasets can 
be statistically matched to asthma daily admission records with multivariate 
analyses, and hence used in predicting the condition. The approach is consistent 
with some suggested procedures for modelling disease distributions [16], and could 
be adapted for health forecasting.  
 
Despite the weakness of the data in terms the relatively short span of the time 
series (2 year period , the study re-established some of the relationships between 
asthma episodes and our selected independent factors like temperature, humidity, 
seasonality, Ozone and Nitrogen oxide exposures that were consistent with the 
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literature. Significant relationships were observed in all the five proposed statistical 
models and these are presented in Table 4.6.1. 
 
In the negative binomial regression analysis, we observed significant relationships 
between daily asthma admissions and all the listed indicators in the model, except 
for a few responses to the seasonal and monthly (categorical) variables. The 
Negative binomial regression model has frequently been used in estimating the 
effect of air quality, meteorological and other factors on hospital admissions for 
asthma [200-203]. The 3-fold cross validation conducted on this model gave very 
wide variations. This appears to be an indication of the relatively small sample size 
of the data used for the purpose or the choice of the 3-fold procedure. 
 
The logistic regression model presents a dichotomised dependent variable in the 
model. One of the groups represented extreme asthma events (i.e. >90th percentile), 
whilst the other group was defined as normal. Unlike most logistic regressions 
which distinguish between the categories of the dependent variable, the choice of 
this method was to assess the chances of having an extreme event compared to a 
normal one. This procedure of dichotomising continuous variables has some 
shortfalls including the risks of generating spuriously significant results [192]. 
However, given the instrumental purpose for which we carried out this procedure, 
this was not an issue. 
 
Quantile regression was chosen because it is a robust statistical method that 
makes no assumptions about the distribution of the dependent variable in the 
population [183]. The analysis revealed that, for at the 80th quantile (QRM1), but 
for the seasons and ozone, all the predictors in the model were significant. Again, 
in comparing the two models generated for the 85th quantile with weighted least 
squares iteration numbers of 280 (QRM2) and 278 (QRM3), the latter model 
predicted the independent variables better than the former model.  
 
The very wide variation in the coefficients of the predictors observed for all the five 
different models could be attributed to some inherent deficiencies in the dataset as 
well as methodological limitation in the modelling. For all the predictions made, it 
is obvious that there is a trade-off between the effect sizes predicted and the 
accuracy or error margin (i.e. RMSE and predictive values) of each model. This may 
have some commercial implications in forecasting.  

Strengths  

This is unique in so far as it seeks to develop methodologies that could facilitate 
the forecasting of asthma events resulting in hospitalisation. The study used a wide 
range of data from different sources and employed methodologies suitably defined 
by the type, nature and distribution of the dataset used. This was developed in a 
manner that would make simplify the process of application/validation with 
multiple datasets 

Weakness 

In this study there was a need to aggregate the meteorological and air quality 
indicators. This was done to generate a single shared daily exposure measure per 
individual/location. One could, therefore, presume that the association of asthma 
episodes to exposure may have been over or under estimated in some cases. 
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There are obvious biases in using routinely collected data for which there is no 
control over data quality checks during data collection. The study may have been 
limited by some inherent biases of the data due to our inability to validate data 
quality.  

Implications for Policy and Research /Recommendation 

The forecasting of meteorological and air quality indicators is important, but even 
more important to health care providers /users is the forecasting of disease 
episodes using these measures. Health forecasting services can help in the 
management of fluctuating demand for health care. 
 
Asthma daily admissions in London are associated with monthly and seasonal 
effects as well as temperature, humidity, ozone and Nitrogen oxide exposures. 
Given a fore knowledge of the measure of and exposure (9-day lag temperature; 7-
day lag humidity; 14-day lag ozone; 3-day lag nitrogen oxide), it is possible to 
predict with some degree of certainty, the likely occurrence of extreme/normal 
asthma events.  
 
Some of the deficiencies identified from these methodologies are amenable to 
further analysis using different datasets and possibly adding some more indicators 
that are well known to cause or trigger the onset of asthmatic symptoms. Some of 
these have been referred to already in the initial discussions (see Figure 1). Future 
research should examine the additional effect(s) of lightening / thunderstorms and 
allergens.  
 
Following on from the success of the COPD forecast in the UK [137], further 
research to sharpen the tools for predicting and forecasting asthma will be of great 
service to health care providers as both conditions are closely related [34] and often 
mixed up in their diagnosis 
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APPENDIX 

Appendix A 

The Forecast Selection Tree 

The Selection Tree developed by Armstrong and Green (illustrated below) provides 
an effective scheme for selecting the best forecasting methods for a problem [125]. 
 

Figure 17 The Selection Tree scheme for selecting forecast methods 
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Appendix B 

Synoptic and Climate Stations in London Area 

1. Heathrow  
2. Northolt  
3. Kew Gardens  
4. London Weather Centre  
5. St. James’s Park 

 

Met Office pollution model: NAME dispersion model 

Reference /Source: http://www.metoffice.gov.uk/environment/name.html  
 
This world-renowned atmospheric pollution dispersion model is an invaluable and 
versatile tool for accident and episode analysis, and for pollution forecasting.  
 
NAME can:  

 Forecast air quality  
 Assess the cause of pollution incidents  
 Produce long-term impact assessments  
 Understand and predict long-standing air pollution problems, like acid rain  
 Forecast the international movement of volcanic ash 

NAME lies at the heart of the Met Office's air quality forecasting system, and is 
widely used by industry and government to help solve pollution problems.  

 Making unique use of 3D global weather data, NAME is the result of many 
years of development and includes enhancements in response to the 
Chernobyl disaster 

 Applications covered include: plume rise, realistic boundary layer simulation 
and upper level transport 

 All spatial scales are catered for, and it includes a powerful suite of 
diagnostic tools 

 3D trajectories of air parcels are used to compute air concentrations and 
ground deposits  
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Appendix C 

Codebook and data summary  

 

Table 22 Codebook and data summary 

 
Variable in Codebook  Obs Mean Std. Dev. Min Max 
Asthma Daily admissions 730 28.48493 9.846025 6 130 
Number of records 730 1097.577 632.7526 5 2191 
Date of record 730 16801.5 210.8771 16437 17166 
Maximum temperature 706 15.42558 6.941063 -0.02 34.98 
Minimum temperature 706 7.832748 5.479739 -4.98 19.26 
Night minimum temperature 706 8.143165 5.402302 -4.98 19.26 
Night maximum temperature 706 12.24009 6.144914 -1.32 26.5 
Day Maximum temperature 706 15.34045 7.001238 -0.36 34.98 
Day Minimum temperature 706 10.21478 6.144866 -2.6 25.28 
Mean wind speed 706 7.009241 3.002575 0.7 19.5 
Air temperature 706 11.22771 6.365106 -2.54 26.48 
Wet bulb temperature 706 9.282508 5.498092 -3.25 20.54 
Dew point temperature 706 7.271619 5.506778 -6.7 18.1 
Barometric vapour pressure 706 10.82407 3.886903 3.425 20.75 
Humidity 706 77.88305 12.71152 35 99.5 
Carbon monoxide 730 2.45E-07 6.06E-08 1.37E-07 5.23E-07 
Formaldehyde 730 6.50E-09 3.25E-09 1.67E-09 1.90E-08 
Nitrogen dioxide 730 2.23E-08 7.91E-09 9.24E-09 5.63E-08 
Nitrogen oxide 730 1.72E-08 1.14E-08 2.16E-09 7.31E-08 
Ozone 730 1.14E-08 5.85E-09 8.48E-10 3.22E-08 
Particulate Matter (PM10) 730 1.12E-08 9.00E-09 1.46E-09 6.00E-08 
Sulphur dioxide 730 1.26E-08 7.39E-09 2.90E-09 4.28E-08 
Night temperature drop* 706 4.096929 2.010862 0.7 10.38 
Day temperature drop* 706 5.125673 1.872485 0.86 10.46 
Temperature drop* 706 7.592833 3.320577 0.78 17.74 
Month* 730 6.526027 3.450215 1 12 
Seasonality* 730 2.539726 1.164959 1 4 
Dichotomised “asthma”* 730 0.90411 0.294643 0 1 

*Derived variables 
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Appendix D 

Asthma Admissions and Temperature (London, 2005-2006) 

Figure 18 Asthma Admissions and Mean Air Temperature Distribution (London, 
2005-2006) 

 

Figure 19 Asthma Admissions and Mean Daily Minimum/ Daily Maximum 
Temperature Distributions (London, 2005-2006) 
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Figure 20 Asthma Admissions and Mean Night Minimum/ Night Maximum 
Temperature Distributions (London, 2005-2006) 

 

Figure 21 Asthma Admissions and Mean Dew point/ Wet bulb Temperature 
Distributions (London, 2005-2006) 
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Figure 22 Asthma Admissions and Mean Night Minimum/ Night Maximum and Dew 
point/ Wet bulb Temperature Distributions (London, 2005-2006) 

 

Asthma Admissions and Air Quality (London, 2005-2006) 

Figure 23 Asthma Admissions and NO Distribution (London, 2005-2006) 
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Figure 24 Asthma Admissions and Nitrogen dioxide Distribution (London, 2005-
2006) 

 

 
 

Figure 25 Asthma Admissions and Particulate matter Distribution (London, 2005-
2006) 
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Figure 26 Asthma Admissions and Sulphur dioxide Distribution (London, 2005-
2006) 

 

 
 

Figure 27 Asthma Admissions and Ozone Distribution (London, 2005-2006) 
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Figure 28 Asthma Admissions and Carbon monoxide Distribution (London, 2005-
2006) 

 

 
 

Figure 29 Asthma Admissions and Formaldehyde Distribution (London, 2005-2006) 
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Table 23 Bivariate analysis (lagged independent variables) generated from the NegBin model given 
that the alpha coefficient of each >0 

 
Variable Lag 

Day 
Coef. Std.Err. z P|>|z [95% Conf. Interval] 

Maximum temperature L15. -0.00943 0.001851 -5.09 0.000 -0.01306 -0.0058 

Minimum temperature L8. -0.01004 0.002288 -4.39 0.000 -0.01453 -0.00556 

Night minimum temperature L8. -0.00878 0.00232 -3.78 0.000 -0.01333 -0.00423 

Night maximum temperature L8. -0.00942 0.002058 -4.58 0.000 -0.01345 -0.00539 

Day Maximum temperature L15. -0.0094 0.001836 -5.12 0.000 -0.013 -0.0058 

Day Minimum temperature L9. -0.01062 0.002046 -5.19 0.000 -0.01463 -0.00661 

Night temperature drop L19. -0.03297 0.006322 -5.21 0.000 -0.04536 -0.02057 

Day Temperature drop L13. -0.02492 0.006725 -3.71 0.000 -0.03811 -0.01174 

Temperature drop L19. -0.01841 0.003818 -4.82 0.000 -0.02589 -0.01093 

Mean wind speed L2. -0.01145 0.004137 -2.77 0.006 -0.01956 -0.00334 

Air temperature L9. -0.01032 0.001977 -5.22 0.000 -0.01419 -0.00645 

Wet bulb temperature L9. -0.00886 0.002285 -3.88 0.000 -0.01334 -0.00438 

Dew point temperature L2. -0.00601 0.002284 -2.63 0.008 -0.01049 -0.00153 

Barometric vapour pressure L2. -0.00937 0.003225 -2.9 0.004 -0.01569 -0.00305 

Humidity L7. 0.007207 0.000964 7.48 0.000 0.005318 0.009095 

Humidity L19. 0.008059 0.000976 8.26 0.000 0.006146 0.009972 

Carbon monoxide L1. 969867 199547.2 4.86 0.000 578761.6 1360972 

Formaldehyde L2. 1.85E+07 3656317 5.06 0.000 1.13E+07 2.57E+07 

Nitrogen dioxide L1. 5674741 1526307 3.72 0.000 2683235 8666247 

Nitrogen oxide L3. 4742168 1031354 4.6 0.000 2720752 6763584 

Ozone L14. -1.31E+07 2116023 -6.2 0.000 -1.73E+07 -8981818 

Sulphur dioxide L3. 4143018 1644753 2.52 0.012 919360.7 7366675 

Particulate Matter (PM10) L2. 2568230 1345142 1.91 0.056 -68198.6 5204659 

Particulate Matter (PM10) L21. -4248289 1433593 -2.96 0.003 -7058080 -1438497 
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Negative binomial regression Asthma Models  

Table 24 Negative binomial regression Asthma Model output: comparing the 
temperature related independent variables [alpha>0] 

 
Variable Coef. P|>|z [95% Conf. Interval] 
Maximum temperature 0.031711 0.346 -0.03426 0.097681 
Night min. temperature 0.021357 0.157 -0.00821 0.050924 
Night max. temperature 0.035668 0.002 0.012706 0.05863 
Day max. temperature -0.0883 0.01 -0.15548 -0.02112 
Air temperature -0.07678 0.025 -0.14391 -0.00965 
Dew point temperature -0.00836 0.77 -0.06431 0.047602 
Wet bulb temperature 0.086987 0.157 -0.03337 0.20734 
Day temperature drop 0.017915 0.139 -0.00583 0.041662 
Temperature drop 0.027737 0.036 0.001878 0.053595 

 

Table 25 Negative binomial regression Asthma Model output: comparing the 
lagged(L) day temperature related independent variables  [alpha>0] 

 
Variable Coef. Std. Err. P>z [95% C.I.] 
L15.Maximum 
temperature 

0.012215 0.045319 0.788 -0.07661 0.101038 

L8.Minimum temperature -0.01757 0.021748 0.419 -0.06019 0.025058 
L8.Night min. temperature 0.010055 0.019787 0.611 -0.02873 0.048835 
L8.Night max. temperature 0.02636 0.01163 0.023 0.003566 0.049154 
L15.Day max. temperature -0.01821 0.044994 0.686 -0.10639 0.069978 
L9.Day min. temperature -0.03569 0.018825 0.058 -0.07259 0.001206 
L19.Night temperature 
drop 

-0.01449 0.010316 0.16 -0.0347 0.005733 

L13.Day temperature drop -0.00792 0.00814 0.331 -0.02387 0.008034 
L19.Temperature drop -0.00211 0.006273 0.737 -0.0144 0.010183 
L9.Air temperature -0.05285 0.016218 0.001 -0.08464 -0.02107 
L9.Wet bulb temperature 0.072636 0.013127 0 0.046907 0.098365 
L2.Dew point temperature 0.005769 0.003566 0.106 -0.00122 0.012758 

 

Table 26 Negative binomial regression Asthma Model output: comparing the air 
pollutant related independent variables [alpha>0] 

Variable Coef. P>z [95% Conf. Interval] 
Carbon monoxide 654161.9 0.107 -141899.8 1450224 
Aldehyde 9999356 0.491 -1.85E+07 3.85E+07 
Nitrogen dioxide 7420196 0.043 247980.1 1.46E+07 
Nitrogen oxide -520672.4 0.9 -8658836 7617491 
Ozone -9726108 0.001 -1.52E+07 -4231523 
Sulphur dioxide -1.17E+07 0.002 -1.91E+07 -4377266 
Particulate matter -2294866 0.287 -6515491 1925760 
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Table 27 Negative binomial regression Asthma Model output: comparing the 
lagged(L) day air pollutant related independent variables  [alpha>0] 

 
Variable Coef. Std. 

Err. 
z P>z [95% Conf. Interval] 

L1. Carbon 
monoxide 

348301.3 316345
.6 

1.1 0.27
1 

-271725 968327.
3 

L2.Aldehyde 
(HCHO) 

9873557 549969
9 

1.8 0.07
3 

-905655 2.07E+0
7 

L1.Nitrogen dioxide 3836785 232653
0 

1.65 0.09
9 

-723131 8396701 

L3.Nitrogen oxide 4830577 192543
5 

2.51 0.01
2 

1056793 8604361 

L14.Ozone -
1.01E+07 

219076
1 

-4.63 0.00
0 

-
1.44E+07 

-
5853814 

L3.Sulphur dioxide -2313985 286995
9 

-0.81 0.42 -7939001 3311032 

L2.Particulate 
matter 

-4406147 195763
6 

-2.25 0.02
4 

-8243043 -569251 

L21.Particulate 
matter 

-3003781 138104
0 

-2.18 0.03 -5710570 -296991 

 
 

Table 28 Negative binomial regression Asthma predictive Model I: output 

 
Variable Coef. P>|z| [95% Conf. Interval] 
Summer_2 0.140692 0.027 0.0163488 0.265036 
Autumn_3 0.350927 0.000 0.21291 0.488944 
Winter_4 0.315164 0.000 0.1879445 0.442383 
Feb_2 -0.05612 0.318 -0.166344 0.054105 
Mar_3 0.017414 0.779 -0.104232 0.13906 
Apr_4 0.366958 0.000 0.1933843 0.540532 
May_5 0.50403 0.000 0.330006 0.678054 
Jun_6 0.465243 0.000 0.2893184 0.641167 
Jul_7 0.090724 0.363 -0.104808 0.286256 
Aug_8 -0.073616 0.45 -0.264809 0.117578 
Sep_9 0.266811 0.002 0.1010651 0.432557 
Oct_10 0.228422 0.003 0.0758018 0.381043 
Nov_11 0.234457 0.000 0.1088046 0.360109 
Dec_12 0.125736 0.025 0.016077 0.235394 
L9.airtemp -0.006746 0.041 -0.013204 -0.00029 
L14.Ozone -5487578 0.02 -1.01E+07 -870439 
L3.Noxide 3511809 0.000 1683269 5340349 
L7.humidity 0.002768 0.009 0.000685 0.004851 
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Table 29 b: Negative binomial regression Asthma predictive Model I with robust 
standard errors: output 

 
Variable Coef. Robust  

Std. Err* 
P>|z| [95% Conf. Interval] 

Summer_2 0.140692 0.132355 0.027 0.0163488 0.265036 
Autumn_3 0.350927 0.090399 0.000 0.21291 0.488944 
Winter_4 0.315164 0.069943 0.000 0.1879445 0.442383 
Feb_2 -0.05612 0.042349 0.318 -0.166344 0.054105 
Mar_3 0.017414 0.051614 0.779 -0.104232 0.13906 
Apr_4 0.366958 0.090871 0.000 0.1933843 0.540532 
May_5 0.50403 0.090036 0.000 0.330006 0.678054 
Jun_6 0.465243 0.110563 0.000 0.2893184 0.641167 
Jul_7 0.090724 0.105931 0.363 -0.104808 0.286256 
Aug_8 -0.073616 0.103272 0.45 -0.264809 0.117578 
Sep_9 0.266811 0.085022 0.002 0.1010651 0.432557 
Oct_10 0.228422 0.064893 0.003 0.0758018 0.381043 
Nov_11 0.234457 0.048614 0.000 0.1088046 0.360109 
Dec_12 0.125736 0.042966 0.025 0.016077 0.235394 
L9.airtemp -0.006746 0.00303 0.041 -0.013204 -0.00029 
L14.Ozone -5487578 2315343 0.02 -1.01E+07 -870439 
L3.Noxide 3511809 741015.7 0.000 1683269 5340349 
L7.humidity 0.002768 0.000967 0.009 0.000685 0.004851 

*The robust standard errors attempt to adjust for heterogeneity in the model. 
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Table 30 Summary Statistics of Actual and Predicted Asthma Admissions for various window periods 

 
 

Variable Window Period 
(Dates) 

Obs Mean Std. Dev. Range RMSE 

Min Max 

Whole Sample       1.6x10-3 

Asthma admissions (actual) 01/01/05-31/12/06 730 28.48493 9.846025 6 130  

Predicted asthma from actual 01/01/05-31/12/06 668 28.52901 5.490202 16.80289 42.76237  

1st Holdout Sample       4.1x10-3 

Asthma admissions from 1st holdout 01/01/05-01/05/06 486 27.8786 9.347786 10 130  

Predicted asthma from 1st holdout 01/01/05-01/05/06 440 27.96990 5.196354 16.49666 46.23573  

2nd Holdout Sample       3.2x10-5 

Asthma admissions from 2nd holdout 01/09/05-31/12/06 486 29.78807 9.614548 6 77  

Predicted asthma from 2nd holdout 01/09/05-31/12/06 454 29.78737 6.132507 16.64241 46.06879  

3rd Holdout Sample       3.4x10-3 

Asthma admissions from 3rd holdout 02/05/05-31/08/06 486 27.26543 10.49681 6 130  

Predicted asthma from 3rd holdout 02/05/05-31/08/06 454 27.34119 5.70974 15.26246 43.3106  
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Quantile Regression Predictive Model(s)  

Table 31 Quantile regression output for 0.85 quantile (at wlsin 278)  

Variable Coef. Std. Err. P|>|t [95%Conf.Interval] 
Summer_2 6.065154 4.117885 0.141 -2.02083 14.15114 
Autumn_3 -7.13253 4.518804 0.115 -16.0058 1.740716 
Winter_4 1.181752 3.53139 0.738 -5.75258 8.116081 
Feb_2 8.73403 4.182277 0.037 0.521602 16.94646 
Mar_3 -0.32566 4.250593 0.939 -8.67224 8.020915 
Apr_4 -7.44991 5.797112 0.199 -18.8333 3.933445 
May_5 2.181703 5.610754 0.698 -8.83572 13.19913 
Jun_6 4.32394 5.799203 0.456 -7.06353 15.71141 
Jul_7 -14.7178 7.305733 0.044 -29.0635 -0.37204 
Aug_8 -12.552 7.101053 0.078 -26.4959 1.391769 
Sep_9 16.96719 6.622045 0.011 3.963968 29.97041 
Oct_10 26.96345 5.425173 0.000 16.31044 37.61647 
Nov_11 24.38224 4.622532 0.000 15.30532 33.45916 
Dec_12 20.83072 4.01577 0.000 12.94525 28.71619 
L9.airtemp -0.90871 0.22517 0.000 -1.35086 -0.46656 
L14.Ozone 1.33E+09 1.32E+08 0.000 1.07E+09 1.59E+09 
L3.Noxide -3.99E+08 7.77E+07 0.000 -5.52E+08 -2.47E+08 
L7.humidity -0.04601 0.072998 0.529 -0.18935 0.097331 

 

Table 32 Quantile regression output for 0.85 quantile (at wlsin 280)  

Variable Coef. Std. Err. P|>|t [95% Conf. Interval] 
Summer_2 2.91201 3.36135 0.387 -3.68843 9.512444 
Autumn_3 8.201833 3.375693 0.015 1.573236 14.83043 
Winter_4 4.150939 2.224718 0.063 -0.21758 8.519454 
Feb_2 -1.58447 3.056581 0.604 -7.58645 4.417511 
Mar_3 0.200902 2.751461 0.942 -5.20194 5.603743 
Apr_4 13.23104 3.615096 0.000 6.132341 20.32973 
May_5 8.080963 4.128435 0.051 -0.02574 16.18767 
Jun_6 10.09169 4.370655 0.021 1.509364 18.67403 
Jul_7 2.00479 5.179938 0.699 -8.16667 12.17625 
Aug_8 -0.29917 4.871955 0.951 -9.86587 9.267524 
Sep_9 11.34894 4.738983 0.017 2.043349 20.65453 
Oct_10 9.760338 4.54528 0.032 0.835108 18.68557 
Nov_11 5.292576 4.265714 0.215 -3.08369 13.66884 
Dec_12 -0.62673 3.650765 0.864 -7.79546 6.542012 
L9.airtemp -0.39775 0.180555 0.028 -0.75229 -0.04321 
L14.Ozone -3.74E+08 1.34E+08 0.006 -6.39E+08 -1.10E+08 
L3.Noxide -1.00E+08 6.74E+07 0.138 -2.33E+08 3.21E+07 
L7.humidity -0.09972 0.051796 0.055 -0.20143 0.001989 
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Table 33 Quantile regression output for 0.80 quantile (at wlsin 280)  

Variable Coef. Std. Err. P|>|t [95% Conf. Interval] 
Summer_2 -1.71133 3.34239 0.609 -8.27453 4.851879 
Autumn_3 5.589849 2.967582 0.06 -0.23737 11.41707 
Winter_4 2.794592 2.499297 0.264 -2.11309 7.702276 
Feb_2 -7.85716 2.514817 0.002 -12.7953 -2.919 
Mar_3 -3.56955 2.429087 0.142 -8.33937 1.200264 
Apr_4 7.497079 3.31661 0.024 0.984498 14.00966 
May_5 10.83918 3.412476 0.002 4.138356 17.54001 
Jun_6 9.633121 3.560632 0.007 2.641371 16.62487 
Jul_7 8.778227 4.158664 0.035 0.612166 16.94429 
Aug_8 18.31678 3.870361 0.000 10.71684 25.91673 
Sep_9 12.7591 3.718452 0.001 5.457451 20.06075 
Oct_10 8.797581 3.037281 0.004 2.833498 14.76166 
Nov_11 11.58352 2.44834 0.000 6.775896 16.39114 
Dec_12 2.489721 2.264858 0.272 -1.95761 6.937055 
L9.airtemp -0.68771 0.137153 0.000 -0.95703 -0.41839 
L14.Ozone 5.29E+07 8.55E+07 0.536 -1.15E+08 2.21E+08 
L3.Noxide 2.60E+08 3.76E+07 0.000 1.86E+08 3.34E+08 
L7.humidity 0.183685 0.041725 0.000 0.101752 0.265618 

 

Extreme Asthma Events [Logistic Regression Model] 

Table 34 Asthma daily hospital admissions Model: prediction of extreme versus 
normal events.  

Variable Coef. Std. Err. P>z [95% Conf. Interval] 
Summer_2 -2.004092 0.913941 0.028 -3.79538 -0.2128 
Autumn_3 -4.399244 1.27402 0.001 -6.89628 -1.90221 
Winter_4 -4.583926 1.368844 0.001 -7.26681 -1.90104 
Apr_4 -20.99707 1.463867 0.000 -23.8662 -18.128 
May_5 -22.03651 1.413758 0.000 -24.8074 -19.2656 
Jun_6 -21.17399 1.505728 0.000 -24.1252 -18.2228 
Sep_9 -19.14742 1.853461 0.000 -22.7801 -15.5147 
Oct_10 -18.272 1.992764 0.000 -22.1777 -14.3663 
Nov_11 -18.53182 1.944342 0.000 -22.3427 -14.721 
Dec_12 -17.33444 1.992402 0.000 -21.2395 -13.4294 
L9.airtemp 0.0416198 0.041649 0.318 -0.04001 0.123251 
L14.Ozone -3.14E+07 3.20E+07 0.327 -9.42E+07 3.14E+07 
L3.Noxide -3.08E+07 1.14E+07 0.007 -5.32E+07 -8385940 
L7.humidity -0.0122357 0.01547 0.429 -0.04256 0.018084 
February, March, July & August dropped from the model because the extreme category (0) 

predicts success perfectly 
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Table 35 Asthma daily hospital admissions Model: prediction of extreme versus 
normal events, with Odds Ratios. 

 
Variable Odds Ratio Std. Err. P>z  [95% Conf. Interval] 
Summer_2 0.134783 0.123183 0.028 0.022474 0.808317 
Autumn_3 0.012287 0.015653 0.001 0.001012 0.149238 
Winter_4 0.010215 0.013982 0.001 0.000698 0.149413 
Apr_4 7.60E-10 1.11E-09 0.000 4.32E-11 1.34E-08 
May_5 2.69E-10 3.80E-10 0.000 1.68E-11 4.30E-09 
Jun_6 6.37E-10 9.59E-10 0.000 3.33E-11 1.22E-08 
Sep_9 4.83E-09 8.96E-09 0.000 1.28E-10 1.83E-07 
Oct_10 1.16E-08 2.31E-08 0.000 2.34E-10 5.77E-07 
Nov_11 8.95E-09 1.74E-08 0.000 1.98E-10 4.04E-07 
Dec_12 2.96E-08 5.90E-08 0.000 5.97E-10 1.47E-06 
L9.airtemp 1.042498 0.043419 0.318 0.960779 1.131168 
L14.Ozone 0.0000 0.0000 0.327 0.0000 . 
L3.Noxide 0.0000 0.0000 0.007 0.0000 0.0000 
L7.humidity 0.987839 0.015281 0.429 0.958338 1.018248 
February, March, July & August dropped from the model because the extreme category (0) 

predicts success perfectly 
 
 

Table 36 Summary of the measures used in estimating RMSE for the three QRMs 

 
Predicted 
asthma at 
Quantile 

WLSIN Obs Mean Std. Dev. Min Max RMSE 

Asthma-actual - 730 28.48493 9.846025 6 130 0 
asthma@85q 278 668 34.71906 12.28903 0.8463322 75.76692 0.23074 
asthma@85q 280 668 34.52453 5.762216 17.62017 48.08187 0.22354 
asthma@80q 280 668 36.24383 7.217736 16.89369 59.95979 0.28717 
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