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APPLICATION OF A STRESS-EQUATION MODEL TO FLOW OVER HILLS
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Summary

Turbulent flow overvtopography can be divided into flow regions
with different physical characteristics. In particular, the Reynolds
stresses vary according to rapid distortion theory aloft, but are in
equilibrium near to the ground. A turbuleﬁcé closure which takes
account of these features is used in a numerical model to obtain the

mean flow field and stress fields for flow over topography.
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Introduction

An understanding of boundary-layer flow over topography has many:
applications in meteorology. Changes in wind speed and turbulence
stucture as the flow passes over a hill can have.a significant; effect
on local pollution: dispersion, wind-loading on buildings and the
viability of wind-energy systems. The drag induced by' a hill' or
region of hills can also have an effect on larger scale atmospheric
motions. Many studies have been undertaken for laminar flow over
topography, but until recently there have been relatively few studies
of turbulent flow, despite the fact that typically the boundary layér

is turbulent.

One such early study was that carried out by Jackson and Hunt
(1975). They solved for flow over a 1low hill (linearising the
equations) and assumed that the equilibrig; layer.formula relating the
| shear stress to the mean velocity gradient was still valid. They

found that, irrespective qf the particular assumptions made in

» representing. the stresses, the mean flow field could be split up.intd
% two regions; an inner region E < (__m where stress variations had a
significant effect on the mean flow over the hill, and an outer region

iﬁ,t;u where the velocity perturbation'lsu. was effectively inviscid

and not-influenced by the Reynolds stresses (Figure 1) .
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Sykes (1980) carried out a similar analysis, but used a different
_turbulenée model, presenting explicit equations for the Reynolds
stresses (Launder, Reece and Rodi, 1975). Sykes found that the stress
equations themselves gave rise to a second (unrelated) layer structure
for stress variations. Within a region ¢ {s » the turbulence is
in equilibrium - in the outer region > {¢ advection of the
stresses is important and equilibrium no longer holds. It is here
that equilibrium models become inaccurate. If we consider flow over a
low hill of length L and height inllwhere £ << | , the stresses are
in equi}ibrium within a. regiong <[5 ~6L, whilst the velocity
perturbations are affected by the stresses in ‘Zd:mNS‘LL . As
{JH .<l$ y the particular choice for turbulence closure makes little
difference to the velocity perturbation for flow over a 1low hill ,
even though‘the closure used may model the turbulence rather badly in
the region 55)“5 . This is why mixing length models predict the mean
flow (thpugh not necessarily the turbulence)‘quite well for flow over

low hills.

Over a 'real' hill, where non-linear effects are important, the
flow may'separate,.forming a“highly.ﬁurbulent wake region, bounded by
a detaéheq shear layer. The choice of turbulence closure is now
"importantf as stress. gradients in the free shear layer affect the mean |
flow and the size of the separgtion bubble. This region is
inaccurately modelled by the equilibruum model of Jackson and Hunt and

4by mixing length models (Taylor, 1977).
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Britter, Hunt and Riéhards (1981) have shown by comparison between
theory and experiment that for flow over a two-dimensional hill the
stress changes are governed by rapid distortion theory in the outer
region (z> (s )i Field measurements for flow over the hill
'Blashaval' taken by the Meteorological Office are also consistent
with rapid distortion theory in this outer region. To predict more
accurately the mean flow for steep hills 'where there may be flow
s;paration, and to obtain the stress fields,, a turbulence closure is
required which gives equilibrium effects near the ground, corresponds
to rapid distortion theory aloft and can model detached shear layers

successfully.

The numerical model

As a first step in this direction, we consider the closure
proposed by Launder, Reece and Rodi (1975), which has been tested in a
variety of flows. . The equations of motion -and the Reynolds stress

equations to be solved are then
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The model described is that for two-dimensional turbulent fluid
flow over an irregular lower boundary. A co-ordinate transformation,
based on that of Gal-Chen and Somerville (1975) and later developed by
Clark (1977) is used to map the domain with bottom topography in (x,2)
space into a rectangular region in (?:',?é) space (figure 2). If
h(x) specifies the topography, and D is the depth of the domain, the
transformation is given by
= X
D(s-h)/(D-h)

> g 4
'-'aéz; + (I§/D - 1).dh/dx /(1 - h/D)

"

-
=
2

o< 43
2 = 2 /(1 -u/D)
DE R

Boundary conditions are given by

(i) No-slip lower boundary

2l

oty > O at upper boundary
(iii) Specf%ied equilibrium stress ratios for the normal

stresses at the lower boundary
2 =
oK

(v) Law of the wall for the shear stresses

(iv) =) at upper boundary

(vi) Periodic or inflow-outflow lateral boundary conditions

Results

At the time of writing, the model has been run successfully for

flow over low topography, for both periodic terrain and isolated

—— R

hills. We 1look briefly at the case of periodic terrain, a
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sinusoidally varying surface (as used by Sykes (1980)). As the ground
is approached, the stress perturbations are such that the

stress-energy ratios tend smoothly to their equilibrium limits (the

lower boundary condition). Although Sykes was using a similar closure

and the same form of boundary condition , he was unable to obtain a
smooth match. (A fault in the numerics rather’ than the equations
themselves) ( Figures 3,4). In this region , the magnitude of the
shear stress perturbation corresponds with that obtained - from mixing
length models, the maximum increase in stress occurring just forward
of the crest. Moving vertically upwards from the summit, the
(positive) perturbation in the shear stress decreases as we leave the
equilibrium region, and reaches a-(nggative) minim;m just above the
height where tsu; maximises and the mean éhear is consequently
decreased from its upstream value. Ove; the trough(x=0.5L), the
perturbation for such a low sinusoidal series of hills is of the same
magnitude but opposite phase, with a decrease in shear stress from the
upstream value at the surface, and an increase higher ﬁp. This
increase in shear stress in the 'matching region', where the stresses
are .not in equilibrium and rapid distortion theory does not fully
apply, is of similar magnitude to the .decrease above the crest.
_Whilst 4mixing length theory qualitatively agrees, the decr;ase in
shear stress above the crest is‘much‘larger than the increase above
the trough and larger than that predicted using the second-order
closure model, because the shear stress is tied too strongly to the
mean shear. Experim?nts for flow over water waves ( Hsu, Hsu and

Street ,1981) show that the stress“profiles over crest and trough are

of the same magnitude but 180° out of phase, as predicted by the

-



second order closure model. (Figure 5)

Further aloft, the stress perturbations tend qualitatively to the
form predicted by a linear analysis (similar to that of Sykes) for
this particular closure. Agreement of, for example wr , with the
predictions of isotropic rapid distortion theory (Britter, Hunt and
Richards 1981) is good. The numerically predicted values-of bil were
used in obtaining Figure 6. Allowance for the effect of anisotropy in

the upstream turbulence improves the agreement.

Conclusions

Comparison between theories using different turbulence models and
experiments has shown the need for a sophisticaﬁed turbulence closure
to model all the physical processes present in flow over a hill.
These .include equilibrium _effects, rapid disortion theory and free
shear layers. As a step in this direction, a .second-order ”closure
model has been employed numerically to solve for the mean floﬁ and
Reynelds stresses. For the case of low topography, such a model
matches the stress fields sapisfactorily between the limits of rapid
disortion and equilibrium flows. Work is currently progressing on the

v

effects of steep hills and the influence of separation.
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Convour plot of perturbation from the horizontelly averaged 12

mean value for K* from the numerical model for flow over

& periodic sinusoidal hill of length L. The crest of the
hill is at the left lateral boundary and flow is from left
to right. Dashéd lines indicate a positive perturbation

in .G;, solid lines a negative perturbation. Note that the
constant stress lower'boundary condition requires contours
to be vertical at the lower boundary. G? is the upstream
value of U (=-7T,, as defined on page 5.) The vert-

ical scale (in 2& )is logarithmic.
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Contour plot of perturbation in
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Fipure 5 Profiles of shear stress at the crest and trough for the

second-order model

and a mixing length model — — —
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