nmmologm OFFICE
143801
20 JUL 1984

LIBRARY

Met O 11 Technical Note No 189

INTERIOR LAYERS IN THE ATMOSPHERE -

THEORETICAL AND COMPUTATIONAL ASPECTS

by

M.J.P. Cullen

This paper was presehted at the BAIL III Conference on Boundary and

interior layers. Dublin 20th June - 22nd June 1984.




INTERIOR LAYERS IN THE ATMOSPHERE - THEORETICAL AND COMPUTATIONAL ASPECTS

M.J.P. Cullen
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The most obvious example of an interior shear layer in the atmosphere is a
front, which forms the boundary between air masses of differing characteristics.
An approvriate form of the governing equations is derived by a scaling argument.
A closed solution of these equations can be constructed using piecewise constant
initial data. These solutions can contain fronts. The scaling is then re-
examined in the neighbourhood of fronts and shown to be consistent if no fluid
crosses the front and there is no pressure jump. In simple cases actual solutions
can be derived by geometrical methbds given piecewise constant data. These
solutions are then used to test finite difference methods. It is found that
solutions of the scaled governing equations converge to the geometrical solution,
albeit slowly. However, if the primitive form of the equations are used,
convergence is to a different solution. The difference can be related to the

different boundary conditions necessary if the equations are scaled.

The final detailed version of this'paper will be submitted for publication

elsewhere.

2 Introduction

Extensive work on the mathematical theory of fronts has been carried out in
the last few years, much of it is reviewed by Hoskins (1982). The computational
aspects have not received so much attention, and mést standard discussions of
numerical methods for meteorological problems assume that the solutions are smooth
(Haltiner and Williams (1980)). 1In other areas of computational fluid dynamics,
correct treatment of discontinuities is essential if good results are to be
obtained. It is therefore natural to ask what rules have to be obeyed to model
meteorological fronts properly. The problem is difficult because many fronts
drawn on weather maps are merely regions of somewhat enhanced temperature gradient
rather than near-discontinuities. In other cases they are very sharp. In addi-
tion, fronts slope in the vertical and the amount of slope is one of the important
parameters. Fig. 1 shows a section of a typical weather map, simplified from Buzzi
and Tibaldi (1978). This map contains isonleths of mean sea level pressure.

Fronts appear as waving lines on the mav. These lines represent the intersection of

the front with the surface.
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The vertical structure is shown in Fig. 2. This crosas seetion is along the
dashed line in Fig. 1 and shows the potential temperature (the temperature of the
air if transported adiabatically to a standard pressure) and the wind component
parallel to the front.

It is clearly seen from Fig. 2 that the long-front wind increases most
rapidly in the vertical when the isentropes slope down to the right. This allows
the pressure gradient due to the buoyancy gradient to balance the Coriolis
acceleration due to the earth's rotation. The slope of a frontal surface is thus
a crucial part of its dynamics and a front cannot be treated as a purely one-
dimensional phenomenon. In this paper we derive solutions containing sloping

discontinuities from ascaled form of the governing equations and discuss methods of
computing them.

2. Governing eouations

These are derived from the standard equations of motion for a perfect gas. Ve
initially ignore frictional effects and assume that the motion is adiabatic.
Effects of water vapour are very important in real fronts, but require entirely
different treatment. It is usual to make the hydrostatic assumption, which is

accurate to about 1 in lO6 on the scales shown in Figs 1 and 2. This gives:
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where (“/ V,v'b) are velocity components in local Eulerian coordinates
with the g, axis vertical. ¢ 1is pressure, © potential temperature or entropy, ¢

density, & the Coriolis parameter, % "the acceleration due to gravity.’

These equations can be transformed into a system which resembles the equations

governing an incompressible fluid by first of all changing variables to use (E',“d F)

" A
as independent variables and u,v W= .TD)'E 4= 83 and @ as
dependent variables. The details are set out in Haltiner and Williams (1980).

Then a further transformation can be made in the P coordinate to an independent

variable \
-\ Ny
3 = (0 - (wE)TTY ) X (8)
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where Hg = 1;/§2 and f? and § are reference values of pressure

n
and density. This transformation makes 5 equal to the physical height 3 in an
adiabatic atmosphere. The use of this coordinate means that -3: A’H,y |at P= 0
: g
and an upver boundary condition can be imposed
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This transformation is discussed in detail by Hoskins and Bretherton (1972). Ve

now make the Boussinesq approximation, which gives the system
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For the purposes of this paper we approximate the lower boundary condition by

N = 0 1S Z: 0 (16)

and assume that § is constant.




This neglects the effect of surface pressure variations on the boundary

condition, Both these approximations are for understanding only, and are not made
in actual computations. Comparison with the system (1) to (5) shows that the
transformations have converted the equations into those of an incompressible
Boussinesq fluid within rigid boundaries.

3. Scale analysis

Understanding of the solution of (10) to (15) depends on recognising that the
forcing terms § and &ﬁ are large compared to the corresponding accelerations.
The large size of Y has already been accounted for by making the hydrostatic

approximation. The size of &g is measured by the Rossby number

]
¢ = \%—tl/tgh‘ (17)

When expressed in this form, even for extreme large scale weather events € only
reaches a value of about 1/6. This value was calculated for the level of maximum
wind in association with the explosive development of a storm over the USA
(Uccelini et al (1984)). However, if € is calculated from typical length scales
and velocities on a weather map such as Fig. 1, it is quite easy to reach O (1)
values. The difference is because strong flows in the atmosphere tend to be
parallel to the strong gradients, so that DE%DE is much smaller than might be
expected.

Expanding (10) to (15) in powers of & gives, setting = W, + €U | etc;
to O(1):
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In order to ensure uniform validity of the expansion for times of O(1) it is

-

necessary to approximate the trajectory to one order higher, so we set
L
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system (22) to (26) form the semigeostrophic equations used by Hoskins and others
in various papers, reviewed in Hoskins (1982). We consider these as “outexr?
eqdations of the problem and study their solutions.

4, Solution of outer vproblem

Tt has been shown by Hoskins and Draghici (1977) that the system (22) to (26)
can be rewritten as a set of Lagrangian conservation laws.
Define

d d = ERE ‘
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Let the region of solution in (xwa) be fL , with boundary &L . Let {L be convex
Then
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It has been shown by Cullen and Purser (1984) that this problem can be solved
by approximating the initial data by piecewise constants: Start with n "elements"
with associated constant values tHA'NA'SA) and volumes T, at Bz 0. g B

shows a possible configuration in two dimensions.




Fig. 3: Piecewise constant data for two-dimensional semi-geostrophic eguations.

To update the solution in time we increment the values of M and N in each
element according to (29) and (30). The velocity field (4, v, w) is determined
implicitly by the need to satisfy (34). The only effect of this velocity is to
rearrange the elements, preserving the values of MN © and the volumes T, . The
existence of the necessary rearrangement has been shown by Cullen and Purser (1934)
in the following terms.

Definition A solution of (29) to (35) characterized by the values of the
function Pﬁ*a h) on { is dynamically stable if the Hessian matrix

((\lp/(),k o, ) has no negative eigenvalues. For non-smooth solutions

this is generallsed to requiring the region in R*. (s> 96‘06) erJto
be convex.

Remark If the Hessian does have negative eigenvalues small peturbations to
the solution can grow and large accelerations will be generated,
violating the scaling assumptions in section 3, (Hoskins, (1974)).

Theorem There is a unique arrangement of fluid elements with given values
(M., N, ©,) , volumes T, , satisfying (34) everywhere that is
dyriamically stable.

Proof See Cullen and Purser (1984). The convex surface corresponding to

the data in Fig. 3 is shown in Fig. 4.



Fig. 4: Convex surface §= PC&&) corresponding to data in Fig. 3.

Fig. 5: Solution for piecewise constant data containing a front.
It is clear that there is no reason in general why the solution for ™M,Nand 0

should be continuous, though P must be continuous. Fig. 5 is an example of a



" solution with a finite discontinuity.

The nature of discontinuities is restricted by the conservation of the

potential vorticity

g = N -mn 0)
a(x‘ a. 6) (36)

following the motion. 9 is essentially the Gaussian curvature of the surface o=

P(*'3:6)' A discontinuity in VP corresvonds to a fold in this surface, which can
only be reconciled with finite 8 if the discontinuity intersects the boundary of
£l . Otherwise the circulation interral §¢Jt round the discontinuity would not
tend to zero as the contour was shrunk, implying infinite curvature.

The solution is not unique if fL  is non-convex. This turns out to be a
possible explanation of some aspects of mountain flows. '

Se Defirition of inner vroblem

The results of section 4 indicate that the outer solution can produce regions
of disconzinuity, but their nature is restricted by the conservation of " and the
convexity of P(x'a-l) . It is now necessary to rescale near the discontinuity
where ¢ mz2y not be small. 1In general the surface of discontinuity will satisfy

the equations

dy _ 48 [n] SRR L L F S
de T 9 6] ’ dy 3 ol

Typical values of the slope are 1 in 50 to 1 in 150. Write the angle as o .
Transform axes locally to (X,V,Z) with the Y axis horizontal and parallel to the
front, the 7 axis normal to the front. Let corresponding velocity components be
(UIV'VV) . The geometry of the fron: allows us to neglect its curvature to a

first approximation, (Hoskins and Bretherton (1972)). Then the scale in the 2

direction becomes arbitrarily small anc so (10) and (12) imply that @ is continuous

across the front and (13) implies tha: there is no flow across the front. These
two conditions must determine the position of the front. They are consistent with
the conditions satisfied at a discontinuity in the solution of the outer problem.
Inspection of Figs 1 and 2 shows that the scale in the X direction, which is
parallel to the front in the plane of the cross-section, will be of the order 100
km, while the scale parallel to the cross-section is of order 1000 km. The
continuity equation (13) then requires that U is an order of magnitude less than V;
remembering that the origin moves with the front. Substitution into the X and Y

momentum ezuations then gives at 0(1)
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These equztions are consistent with tn- outer eauations (23) because (38) states
that V:.V% and (37) then becomes
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which is the same as (23). Thus the frénts derived ‘as solutions of :the outer
equations are self consistent. Similarity solutions of (36) and (37) have been
obtained by Hoskins and Bretherton (1972) and others.

The difficulty with this scaling is near the intersection of the front with
the boundary. In this region the scale in X becomes much smaliler and the balance
in the continuity equation is between AU/C)Y and du/()z_ . rather than cw/é\{ .
Under these conditions (38) is no longer accurate. However, in this region
frictional effects are also important. The detailed scaling vresented by Hoskins
and Bretherton suggests that frictional effects become important before DU/DE
becomes of the same order as the terms in (38). If this is :he case, and

frictional effects are modelled by a viscous term, then the arpropriate solution

(1967), p.226).

The correctness of the solution at the intersections wiin the boundary is
probably of critical importance. The solution of the outer eguations shown in
Fig. 5 has removed fluid initially in contact with the boundzary from the boundary.
This can be made consistent with the Navier-Stokes equations with no slip boundary
conditions by replacing the discontinuity by a shear layer. However, it shows
that the outer equations cannot satisfy as many boundary conditions as even the
complete inviscid equations (10) to (15). The computational evidence presented
in the next section suggests that the effect of this difference in allowable
boundary conditions may be very important for the finite dif‘erence computations.

To comvlete the solution it is necessary to insert viscous shear layers at the
boundaries and at the internal discontinuity. The first problem has been studied
by Wu and Blumepn (1982), the second has not yet been treated.

6. Finite difference solutions

We compare the solution of the outer equations (18) to (24) given in Fig. 5
obtained by geometrical methods with finite difference solutions of both the outer
equations (Fig. 6), and of the unscaled equations (10) to (15), (Fig. 7). These
solutions are referred to as A, B and C. The finite difference solutions were
obtained using uniform 200 x 20 grids and standard second order accurate centred
differences. Artificial viscous terms were added to capture the jumps as linear
terms of the form Kquéxf . The use of diffusion in the % direction as well
had negligible effect because of the different resolution in :zhat direction. In
solving (18) to (26) it is necessary to calculafe (u1v1w) imeciicitly. This was

done by an iterative method described in detail by Cullen anc Purser (1984).

-



Finite difference solution of equations (18) to (26), © field.

Fig. 6

0 field.

Finite difference solution of equations (10) to (15),

Fig. 7'
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Figs. 6 and 7 show the two finite difference solutions to compare with Fig. 5. }

Neither solution produces sufficient variation of the slope in the isentropes
through the depth of the fluid. Exveriments using high resolution produced only
very slow improvement in this mspect of the solutions. Differences between the two

finite difference solutions are shown in Fig. 8.
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Fig. 8 Difference between the finite difference solutions, solution C minus

solution B

This diagram shows that there is little difference in the centre of the region
where the slopoes of the isentropes are similar, but that, near the boundaries,
these sloves change little in C while they become steever in B. The differences
are thus negative at the lower boundary and positive at the uvver. This indieates
the change in slope with height is better captured by B than C. There is also
closer agreement between the slopes away from the frontal surface between A and B
than between A and C.

A further check on the solutions is to see if the computed solution, C, of the -
unscaled equations satisfies the scale analysis. In this case this would require
(18) to be satisfied exactly. The error in satisfying (18) is shown in Fig. 9. :

The largest errors are of the order of 10% of the individual terms in (18).




Fig. 9 Difference between {v and %%/yx in solution C

This suggests either that a straightforward finite difference integration of the
equations cannot accurately pick up the solution with the required scaling, or
that the solution derived by the scaling arguments is deficient. If the first
explanation is correct, then it suggests that improved integration procedures,
perhavs enforcing the scaling a priori, are needed for such problems. The
difference can also be visualised in terms of the boundary conditions. Solution C
appears to retain the condition that fluid initially next to the boundary stays
there, at the expense of satisfying (18). Solution B hes to satisfy (18), and so
has to try and remove fluid from the boundary. The detailed structure of the
front is controlled by the artificial viscosity, but that given by B is the closer
to A.
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