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1, _INTRODUCTION

The planetary boundary layer may be defined in general terms as the
layer of the atmosphere which is significantly influenced by the under=
lying surface. A practical method for estimating, and indeed forecasting,
the depth of the boundary layer is required, for example, in studies
dealing with the dispersion of concentrations of atmospheric pollutants
such as sulphur dioxide. During the daytime the vertical spread of such
pollutants can be severely checked by the presence of a thermal inversion
which denotes the upper limit of the well-mixed turbulent layer and in
certain metesrological and geographical situtations the mixing depth is an
important parameter for forecasting the concentrations of pollutants trapped
beneath the inversion "1id".

A thorough investigation of many different methods currently available
for estimating the thickness of the planetary boundary layer has been presented
by Hanna (1969). The purpose of Hanna's paper was to compare and criticise
as many of the methods as possible by applying them to the 1953 O'Neill
boundary layer observations from the Great Plains Turbulence Field Program
(published by Lettau and Davidson (1957)), and to attempt to recommend the
most practical method.

Formulae which are known to yield good estimates of the boundary layer
depth in neutral conditions are totally inadequate to deal with the diabatic’
conditions pertaining during the period of the O'Neill observations. Thus
simple relationships between the depth, h, and u,/f or G/f, where u, is the
surface friction velocity, G is the geostrophic wind speed at the top of the
boundary layer and f is the coriolis parameéer, are useful only when restricted
to near neutral conditions, and so it is obvibualy necessary to include the

effects of the departure from adiabatic conditions in any useful theoreticgl

formulae.
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- The most successful correlations between theoretical and observed

thicknesses were obtained by Hanna using the formulae of:

I
(1) Laikhtman (1961), h = C, 6/ (%'% &5 (1)

v and (ii) Rossby and Montgomery (1935), h = C, G ‘i’““(‘))/(_£_~§_9_ ‘Iz’ (2)
by
where 01, 02 are constants, Ae//Az is the mean gradient of potential
temperature throughout the boundary layer, T is a mean actual temperature
for the layer; g the aoc;%iation due to gravity ando¢(0) is the angle
between the limiting direction of the wind at the surface and the direction
of the surface geostrophic wind. Hanna foﬁnd a correlation coefficient
of 0.89 between the observed depth, h° s and the theoretical estimate of
the depth, h, using formula (1), with C, = 0.75 (Laikhtman's constant was
1.36). With formula (2) Hanna obtained a correlation coefficient of 0.83
between h, and b, with C, = 1.2' (Rossby and Montgomery had a constant
of 0.38).
¥ Although the above formulae cater reasonablf well for diabatic
conditions it is necessary to estimate the average vertical gradient of
potential temperature over the boundary layer before the thicknesses can
be evaluated. However a knowledge of the vertical temperature profile is
not always available and would be difficult to predict. Other successful
semi-empirical techniques discussed by Hanna meet the same problem that
a temperature sounding is required before the thickness can be estimated.
Hanna concludes that the best methods of estimating h are impractical
for the ordinary observer whereas other more practical methods do not account
for diabatic effects. Further, he suggests that a theory using wind speed
- and some measure of the stability near the surface would be desirable.
With Hanna's recommendations in mind, the present author has used
the 1953 O'Neill data to explore possible correlations between the observed
depth of the boundary layer and combinations of boundary layer parameters

such as the surface friction velocity, i, , and the surface Monin-Obukhov

A
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'length, L, which can be estimated from measurements made close to the ground. 4

The derived relationships go part way to meeting the criteria laid down by
Hanna and provide some encouraging correlations which should be pursued
further using more recently obtained, good boundéry layer observationsj
see, for example, "The Wangara Experiment Boundary Layer Date" by Clarke,
Dyer, Brook, Reid and Troup (1971).

A feature not specifically investigated by Hanna (1969) is the evolution=
ary aspect of the daytime mixing depth. Ball (1960) has given a theoretical
treatment for the control of the height of the inversion which frequently
caps the mixing layer produced in conditions of daytime surface heating.

In particular, Ball's theory predicts the rate at which the inversion will
rise in dry convective conditions. A study of the growth of the daytime
mixing layer at 0'Neill has prompted the present author to suggest a simple
relationship for estimating the depth of the layer as a function of a time

integral of the sensible heat flux measured at the surface.

2. DERIVATION OF PARAMETERS FROM 1953 O'NEILL DATA

The complete details of the O'Neiil Program can be found in the
publication by Lettau and Davidson (1957). Here we state which parameters
are required for the present study and how they are derived from the basic
O'Neill observations.

(1) hyy the observed thickness of the planetary boundary layer.

The O'Neill data include a vertical temperature sounding through
the planetary boundary layer from which we can estimate ho as the
lowest level at which the vertical temperature gradient exhibits a
discontinuity (Hanna, 1969). During daytime conditions when there
exists a well-mixed layer near the surface beneath a more stable
upper layer, ho corresponds to the level of the base of the stable
layer and denotes the 'mixing-depth'. When a stable layer exists
from the surface then ho corresponds to the top of the lowest inversion

layer and denotes the region close to the ground where turbulent

.
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mixing is most suppressed. It should be noted that this definition |

of ho categorizes two physically distinct types of boundary layer,
namely, the relatively deep, daytime, well-mixed layer and the
relatively shallow, night-time, inversion layer.
Hanna points out that thicknesses estimated in this way from the
O'Feill data are accurate only to within about 100m due to the spacing
of the heights used in the temperature soundings. Having accepted Hanna's
apparently objective definition for h° it is interesting to note that
the distribution of ho adopted for the present study differs from that
obtained by Hanna. Of the 95 original sets of data Hanna rejected 6 as
unusable, mostly because they were obtained near sunrise or sunset when
surface conditions were changing rapidly . The two distributions obtained
from the remaining 89 ascents are given in Table 1, and we note that the
present author adopts 50% more thicknesses of 200m than Hanna did. A
certain degree of subjectivity has entered the analysis! Of the 14 cases
where the two evaluations of ho differy, 10 occur within observation
periods 1, 5, T« These ﬁérioda are specifically mentioned by Hanna in
connection with advection processes and indeed in part of his analysis
he is obliged to correct only these three sets of temperature profiles by
removing linear trends due to advection. This may well be the reason for

the differences obtained in the distributions of estimated b




‘.

TABLE 1. DISTRIBUTION OF OBSERVED PLANETARY BOUNDARY LAYFR THICKNESS,

ho(n), AS ESTIMATED FROM THE 1953 O'NEILL DATA BY HANNA (1969)

AND CARSON
T ] 7 | 2 B |

ho(n) 200 400 | 600 [ 800 | 1000 | 1250 | 1500 | 1750 | » 2000 | TOTAL

HANNA(1969)| 14 2y L8 L6 4 1 2 3 8| 89

CARSON 21 23 15| 6 3 7 3 3 8| 89
(11) u, s the surface friction velocity.

The surface friction velocity is estimated from the relationship,

L o B0 :

e (3)

. 3 n,\_ - ik (s 3%-,_) ’

wheretKO) is the magnitude of the surface shearing stress, e is
the air density close to the surface, V is the mean wind speed at
height z above the surface and k is the von Karman 'constant’.

Averaged valﬁes of the required parameters are tabulated at two
hour intervals vithiﬁ”each observation period. In the second relatione
ship the observed‘kw;ééidetermined from measurements of averaged T (0)
and by assuming the neutral logarithmic form for the mean wind profile.

Individually the values of k for the O'Neill observations vary from
0.33 to 0.45. '

(4i1) H, the sensible heat flux at the surface.
The values of H used are those according to Lettalu's theoretical
model and are tabdlated, again at two hour intervals within each

observation pério§. Values are hourly means centred at the times
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From the above basioc observations we construct the following boundary

. layer parameterss
*
(1v) h, = b/ (82) - (4)
£
. where (u‘/f) represents the boundary layer scale height which will

in neutral conditions determine the thickness of the boundary layer
which observations suggest is of order 0.2 (“#/f). Similerly we

define h' =h/("*/f) where h is a theoretical estimate of the thickness.

(v) L, the Monin-Obukhov length for the surface layer:
Pt (5)
kp (H/ew) '
where ; P = ¢ / T >

T is a mean absolﬁte femperature for the layer and op is the specific

heat of air at constant pressure. The buoyancy parameter, P ’

varies little and is regarded as constant throughout the computations

with a value 3.4 cm seo'2°1<"1

o,

(vi) ¢ » @ non-dimensional stability parameter.

pr- B (6)

The parameter M was introduced by Kazansky and Monin (1960), and has

been extensively used, for example, by Monin and Zilitinkevich (1967),

and by Clarke (1970) wh.dbeo notation is skz(- ,L).

3

3. SEMI-ﬁlPIRICAL FORMULAE FOR ESTIMATING THE THICKNESS
OF THE BOUNDARY LAYER

P If we assume that .'thelthickness of the boundary layer is a resultant
characteristic of the geherél turbulence field which, in turn, can be
determined by certain external parameters then, following the similarity
hypothesis stated by Kazanalq'/. and Monin (1960) (and discussed in papers
by Monin and znummq;jggﬂ), Clarke (1970) and Sheppard (1969)) we

-6 e
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we may combine the internal boundary layer parameters u, and H/ecr
with the relatively oconstant parameters P and f to propose n" as
a function of ,u only,
e - f(p) (1)
in horizontally homogeneous, stationary conditions.
In terms of the external boundary layer parameters the equivalent

statement in horiszontally homogeneous, stationary conditions is

h/(_g_) = function of Bo and S only,
! = F(Ro,S), say, (8)
where Re = G/f'z, is the surface Rossby number,
S = f %;.9— is an external stability parameter,

%, is the roughness length of the underlying surface and A® is the
difference in potenﬂal temperature across the boundary layer.

We note that Jr can be expressed as a function of Ro and S (Monin
and Zilitinkevich, 1967) and that when internal parameters only are used
the effects of z, and G are .included in u_.

The formulae of equations (1) and (2) are similar to the formulation
suggested in equation (8); the effect of z, ie not included explicitly
in Laikhtman's formula but is implied by G and o (0) in the formula of
Rossby and Montgomery. For‘tr.ne present we shall restrict our investigation
to the possible form éf f(,;) in relation (7) whilst reoailing from our
knowledge of the neutral i's:l_tt.zeu:ion ( po= 0) that we should expect f (0) = 0.2,
In this way we hope to ;ll—ow.for the effects of stability whilet retaining
thcioetabliahed mlationghip for near neutral conditions.

(1) h" as a function of P
The first step is to investigate the possibility of a correlation

. between h:' and r&. « Linear regression techniques yield a correlation
coefficient of =0.15 between the two parameters when all stability

categories are included in the analysis, =0.04 when stable ( M 0
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cases only are included and =0,36 when unstable ( /4. < 0 ) cases
only are included.

The lack of correlation between the variables h: and P
is at first eight very discouraging and suggests that the formulation
proposed in equation (7) is not a viable prospect.

One of the main assumptions which allowed us to state equation (7)
is that conditions are stationary over a time which includes the
observation period. Sheppard (1969) has pointed out that the term
'stationary' can strictly only be applied if conditions have remained
effectively steady over a period of a few hours. Non-stationarity
will arise naturally over a land surface due to the relatively rapid
diurnal variations of the radiation flux and for this reason alone the
conditions in the boundary layer during the O'Neill observational
periods must be classed as non-stationary. It is perhaps not un-
reasonable then that there should be no significant correlation between
h: and | ) since the observed boundary layer thickness ho at time t
is not the equilibrium thickness resulting from stationary conditions
controlled by parameters u,/# and rL whose mean values we have
estimated over a period centred on time, t.

Variations in the external parameters which govern the state of
the planetary boundary layer will be reflected in interrelated changes
in the distributions of wind, temperature and turbulence within the
layer. In particular a variation in the radiation flux at the surface
with subsequent stationary conditions will cause the wind, temperature
and tubulent exchange fields to Qary interdependently and continue to
vary until profiles have been established which meet the conditions
for thermal and dynamical equilibrium within the boundary layer

corresponding to the new values of the external parameters. A detailed
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discussion of the external factors which determine the structure of the

planetary boundary layer has been presented by Laikhtman (1961).

A major consequence of a variation in the surface heating is the
resulting change in the temperature profile throughout the boundary
layer which is reflected in changes in the lapse rates between levels
and the thickness, ho’ estimated from the gradient discontinuities.

In non-stationary conditions the wind, temperature and turbulent
exchange fields are continuously re-adjusting to meet the variations
in the determining external parameters. If the maincause for the non=-
stationarity is the diurnal variation in the radiation flux, then we
should expect that although the boundary layer is in a state of
oonstant re-adjustment, the reforming of the profile gradients is
virtually a quasi-continuous process, also with a diurnal mode, and
that an instantaneous profile will, as a whole, be characteristic of
the mechanical and thermal turbulence fields averaged over a somewhat
earlier period. There is a lag, then, between the effect of an external
change being sensed at the surface and that change being reflected in
the overall boundary layer profiles. However, if the external variations
are occurring smoothly and not too rapidly, the profiles will adjust
continuously to the new conditions and we might hope then to find a
significant correlation between the observed "instantaneous" boundary
layer thicknes, ho’ and some combination of the average mechanical

turbulence intensity and the thermal stratification parameter averaged

'over a slightly earlier period.

For non-stationary conditions characterized by a continuous but

not too rapid variation in an external parameter the above argument

leads us to propose
h* (t- §t) = function of P (t- §¢),

= flpi-st)) » say (9)

.,9-



where

h*(t-§t) = h(t/(-‘:g “’“’) ’ (10)

and, similarly,

h, (t- §t) = h.(t)/( -:i(t"w) :
$t is a time interval to be defined, and for any quantity, Q, other than
h*, h¥, Q(t) denotes the value of Q estimated at time t or, in the case
of time-averaged quantities, the value of Q measured over a period of
time centred on time t.

We note that this formulation is proposed for external variations
such as the diurnal variation of radiation but it does not take into
account non-stationary conditiéna dominated by processes such as
advection. Problems will no doubt also arise in the neighbourhood of
sunrise and sunset when surface conditions are changing rapidly and the
surface boundary layer is changing in nature as a result of the change
in sign of the surface sensible heat flux. The adopted time interval
$t obviously has bounds outside of which any attempt at correlation
would prove futile. In this study we shall correlate ho(t) with
boundary layer parameters estimated for the period centred on the time
of the previous ascent. This implies §t of the order of two hours
which is probably close to the limiting value.

(11) " (t-§t) as & function of p (t- §%).
From the 95 sets of data obtained at O'Néill, 74 pairs (,L(t-St), k:(t-it))

are formed and are plotted in Figure 1. With all the data included in

»
" the snalysis the best fit linear regression line for ho (t-5t)

regressed on F.(t- §t) gives us an estimate for h(t-5¢),
h" (t-5t) = f (p (- 5¢))
= 0,15 = 0.0023 p (- §t), (11)
where the correlation coefficieﬁt b&tween the two regression variables
18 -0,69 and the variance about the regression line yields a standard _

error of estimate for the ho (t= §t) of 0,08 (ie r = =0.69, 8, = 6;?./(!—1")
®

- 10 -
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= 0,08, where r is the correlation coefficient, & ho 18 the
standard deviation of h:(t - §t) for the sample and Sy is the
standard error of estimate when estimating h; (¢t - St) from the
regression line of equation (11)).

Although the scatter is very high (52% of the variance is not
accounted forby the regression) the correlation is highly significant,
with the level of significance less than 0.1%, and in this sense the

results are very encouraging. In particular, equation (11) implies

f(0) = o0.15 (12)
ie h(t) = 0.15 uy (t- §t) in neutral conditions,
which is in close agreement with oiher observational evidence.

Linear regression techniques applied to only the unstable cases
Yield a higher correlation coefficient of «0.77 which is again highly
significant although the regression line implies,

h" (t- §t)= 0.067 - 0.0038 p(t-§t), ( <o ), (13)
which does not suggest as good a value forf(o) as equation (11).

The distribution of points in Figure 1 suggests a non-linear best
fit curve rather than a linear one and the second order polynomial
regression line which best fits the sample implies,

h" (t-5t) = f (p(t- 1))
= 0.3 - (21 x 1077) p(t=58) + (315 x 1077) w’(t- 5¢),(14)

which gives an index of correlation between the sample variables,
Jt (t- §t) and h) (t= §t), of 0.78 (ie 40% of the variance is not
accounted for by the regression) and a standard error of estimate 0.07.

The function of equation (14) is plotted in Figure 1 and we note
that it has a minimum value of approximately 0.13 at P (t- §%) = 3.3,
The arguments leading' to an attempted relationship between the depth of the

"boundary layer and the general turbulence parameters are not so obviously

- 11 =«
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meaningful for the shallow stable boundary layer,‘vhere mechanical
turbulence is suppressed, as they are for the evolving, generally
deeper, well-mixed turbulent layers corresponding to ,u £0 .
If we accept the relation (14) as giving our best estimate of
n (t- $t) based on the measurement of [t (t - §t) then we can rewrite
it to express h(t) as a function of %.n (t =8t) and L(t-8t), s0
h(t)z[o.ﬂ ua - (21 x 1077) (&) 2 k+(315x 10‘7)(11;)3. (3)21 . (18)
¥ £ L £ )% B
t-8t
In Figure 2 we see the contours for L(t = §%) = constant in
the h(t), %3 (t - 8t) plane, derived from equation (15). On the un-
stable side the regression analysis which led to equation (15) was
only applied to data with L 4; - 14 and so strictly the contours of L
should be limited to this range. For a given u, there exists an
Lcrit(“') on the stable side such that h(t) has a minimum value at
that L for the given u,. Thus equation (15) implies that h(t) increases
for L& Lcrit(u') on the stable side; however the mechanisms causing
the depth of an inversion layer to increase would have to be studied .
more thoroughly to determine whether or not this increase in depth
with increase in stability beyond Lcrit(uﬂ) is valid. The contours
are illustrated only for the neutral and unstable cases. .
We note also that the range of u, observed at O'Neill varies
systematically with the stability, however the observed range of u,
does not simply increase as stability decreases. The variation of ug g
with L as measured at O'Neill is shown in Figure 3 and the suggestion
is that the relationship is non-linear with the highest values of u_
occurring in the slightly unstable and near-neutral categories,
indicating that the highest winds are generally found in near-neutral

conditions. For given values of L typical values of u, are obtained

from the eye-fit curve in Figure 3 and h(t) are estimated from
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equation (15) to produce the broken line in Figure 2 which indicates

" the typical order of h(t) one would expect to obtain given uy, (t-$t) and L (£-$t)
+

where §$t is of the order of two hours, for a site with roughness
characteristic of O'Neill.

Figure 4 shows the correlation between ho(t), the thickness observed
from the vertical temperature profiles, and h(t) obtained from equation (15).
The linear regression of ho(t) on h(t), where both are in metres, is

ho(t) = 6 + 0.97 h(t)

2 h(t) ;

where the correlation coefficient ig0.81 (ie 34% of the variance is not
accounted for by the regression) and the standard error of estimate for
ho(t) is approximately 330m. Although the standard error is rather higher
than we would like the correlation between ho(t) and h(t) is highly significant

and the correlation coefficient is of the same order as that obtained using

the acceptable formula (2) due to Rossby and Montgomery (1935). A formulation

of the type
2 3 2
h(t)-;h+n(g,) ; 5+c(g_.) (_15) ] (16)
¥ f L 3 L -5t

used in equation (15), where A, B and C are dimensionless constants to be
determined by regression techniques, and §t is a time interval of order one
to two hours would appear to yield encouraging results when used to estimate
the depth of the boundary layer.

(141) n*(t- §t) as a function of L(t - 8t)

The relative success of the formulation of equation (9) encourages
us to investigate similar formulations involving th/f and L. One such
is the suggestion that we might express h*(t - St) as a function of
stability only where ij(t - ¢t) is used as the stability parameter, ie

h*(t = §t) = function of L™1(t - §t) only, s

- 8(10-1(t - st)). 88Y e (17)
Note that in this case the L.H.S. is non-dimensional whereas the

variable L~' hag dimensions Zriengthh7"1; It will be assumed that

iis

213
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L is measured in metres whenever a functional form for g (L"1 (t-5t)) is given.
Following the pattern of the previous section we obtain estimates
of h*(t - §t) by regressing h? (t- §t) on L'1(t- $t)s Linear regression
fitting gives
h*(t-5t) = g(L7'(¢ - 5t))
o 0,16 = 2,93 1" }(t= §t), (18)
with correlation coefficient 0.64 when all 74 cases are considered,
and.
n#(t- §t) = (L) (t= §t))
= 0.09 - 5.94 L~ 1(t-5t), (19)
with correlation coefficient ~0.79 when only the unstab;c cases are
considered. Second order polynomial regression gives
n#(t- §t) = g (L7 (¢- §1))
o 0.14 = 162 L-N(t- ) + 46.31 L"2(t=5 ), (20)

with an index of correlation 0.75 (44% of the variance is not accounted

.,

for by the regresaion), a standard error of estimate 0.08 and a minimum
turning point on the stable side st L°' = 0.0175 2~ (L = 5Tm).

Figure 5 gives the distribution of the sample pairs (L’1(t- 2t h:(t- §t))
and the function g(L'1(t- §t)) as estimated by the regression line of '
equation (20). If we accept equation (20) as giving the best estimate

of h*(t- §t) from regfeesion then we can write

h(t) > [ (0.14 = 1.62 11 4 46.31 L'2) g,.] (21)
£ J t- 8t

for our best estimate of the boundary layer thickness based on the
measurement of %3 (t- $t) and L'j(t- §t). We note that this latest
. expression for estimating h(t) is linear in %’/ (t-$t) for an explicit
3 velue of L(t- §t) whereas the relation in equation (15) is cubic in

%g,(t- §t) for a given L(t- §t). Figure 6 gives the contours for L(te 8t)
« constant in the h(t), %.,(t- §t) plane, based on equation (21). Recall

that on the unstable side the contours should strictly be limited %o the

sample renge, L £ - 14 and that on the stable side the regression

-14-
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equation (21) implies that h(t) will begin to increase fbr L £ 5.

Also indicated in Figure 6 is the order of h(t) one would expect to
obtain given %‘ (t- $t) and L(t- §t) for a site with roughness
characteristic of O'Neill, the values being based on the uy, !
relationship suggested in Figure 3 and h(t) evaluated from equation (21).
Values of h(t) from equation (21) are compared in Table 2 with those
obtained from equation (15) under the same set of typical conditions and
we note the close agreement obtained.

TABLE 2. VALUES OF h(t) ESTIMATED FROM PQUATIONS (15) AND (21) FOR TYPICAL

VALUES OF THE PARAMETERS u,(t=$t) (m sec™!) and L(t- $t)(m)

e T T

60 0.225 301 | 283

5 0426 345 330
o 0.475 617 665
=100 : 0.62 957 997
- 50 0.525 1020 1002
- 30 0443 1046 1049
- 20 0.385 1281 129%.
- 15 0.365 1650 1666
- 12 0436 2177 2137

In Figure 7 the observed thickness ho(t) is plotted against h(t)
obtained from equation (21). The best fit linear regression line of ho(t)
on h(t)is

ho(t) = =65 + 1.1 h(t) = h(t)
the correlation coefficient is 0.81 (i.e. 34% of the variance is not

‘accountod for by the regression) and the standard error of estimate for

“15 = .




ho(t) is again approximately 330m. It would appear, from the present sample,

that a formulation of the type

b(t) w [(n - i1 4 m17?) _%,]t 5 (22)

where D, E and F are dimensional constants to be determined from regression
analysis, and §t is a time interval of order one to two hours, provides as
good an estimate of the boundary lsyer thicknessas the formulation of
equation (16).

Extension of these ideas to the more unstable cases with much deeper
boundary layers might help to determine which, if either, of the above
formulations is the more useful.

4, _EVOLUTIONARY ASPECTS OF THE BOUNDARY LAYER THICKNESS

One of the main problems which arises when one is dealing with diabatiec
conditions is that they are characteristically non-stationary situtations.
This is undoubtedly one of the biggest reasons for the marked degree of
scatter about the regression lines of the previous section and this scatter
should be borne in mind if it is decided to use any of the above formulae to
predict a thickness for the boundary layer on any particular occasion.

It has already been stated that the depth of the boundary layer is
closely correlated to the diurnal variation in radiation flux recorded at the
underlying surface. It is of interest then to compare the diurnal variations
in the thickness of the boundgry layer and the sensible heat flux entering or
leaving the layer through the underlying surface. For this reason the heat
flux values from Lettau's theoretical model, recorded at two hour intervals
within each observation period, are averaged and the mean values, <H(t)> s and
standard : errors of the means (standard deviation of sample/(number in

sample)1/2) are plotted in Figure 8 to give an éverage diurnal pattern'of

sensible heat flux as observed during the seven observational periods from
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13 August - 8 September 1953 at O'Neill. The time of day is expressed in

Mean Solar Time (MST), where MST is the local standard time (CST) minus 34 mins.
Throughout the observational period, Sunrise occurred at approximately 0530 MST,
apparent noon at 1200 MST and sunset at approximately 1900 MST. The smooth
average curve indicates that the heat flux changes sign within one hour after
sunrise, reaches a maximum value close to apparent noon, and changes sign once
again about 1% hours before sunset.

The ascents at 0'Neill were classified by means of a coefficient which
approximates to a height derivative of a Richardson number from the surface to
16m and can be considered as a convenient bulk parameter which measures the
overall convective stability of the lowest 16m. The distribution of the stability
classes measured in this w#y during the Great Plains Turbulence Field Program
is given in Lettau and Davidson (1957). |

In the period 1900-0700 MST the stability classes'refer to inversions with
the exception of four neutral classifications for the period around 0600 MST.
All observed boundary layer depths determined during this intervel will be classed
in the present study as pertaining to the stable type boundary layer.

In the period 0900-1700 MST the stability classes refer to lapses with
the exception of four neutral classifications in the period around 1600 MST.

All observed boundary layer depths determined during this interval fill be
attributed to the unstable type boundary layer.

The period centred on 0800 MST is a transitional period when the night-time
inversion is being eroded by the turbulence and heating close to the ground
and so, although the lowest 16m are always indicating lapse or neutral
categories, the vertical profiles on the broader scale are occasionally
indicating the top of the inversion as the first discontinuity in temperature
gradient but at other times are already indicating the development of the
daytime layer. Similarly, the period centred on 1800 MST is a transitional
period. The stability classes for the surface layer indicate that the nighte

time inversion is already establishing itself by this period, however lga;n'
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the large scale profiles may still be indicating the top of the daytime

mixing depth as the first discontinuity in temperature gradient. This will
be taken into account when the thicknesses are averaged.

We average the observed heights for all the bi-hourly runs within the
observational periods at O'Neill and plot the mean depths of the boundary
layer, {h, (t)) , with their standard errors against time of day, in Figuré 8.
Note that the suggested mean curve for the depth of the boundary layer is
discontinuous in the neighbourhoods of sunrise and sunset. In general the
hours between sunset and sunrise refer to the depth of the stable boundary
layer whereas between sunrise and sunset (or more strictly when the sensible
heat flux measured at the surface is positive) the interest i§ in the evolution
of the daytime mixing depth.

Two points should be noteds

(1) When the mixing depth was observed to be 7 2000m (the upper limit

of the temperature soundings) it was taken as 2000m for averaging purposes.

Therefore the mean values forthe unstable layers between 1400-1800 MST

are probably on the low side.

(i1) The mean value for the mixing depth at 1600 MST is affected quite

severely b& the two low heights observed during the fifth observation

period when there was marked advection. With these two values omitted
the mean value is of the order of 1700m and this value has been adopted
to determine the shape of the mean boundary layer depth curve between

1400-1900 MST.

Obviously there is a degree of subjectivity in the curve drawn in
Figure 8.

Comparison of the mean diurnal curves for < no(t)Y and <H(t))
in Figure 8 suggests a strong correlation between the sensible heat flux

and the observed depth during daytime. In Figure 9 we have plotted the mean

boundary layer thickness at two hour intervals against the mean sensible




L2

heat flux averaged during a period two hours before the depths were
observed. The resulting curve supports the use in earlier sections of
correlations between observed boundary layer thicknesses and characteristics
of the turbulence fields measured at an earlier period.

There is little significant evolutionary trend in the depth of the
night-time stable layer in which buoyancy and viscous forces combine to

suppress any mechanically generated turbulent motions. However, the depth

- of the daytime mixing layer is closely correlated to the diurnal pattern

of the surface heating. The growth of the mixing depth is shown to continue
so long as the surface heat flux continues to increase in the positive sense.
The suggested evolution of the boundary layer depth when the heat flux remains
positive but begins to decay is more subjective, but the indications are that
its evolution will continue more slowly and, no doubt, the interaction between
stable and unstable air, through the temperature gradient discontinuity which .
caps the deep mixing layer, will play a more dominant role in determining the
height of the upper inversion than the turbulence generated by the declining
heating effects at the surface. We restrict this investigation to looking

at the unstable layer ihich is capped by a fairly sharp inversion which has
itself evolved as a result of the turbulent mixing in the layers below. What
happens to the upper inversion when a lower inversion is established from the
surface is another question which will not be considered here.

| The rate at which an inversion will rise in dry convective conditions

has been studied and predicted by Ball (1960) who considered the more complex
effects of interaction between the processes of surface heating, mass transfer
downwards from the upper stable layer into the convective layer by entraine
ment, subsidence and advection. An example, typical of deytime summer
conditions witﬁ clear weather and a dry surface allows Ball to predict an

upward movement of the inversion height of about 150m hr'1. This is before
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processes such as subsidence and advection have been invoked to counter

the effects of surface heating and entrainment of air from above. In
comparison Figure 9 suggests that for the period, 13 August - 8 September 1953,
the mean upward movement of the inversion between 0800-1400 MST was
approximately 250m nr~!. Note also that for the daytime layer Figure 9
implies two values of <ho(t)> for each value of < H(t- §t)), one ordinate
corresponding to increasing < H(t- §t)) and the other corresponding to
decreasing {H(t-§t) ) . '

Figures 8 and 9 suggest the following simplified formulation for the
mean depth of a daytime mixing layer in conditions of strong surface heating
with a diurnal mode. It is proposed that the rate of change of the mean
depth { h(t)) with time is proportional to the mean amount of sensible
heat being transferred up from the’ surface and inversely proportional to the

depth through which this heat flux is distributed, namely < h(t)) .

Therefore we write

h(t) {H(t ; | (23)
Lo = g

which when integrated yields

%
<h(t1)>z c = Ln(t)) 2.3y, J: CHT )y dx,
(o)

If we choose (=0) when (h(t)) = 0, i.e. time t, coincides
with the emergence of the unstable layer (approximately 0600 MST for the mean
observed depth, < ho(t) > , in our analysis), then at any subsequent time, t,

the mean depth of the unstable layer is given by,

| * ' '
<n(®)y o< [ J <H(DY a:]. (24)

o

This hypothesis is tested by evaluating the R.H.S. of equation (24)

graphically from the curve for < H(t))> in Figure 8 and plotting the
values obtained against < ho(t)) , also evaluated for given t from

Figure 8., By regressing < ho(t)) on the square root of the integral in
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equation (24) for hourly values between 0700 and 1800 MST we obtain the

linear regression fit.

t Ha,
<h,(t)y = 130 [[ <{H(D)) dt ] - 252, (25)
2

where < h (t)) is in metres, t is in hours and {H(t)) is in mwatt cm °.
The correlation coefficient between the two variables is 0.983 (only about
3.5% of the variance is not accounted for by the regression) obviously highly
significant, and the standard error of estimate of (h,(t)) is 119m.
Recalling the arguments that a change in the surface heat flux requires

time to make its impact on the evolution of h(t), we try reformulating (23) such

that,
L8 we LEHE ST -
it < h(t) >
|
which implies <n(t)d> oc [Jt-ﬂt CHEEY .L‘t}h' ’ (26)
o

where we have assumed, for the purposes of estimating the depth of the
unstable layer, that <H(t)) & O fort < O,

With $t = 1 hour, the correlation coefficient between < h,(t))
and the R.H.S. of (26) is 0.987 (only about 2.5% of the variance is not
accounted for by the regression) and the standard error of estimate of {h_ (£))

is 95m using the linear regression line

{b(8))y = 121 Ut-1<ﬂ(‘c)7&r] : -4

5 121“:'1<H(t)) A.T,] . S (27)
2

where again {h,(t)) is in metres, t is in hours and {H(t)) is in mwatt cm .
For §t = 2 hours the correlation coefficient between the two variables

dropped to 0.975 with only ten pairs in the regression sample, however

equation (27) suggests again that there would appear to be a case for

correlating the depths with surface parameters measured at an earlier stage.
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We define

-§
<I)S,c - Jt t<H('c))cl.1: % { (28)

and < h(t)>8t. as the value of the mean boundary layer thickness,

{h(t)) , estimated from the regression relation involving <1>8t°

Similarly we define

t- 8t %
1 J 80T ) de : (29)

and h(t‘.)St as the value of h(t) estimated from a regression relation

involving I ¢t Note that such definitions are required if any attempt is

made to use regression equations of the form
n(t) =~ h(‘c)St - a(st) I st * Bl $%) (30)

where a( $t) and b ( §t) are dimensional regression coefficients, to estimate .
a specific value of the boundary layer thickness on a particular occasion
as distinct from using the averaged values {h (t) , {HE(t)S

presented in Figures 8 and 9.
Figures 10 and 11 illustrate the distributions of the pairs STy

<h,(%)) ) and the pairs ( <I>1, <h,(t)) ) along with the linear regression
lines of equations (25) and (27) which respectively give {n(t)Y , and
<n(t)) 4» both of which provide estimates of <h(t)) . The suggestion in
‘Figure 10 is that a best eye-fit curve would have the non-linear form suggested
by the curve Eo, however the need for a non-linear fit is less apparent in
Figure 11. The estimates <{h(t)) o and {n(e)Y , can also be compared with

the observed(h° (t)) in Figures 9, 12 and 13.

The success of the above relations derived from averaged values of heat
fluxes and depths encourages us to try fitting regression lines of the form
given in (30) to provide estimates of h(t) on any particular occasion. Using

only the data between 0700 and 1800 MST from the observation periods 1, 2, 3,
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we obtain the regression relations

6, 7 to correlate h,(t) with I, andI

1
h(t) = h(t), = 13+ 105.5I = 1061, (31)

and h(t) = n(t); = 235+971I, | (32)

where the correlation coefficient between ha(t) and Io is 0.80 and between

h,(t) and I, is 0.77 and in both cases the standard error of estimate of

:
h,(t) is approximately 400m. In Figures 12 and 13 h(t)o and h(t)1 have

been estimated and plotted against hourly estimates of h,(t), obtained by
graphical interpolation of the given two hourly values. The evolution of
the parameters ho(t), h(t), and h(t)1 can be followed during any particular
period by tracing the values from bottom left to top right across the graphs.
The first points in Figure 12 correspond to 0700 MST and in Figure 13 to
0800 MST? thereafter points correspond to hourly intervals. In general the
estimates of h(t),, h(t)1 indicate fairly adequately the growth of the day-
time mixing layer from shortly after sunrise until mid-afternoon. In fact
most of the earlier points in Figures 12, 13 lie close to or within 1/2"
standard error of the lines ho(t) = h(t) g¢ and in this respect the high
standard error of 400m is rather misleading. Period 7 gives a particularly

poor fit but this was one of the periods in which advection was evident at

O'Neill. Period 5 has been omitted for this reason.

5. DISCUSSION

In his paper on the thickness of the planetary boundary layer, Hanna (1969)
concluded that, in order to provide an observer with a practicﬁl method for
estimating the depth of the boundary layer in diebatic conditions, it is
necessary to construct a formula which requires only measurements made near
the ground. The first part of the present paper is an attempt to provide
such a formula by investigating correlations between the depth of the boundary
layer, as observed during the 1953 O'Neill experiments, and combinations

of the surface layer parameters u , L.
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In order to apply formulations of the type suggested, the observer

requires a method for evaluating the parameters u, and L based on reasonably
simple ground based measurements. In the event of no more information being
available, an estimate of u, can be obtained from a knowledge of the site's
roughness and a wind speed recorded within a few metres of the surface, where
the conventional logarithmic wind profile might be expected to approximate
to the true profile. A crude estimate of L could be deduced from general
observations such as cloud cover, wind speed, time of day, month of year, etc.
A better method requires only the measurement of the mean wind speed and the
air temperature at two suitably spaced levels within the surface layer, where
the vertical fluxes are considered to be virtually independent of height. In
order to employ the method we require a knowledge of the following relation-
ghips.

The gradient Richardson number at height z is expressed in terms of the

gradients of wind speed and potential temperature measured at the height,

o0
Ri(z) - <. (W%;)‘ : (33)

e (R : (34)
q;\' (=
where ?h ’ cﬁ“ are functions of ¥1L only and are related to the wind speed

and temperature gradients and the turbulent fluxes thrbugh

?I % B (2) > (35)
mo g M)

and u s IL_are related through the sensible heat flux. so,

H

€<
The functions q%\(q/L), 0 (z/i) have been evaluated by several

U*I* = .
authors and, at the present time, the work of Dyer and Hicks (1970) is
A:econmended for the unstable cases (L £ 0) and the work of Webb (1970) is
reconmended for the stable regime (L » 0). It should however be noted that

the forms for these functions are not universally agreed upon and that no

Lok



acceptable relationships exist for cases of extreme instability (z[L { =1)

and cases of extreme stability ( z/L 2 6)e

It can be seen from the above relaticns that measurements of wind
and temperature at two levels provide an estimate of the Richardson number
from equation (33), which in turn implies a value of L, using (34) and the
suggested forms for ¢, and { y. Finally, equation (35) yields u,. The
above method has been outlined in order to vindicate the use of the parameters
u, and L in a "practical" formula by indicating the relative ease with which
they can be estimated from simple ground based measurements.

The investigation itself produced two formulae, equations (15) and (21),
which yield values for h(t) which correlate fairly successfully with the
observed values, ho(t), the correlation coefficieht being approximately 0.81
in both cases. The standard error in estimating individual thicknesses is
unconfortably high, however Figures 2 and 6 should indicate the basic nature
of the relationship between h, u  and L. Two points in particular arise from
the resultss

(i) The formulae take account of diabatic effects with some degree

of success whilst retaining the previously established form for the

thickness of the boundary layer in neutral, steady state, barotropic

conditions, namely, h of u*/f, where the constant of proportionality
lies in the range 01-0.2. One obvious drawback of the formulae of

Laikhtman (1961) and Rossby and Montgomery (1935), encountered by

Hanna (1969), is that they cannot be used in near adiabatic conditions

when the mean potential temperature gradient through the layer is

close to zero. Our new formulae do not meet with this difficultye.

(i1) Our investigation has led us to associate the depth of the

boundary layer at time ¢ with values of the parameters u,, L at

some earlier time, t - §t, where 8§t is of the order of 1-2 hours.

A reason for this type of correlation has been put forward but should

nontheless be tested on other suitable data which becomes available.

-25-



Certainly the validity and usefulness of formulae of the type

suggested in equations (16) and (22) should be tried and tested

on independent data.

The second part of the investigation attempts to treat the depth of
the boundary layer from an evolutionary aspect. It is felt that in
certain circumstances the history of the development of the daytime layer
is more important in determining its depth than specific measurements made
in the wind, temperature and turbulence fields at the time of interest.

This point is amplified in Figure 9 where we note that the relationship
between the daytime thickness and the sensible heat flux suggests a hysteresis
effect in the sense that the value of { ho(t) ) for a particular

< H(t- § t))depends upon whether <{ H(t- 8t )} is increasing or decreasing
with time.

The very high correlations obtained between < h,(t)Y» and{I) st
for §t = 0, 1 give weight to our hypothesis that the history of the mixing
layer is important for the cases we have studied and also indicates that
during the O'Neill observation periods (excepting those in which advection
was notably present) the dominating mechanism governing the development of
the unstable boundary layer is the thermal turbulence generated as a result
of the strong incoming radiation and that mechanically generated turbulence
is of secondary importance.

Simple relations of the form given in equation (30), suggested by
equations (25) and (27) and illustrated in Figures 12, 13, neglect all
processes other than direct surface heating but the evolutionary trend in
h(t) obtained from integrated sensiblé heat values is ideally suited for
incorporating into numerical models which wish to simulate diurnal variations
in the boundary layer under strong heating conditions. The encouraging
results obtained for the mixing layer from this type of approach unfogtunately
throw some doubt on the validity of using the type of formulation suggested

in the first part when dealing with non-steady situations.

- 26 -



2.

3.

4.

6.

Te

8.

- 9,

10.

1.

12.

REFERENCES
Ball, F. K. 1960 'Control of inversion height by surface heating'
Quart. J. R. Met. Soc., 86, pp.483-494.
Clarke, R. H. 1970 'Observational studies in the atmospheric boundary
layer', Quart. J. R. Met. Soc., 96, pp.91-114.
Clarke, R.H., Dyer., A.J. 'The Wangara Experiment: Boundary Layer Data',
Brook, R.R., Reid, D.G. Division of Met. Physics Tech. Paper No.19,
and Troup, A.J. CSIRO, Australia 1971.
Dyer, A.J. and Hicks, B.B. 1970 'Flux;gradient relationships in the
constant flux layer', Quart. J. R. Met. Soc., 96, pp.715-T21.
Hanna, Steven, R., 1969 'The Thickness of the Flanetary Boundary Layer',
Atmospheric Environment, 3, pp.519-536. ‘
Kazansky, A. B. and Monin, A. S. 1960 'A Turbulent Regime above the Ground
Atmospheric Layer', Izv. Acad. Sci., U.S.S.R. Geoph. Ser. No.1, pp.110-112,
English translation, A.G.U.
Laikhtman, D.L. 1961 'Physics of the Boundary Layer of the Atmosphere',
Leningrad (Gidro-meteoizdat), b pp.é53.
Lettau, H.H. and Davidson, B. 1957 'Exploring the Atmosphere's First Mile',
Pergamon Press, London-New York-Paris, 2 vols.
Monin, A.S. and Zilitinkevich, S.S. 1967 'The planetary boundary layer and
large-scale atmospheric dynamics', The Global Atmospheric Research'
Programme, Report of the Study Conference held at Stockholm, 28 June-
11 July 1967. I.C.S.U./I.U.G.G. Committee on Atmospheric Sciences and
COSPAR.
Rossby, C.G. and Montgomery, R.B. 1935 'The layer of frictional influence
in wind and ocean currents', Pap. phys. Oceanog. Met. 3, (3), 101 pp.
Sheppard, P.A. 1969. 'The atmospheric boundary layer in relation to large-
scale dynamics', pp.91-112. The Global circulation of the Atmosphere,
R, Met. Soc.

Webb, E.K. 1970 'Profile relationshipss the log-linear range, and extension

to strong stability', Quart. J.R. Met. Soc., 96, pp.67-90.




‘9}BUWTI80 JO JOJIIS PIBPUBYS SUO 3 3% seAano FutanoquIteu

Y3Ta ‘umeap st (1) uotjenbe

"®3FD TTTON,0 Y3 woxJ pegsuwryse

JO UOT1®T8I UOTSSeIFes J9pI0 puooes oy

‘(33-3)d jo uotjouny % sw ?m-iws L eandty
(s@=)r
or 0z 0 0Z- oy — 09 - 08 - 001 - 0Z1-
| I T T i
— Gu?
i — |%|l ... o % r
00 L -O
‘\\.‘\' ° ’
[ ® eo0®
[ ]
— e St
a—
L ]
1+
N
; /.
190 " ((-0L > §18) +7 (¢_01*12) ~g1-0 =y
N
(49-4) 2y

8-0



h(t)(m)

3000

L(t=561)(m)

2000
1000 —
'/;'—
= | I | | L |
0 0-1 0-2 0-3 0:4 0-5 0-6
U4 (1=81) x 1074(m)
f
G Figure 2. h(t)(m) as a function of "*(t-§t) x 10“#(m)

and L(t-6t) (m), based onfequation (15). The
broken line indicates the order of h(t) (m)
for typical values of (“*/b, L) observed at
0'Neill and illustrated in Figure 3.

0-7



*31F ofe uw ST eAaNO oYL ‘TTTON,0 3®

PeAJa8qo ATEV Nov x Tq JO uotjouny ® §%® A_.loom w)*n  *¢ eandtg




BOOOF /
/7
V4
ho(t)(m) 7 /
/ Vi
7 /
x e
/7
a /. /
2% /7
2000 1
7 4
® © / / °
/7 /7
o /. (7 ho (1) h(t)
, :
5 /
. / oo Se
/ /7
s ; 1000 — 7 / @
® o /. [ ] /
7 /
/7
0w L% o o/ 00 o
7/
/ « 7
/ [ ) / [ ]
D o8 /o o
/7
ya | | ]
0 1000 h(t)(m) 2000 3000
Figure 4, The observed boundary layer thickness ho(t) at 0'Neill

as a ﬁmct_ion of the theoretical estimate of the
thickness h(t) derived from equation (15). The straight
line is the linear regression line, ho(t) = h(t), with
neighbouring lines at I one standard error of estimate.



‘93 BUT}EO JO JOLI® DIBPUBLS OUO
T 3® seAano JuranoquITeu Y TM ‘umeap ST (02) uotzenbe jyo
UOT}BTOI UOTSSOIFOI JIPIO PUOOes oyl °®38p TTION,O OU3

WoIJ PO}BUTLSe .Avlsvmor X i T JO UOTIoUNJ ® S prtpvon *G eandty
o *

L)izoles ie=0q g

0 &= V= = 8-
| T | R

o
/.
®
190 ZoVLE9Y + (0290 - pLe0 =0y
AN
(4e-4)2y
8.0




4000

h(t)(m)

3000

2000

1000

L(t=58t)(m)

=12

0-1

Figure 6.

0-2 0-3 0-4 0-5 0-6

ua(t=51) x 10=4 (m)
f

h(t) (m) as a function of u_‘(t-%t) x 104*(m) and
f

L(t-8t) (m), based on equation (21). The broken
line indiocates the order of h(t) (m) for typical
values of ("*/_, L) observed at 0'Neill and
illustrated in Figure 3.

0-7



| 3000

\ L] /
7 /7
/
/
ho(t)(m) > .
/ i
/ /
o > /
. 57 /
2000}— B /
/ /
. ° / P
4 /
£ /
; ./ : \/ ho(t) = 1-1 h(t)-65
/,oo /
o °
v /'/' /
7/
5 1000— el i ° 4
; e/ o ° /7
/7
/ /oo. e o/./ 8o
£ /
hod ©
/
So o ‘/ ° °
* i
Z | f |
0 1000 h(t)(m) 2000 3000
Figure 7.

. line is the linear regression line, hq(t
"with neighbouring lines at + one standard error of

The observed boundary layer thickness ho(t) at 0'Neill
as a function of the theoretical estimate of the :
thickness h(t) derived from equation (21;. The straight

= 1.1h(t)-65,
estimate.




‘3 ‘Aep Jo euwry Jo SUOT3OUNJ §€ BJ0JLI® PIBDUEL)S
Y3TM pejjord pus ®3®p TTTeN,0 eyj J0J peonpep * {(3)H) ‘eo8gans ey3 3%
XT3 380y e[qrsuss puw ¢ A?vo:v '888UNOTY3 Jefe] Liepunoq usew oyl ‘g sandtg

B | | 7]
| I
| |
. ot ln e
: 2 = L P 4 4
B I | I I ] 1
SN BT 0C I | 14 (4
I
| |
L H : :
; _ [ T
- 1 i H |
i |
i I
{ |
0T - | | — 008
{ i
| |
| |
I |
| |
| | <(H)H>
| 1
_ ' <(4)°y>
Ov % | [} g ] OOO—
| I
ANIEU 1omw) _I | (w)
<(4)H> | 1 <(4)°y¢y>
L3SNNS NOON LIN3IYVddY 3SIINNS
0§ - - 0002




2000
<ho (t)> T_
(m) 3
18

1600

1200

800

L 1 1 1 1 I
=10 0 10 20 30 40 60

<H(t=81)> (m watt cm™2)

Figure 9. The mean observed boundary layer thickness ¢(h (t)) at
0'Neill as a function of the mean sensible ° heat
flux (H(t-4t)) measured at an earlier period. The error
bars on the points are the standard errors of the sample
means, time t MST is given beside the points and $t is
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equations (25) and (27) ° respectively.
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