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Smoothing and Filtering
(Of Meteorological Data)

Introduction

In signal processing there is a very common situation where a relatively
slowly moving “eignal" is corrupted by "noise" which has a wide spectral
content,

A meteorological example might be an attempt to monitor a synoptic
variable such as wind direction or temperature from s eynéptic station. A
single sensor will measure the synoptic variable with measurement noise superim-
posed by effects such as atmospheric turbulence. There will also be effects
due to tepography and the friction layer, but this is a separate issue which for
the present purpose will be ignored.

For the above example, we might ideally have a dense network of sensors
and use spatial averaging over a "synoptic'" scale length to smooth out noise.
Clesrly this is impracticable; instead some form of "time averaging" or filtering
is often used, the assumpiien being made that the "noise" has a zero mean, and
that if we can arerage for long enough the residual noise will be small.

Unfortunately we cannot "average" for an arbitarily long time; the synoptic
situation also changes and we are interested in following certain rapidly chang-
ing cituation= such as cccur during the passage of a front. One possible view-
point is that we are interested in variations below a certain fregeancy (the
"corner frequency™) which will be essentially contributed to by the varying
ocynoptic situation. We wish to suppress variations above this frequency, as
these will consizt essentislly of noise. This requirement can be implemented
using a suitable "filter". The choice of '"corner frequency" will be related to
the synoptic scale length of the desired epatial averaging.

The actual choice of corner frequency is not the subject of this paper, but
for synoptic purposes we are probably interested in being able to follow variat=
ions which have a period of the order of 10 minutes. In general "noise" will
have a continuous spectrum, and for any cormer frequency there will always be a
contribution to the final signal from the low fregquency noise in addition to
ary high frequency necise which may not be adequately suppres:ed. At the same
time we wish to be able to follow the more rapid synoptic variation without
undue suppression or other distortion. :

It must be realised that filtering is not the same as taking an arithmetic
"average" over some period of time. If the latter is specifically required, it
@efines a specific type of filter. If, however, the problem is left more general,
in the sense that the objective is to monitor synoptic variations while Suppresse
ing "noise” which has & zero average, this leavesmore flexibility in the design
of the {ilter. This extra flexibiliiy can result in a filtered signal which
mors nesrly approximates the "synoptic" signal than does the arithmetic average.
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In the following sections the generally accepted "aritumetic average' will
be compared with various types of polynomi&l filter. It is hoped to demonstrate
that the polynomial filter can be superior to the arithmetic average, and that it

admits of casy implementation in hardware or efficient computation in software.

Polynomial Filters

In recent yesrs a class of mathematical filter known a& "polynomialFilters"
have been well documented. They are so called because the frequency-domain
relationship ‘between the input and output signals can be expressed as &
polynomial in the Laplacian operator 8 (& being a complex frequency). This
is useful because most desirable signal transmitting medis . have a frequency
dependence which can be closely approximated by a polynomial in s, and thus a
mathematical polynomial filter has a close correspondence with its physical
rezlisation.

A good deal of attention has been focussed on obtaining the cptimum
performance (in some carefully defined manner) from low order polynemial filters,
vwhich correspond to simple physical realisations.

Bome examplea of physical realisations of n-order filters are shown in
Fig 1. These are intended to demonstrate the relatively simple hardware, or
small number of multiplications per timestep in digital software, - required
for implementation. For further information see Met.0.16 Branch Memos 2, 3.

~ Fige 2-11 describe the characteristice of several low-pass types of
polynomial filter. Each has becen normaliced in frequency such that the "coraer
frequency" (defined here as having 3dB attennation) occurs. at 1 radian/sec.
The most widely known polynomial filter is the Butterworth., whose characteristics
are shown in Figs 2-4. Fig 2 show the filter attenuation in &B against
frequency on a log scale for several orders (n=1 to 10).of filter. Note the
change in scale at&=1. The coefficientsin the Butterworth pqunémiah- Transfer .
Function have been arranged so that all of the derivdtives of the Tranaier
Function with respect to frequency, except the "n'=th', are zero at&=0. In this .
sense the Transfer Function is maximally flat at low frequencies, while at high
frequencies the Transfer Function is dominated by the highest pbver of 8 in the
Transfer Function. : 3 A )
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The Butterworth is an excellent filter for separsting sinusoidal signals
at low and high freguencies. Unfortunately, the time by which the signal is
delayed on passing through the filter (the Group Delay) varies with (i, and this
applies to-frequencies below the cormer frequency. The distortion which this
produces on non-harmonic signals can be clearly seen in Fig 4 which shows the
filter response to a Dirac Impulsge (of vanighing small width and unity area),
and to a unit step. The filter "rings" for a considerable time.

The impulse response is of particular interest in filter theory. If we
have a time series 5(t) passing through a filter with iwpulse response I(t)

it can be shown that the response of the filter R(t) to the time series is given
r=2
by R(t) = f S(T) I (¢-7) 4T
70

or in other words the impulse response showg how the previous history of
an input time-sequence ig weighted to produce the output time-sequence.

Fige 5, 6 and 7 show the characteristics of a particular Chebychev filter.
In this filter a considerable increasse in the rate of change of attenmuation
near the corner frequency can be achieved at the expense of allowing a defined
amount of ripple (here 0.5 dB) in the passband (below the corner frequency).

As might be expected the group delay and impulse response are even worse, froam
our point of view, than the Butterworth.

The Butterworth and Chebychev filters are optimised - in the frequency
domain., We are primarily interested in following a time sequenced i.e. inthe time
domain. Figs 8, 9 and 10 show the characteristics of the Thompson pr Bessel )
filter. This has coefficientS arranged to give a maximally flat group delay,
vhich it achieves at the expense of a much more gradual increase ofattenuation
with frequency. This filter is extensively used in radar where the shape
of a time series must be undistorted, = consistent with removing high frequency
noige. The impulse and step responses underline the desirability of maximally
flat delay.

Just to show that the story does not end here, Figs, 11, 12, and 13 show
the characteristice of a linear phase with equiripple error filter. This is
similer to the Bessel in that flat delay is aimed for, but in this case a
dgefined ripple is allowed in the delay and the extra freedom is used to increase
the rate of attenuation near the corner frequency. This means that high
frequency noise is more effectively suppressed; andthis may be more significant
than the amall amount of distortionm due to variable delay in the passband. This
concepts leads naturally to Optimal Filtering, aimed at neither frequency nor
time domain cheracteristica, but rather at minimising the R.M.S. difference
between the noise-free signals and the delayed filter output in some carefully
defined sense. Contributions to R.M.S. error occur due to both variation in




group delay and noise. Thus the filter design depends on a knowledge of the
abesolute noice spectrum, on the signal spectrum, and on a knowledge of the
relative importance of different frequenciee in the signal. Discussion of these
filters is outside the scope of this paper, and the expected improvement over

the first three filters discussed is 1likely to be small.

The Arithmetic Average

Where some sort of smoothing is required, it is common practice in
meteorclogy tc form an arithmetic average of the measured signal for some finite
time, eg a ten-minute average wind direction or wind speed. Some measuring
devices will integrate a signal, present the integrated values, and re-start
a new integration. This form of sampley output is difficult to cozpare with
a continuous filter as the results will in general be different, and there is
no contiruvous trace to see how representative the esamples are of the previous
40 minutes. Instead s filter will be considered which continvously presents the
vesult of an arithmetic average over the previous T seconds.

Response to an harmonic input is:-

werT:
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The factor  gie ( of + 3+ -“gf- ) represents the original harmonic input
with a phase delay of "77' s or a group delay of %‘ geconds at all
frequencieg. The remaining factor -‘-;—2.:’: 4;!\( 9}- ) represents the amplitude
response as a function of freouency. At low frequencies this tends to unity.

For compatibility, choose T 2¢ 2.78 seconds, so that we have =~ 3dB attenuation .

at&wl. Figs 14, 15 and 16 show the characteristics of thias filter. The
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attenuation characteristic is of particular interest here. In the stop-band the
attenuation peaks, which go to infinity, occur at frequencies whose period is

an exact sub-multiple of thebintegration period. Apart from these peaks, the
general level of attenuation is rather low, increasing st a rate of about

12dB per octave, or 20dB per decade. This means that high frequency noise, which
usually contains most of the noise energy, is poorly suppressed compared to any
of the previous filters. Fig 15 illustrate the highly desirable constant group
delay. Fig 16's Impulse response indicates how the previous history had been
uniformly weighted, and the step response gives an indication of how the filter
integrates changes.

It is instructive to compare this response with the Bessel filter (Figs 8,
9, and 10). For a Bessel filter with order above 3-4 the pessband freg-
uency and group delay characteristics are remarkably similar to the Arithmetic
Average Filter. This means that for signals completely within the passhand -
epsentially the synoptic variations - both filterswill give remarkably similar
outputs, once the different group delays have been accounted . for. In the
stopband the Bemssel ie cieesriy belter able to attenuate bread band ncise,
especially as the - order number is increased . - The Arithmetic Average appears to
-have an edge in the time domain as its group delay remains flat to the highest
frequencies, but this is of little practical advantage as the higher freguencies
are strongly attenuated.

Rather than comparing characteristice in the frequency domain, it is . _ .
useful to compare them in the Lime domain.. One approach is to compare the
step responaes. These are obviously not identical, but if we wish to "integraie”
activit& over some period - say 10 mins « we can match a straight-line approximation
of‘the step response to the ideal straight-line step response of the Arithmetic
Average. The final filter will. in fact, includecontributiuns from outside the
10 minute period; but will have a slightly higher corner frequency than the
matched passband filter described above (factor & 1.7). Thus it will have a
emaller attenuation than the Arithmetic Average in the "pasaband", and yet
retain higher attenuation over most of the "stopband". The important considera-
tion is not necessarily the precision of the "10 minute period”,but the ability
+o distinguish between signal and noige.

In many situations the different absclute group delays of the various
Bessel filters and the Arithmetic Average will be unimportant as they are pre-
cisely known. However, in a forecasting situation it may be desireable to have
the minimum delay between the actusl situastion and the presentation of the
measurement at C.F.0. All forms of filtering invelve a group delay (which may
be much less than the canmunication delay). An example might be:



{__—_——_———__ﬁi"10-minute" average of Met. Variable

Group Delay in minutes

Arithmelic Average - §fh
L-Pole Bessel, to have similar
passband response to above s 15
€-Pole Bessel, as above : 16
Lh-Pcle Bessel . to have

"0 minute" integration : 8.7
6~Pcle Ressel, to

"0 minute" integration: s 11

It is interesting that current meteorclogical practice is to measure
"instantaneous" parameters such as vressure and filtered parameters such as
wind direction at the synoptic time, although in fact the filtered signal is the

best estimate available of the situation one group delay earlier.

The Exponential Average

One form of easily implemented filter that has been suggested for smoothing

ig the exponential aversage, 80 called becanse of its counvolution integral;

' T -~(T-7)
Voer £7) : ?';f Viw(2)+ 2 7o ¥
[ 4 ) :

The transfer functioa can be expressed in complex from

as R(S) = Vour ($) = b
2 evemoy Gl o8 :
and the filter corresponds to smoothing with a single real tlme-constant'1'.

The characteristics of this filter correspond to a polynomial filter of
order 1, and are plotted under the characteristics for Butterworth, Chebychevy,
Bessel etc filters described earlier. The plots are all identical ag the single
coefficient allowed is sufficient only to determine the corner frequency. It
csn be seen that this particular filter does not achieve even approximate constant
group Gelay near the corner frequency, and its attenuation is worse than the

Arithmetic Average in the stopband. The _g‘_xgpulse and step responses are not shown,



but are represented by exponentisls decaying with time-constant Te to O zud 1

respectively.

Some Effects of Sampling

One of the usual reasons for filtering data is that one wishes to record
or transmit one value for the variable once every (defined) time period, where
the intention is that the series of measurements thus obtained should be
reasonably representative of the original data up to as high a frequency as
is consistent with the limited time resolution. Ome important criterion is that
a time series with camples spaced at uniform intervals of 7 seconds cannot

. resolve any frequencies higher than the Nyaquist frequency A= V(ZT) Hz. If a
higher frequency f is sampled, the resulting time series will define a frequency
f-N with the eamé awplitude as f, snd the higher frequency f is said to have
been "aliassed" into a lower frequency. This important result means that if

we are to momitor some variableand report on its progress by means of one
measurement every 7" seconds, then the time series must first be filtered with &
low-pase filter. Attenuation sbove the Nyquist frequency must be adequate

for energy at these freguencies to be reduced in intenasity to sufficiently
below the signals in the passband, so that the alliasced . contribution to the
lower frequencies will be negligable. If one wishes to preserve the waveshape
(as well as merely the energy content) a Eessel filter, or similar, will be used.
This has a somewhat gradual incresse in attenuation with frequency, and care
must be taken in determining the ratio of Nyquist to corner frequency.

One method of implementing a filter is to use a digital processor. This
irrolves sampling and digitalizing the input data stream, performing a mathematical
manipulation corresponding to the filter, finally producing a filtered data
stream. Because of the C.P.U. time involved in "filtering" the data stream. it
is desirable not to sample the input stream too frequently. Provided that there
is some limitation on the bandwidth of the input stream, the Nyquist
frequency can be chosen as the lowest that will alias negligible energy into the
input stream. If the sampling frequency (and hence the Nyquist frequency) is




chosen too low, then we are no longer receiving a stream of data whose high
frequency noise components can easily be filtered out with rejection of the order
of 100 dB.#s.Instead the high frequency components alias néise into a broad
spectrum which includes low frequehcies. This can easily lead tc a situation
vhere the aliassed noise can only be reduced’by a factor proportional to the
square root of the number of samples in the impulse response, and it becomes

difficult to reduce this noise by much over 20-3%0dB.

Some Examples of Filtering

The above description illustrates the potential superiority of a Bessel
Filter over a Moving Mean mainly in the Frequency Domain. However, data is
generally used in tuhe Time Domain. The result of filtering a time series
depends, of course, on the time series itself; nevertheless a useful '"feel' for

the effects of a filter can be obtained by studying real data.

Fig 17 shows the results of fiitering temperature data from a rapidly
responding probe installed at Cardington. Temperature was measured every
0.1 seconds, and the topcurve shows 1024 points (102.4 seconds) of raw data
Jjoined by straight lines. The overall frame height = corresponds to 245,
The middle curve shows the same data filtered by a Moving Mean filter having
an integration period of 6 seconds (approximately 1/17 of the frame width).
The bottom curve shows the raw data filtered by a 6-Pole Bessel filter having the same
corner frequency as the 6-secorid Moving Mean. Curves (a) and (b) are shifted horizontally
and vertically with respect to (c) to _allow for Group Delay, and to avoid overlapping of
the curves. Curve (c) commences at timg zero, and-the extent of the horizontal shift

for (a) and (b) can be seen from their initial flat portions.

The effects of filter initialisation and Group Delay can be seen in the
first 10-seconds or so of data. Because data is deiayed on filtering, the
first few seconds of filtered ocutput do not correspond to real uata, but rathe: depend
on the initial values present in the filter stores. For cosmetic reasons these
have been chosen to be near the expected raw data values, and this is the
way = to minimise the initial transient ' filter response. Where data is being
measured continuously (e.g. surface temperature) the transient response occurs

only on first installation and does not cause problems.
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Because of its poor high-frequency attenuation, the Moving Mean filter
exhibits structure on a time-scale significantly shorter than 6 seconds. As
a consequence, values on the curve intended to give a measurement representative
of the previous 6 seconds or so are sensitive to the exact time at which the
value is chosen, i.e. the reported signal is noisy. If the intention is to
send information on the shape of the filtered signal, the presence of the unwanted

higher frequencies will make coding difficult.

A highly subjective way of comparing the filters is to decide which is
the closest to the curve one would draw by eye through the data when

"smoothing" over a 6-second interval.

Fig 18 shows curves derived from Cardington wind speed data. The overall
width represents nearly 3 hours of data (4096 points at 2.5 seconds/point),
and the overall height is 12 meters per second. The original data was recorded
from a fast sensor at 0.1 second intervals. This would have shown eXcessive
high-frequency variations on the diagram which would only have hindered
interpretation by masking the lower freguencies. The Cardington data was thus
filtered to the point where the time-series could be adequétely represanted
by points spaced at 2.5 seconds (using a 6-Pole Bessel filter with corner
frequency 0.36 radians/sec, or 1/f =‘17.5 seconds). The filtered Cardington
data was then used as '"raw'" data in Fig 18, and was again filtered by a
10-minute Moving Mean filter (approximately 1/17 of the frame width), and by
& 6-Pole Bessel filter having the same corner frequency as the Moving Mean.

The differences between the Moving Mean and Bessel Filters can again by seen.

Unfortunately the Cardington data only lasted for 1.78 hours. Fig 19 shows
the same raw Cardington data, but with the time-scales expanded by a factor
of 5, and all filters (including pre-filters) having corner frequencies

increased by a factor c¢f 5 giving 2-minute mean values.

e .
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The particular examples shown above are for the absolute value of a function.
In meteorology one is often interested in the first derivative of functions such
as the ovnes above. This is analogous to being interested in the shape of the
contour on a chart rather than their absolute values.

Examples of a potential interest in time derivatives might be:

(a) Looking for variations in wind direction or speed, or in temperature, to

denote the passage of a front.

(b) Use of Isallobars, being contours of derivatives of pressure. The shape

of the contours are a function of the second derivative of pressure.

(¢) Estimating wind speed and direction from the differential (or derivative)

values of the radar range, azimuth and elevation of a balloon.

In all these examples the process of differentitation accentuates the higher
frequencies and makes the filter rate of attenuation more important. In the time
domain (as in Fig 17, 2nd more obviously in Figs 18, 19) the Moving Mean curves are
very much rougher than the corresponding Bessel curves, so that derivatives of
temperature or wind speed (the tendancy of temperature or wind speed) will be much
more noisy in the Moving Mean case than in the Bessel case. Similar comments have
even greater force for higher derivatives. Thus the Bessel filter will nelp, for
example, the bench forecaster to see the small chart-to-chart differences in wind

direction with time indicating the passage of a weak front.

Meteorological Office
Ministry of Defence

.‘ebruary 1977
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