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Abstract 

Operational analyses of LSWT (Lake Surface Water Temperature) have many potential uses in­

cluding improvement of NWP (Numerical Weather Prediction) models on regional scales. On 24 

November 2011, LSWT was included in the Met Office operational SST (Sea Surface Temperature) 

and ice analysis product, OSTIA, for 248 lakes globally. This technical documentation provides an 

assessment of the accuracy of the OSTIA LSWT analysis using both a delayed-mode run for JJA 

2009, and a pre-operational test run. The OSTIA analysis procedure for SSTs, including correla­

tion length scales and background error covariances optimised for oceans, has been used for the 

lakes in this first version of the product. Infra-red satellite observations over lakes and in situ mea­

surements were used for the LSWT analysis. The satellite observations are based on retrievals 

optimised for SST which may introduce inaccuracies into the LSWT data but are currently the only 

near-real-time information available. The accuracy of the LSWT analysis against independent data 

from the ESA ARCLake project at the University of Edinburgh gives a global RMS error of 1.31 K 

and a bias of 0.65 K. It is demonstrated that the OSTIA LSWT is an improvement over the use of 

climatology to capture the day-to-day variation in global lake surface temperatures. 

1 Introduction 

1.1 Motivation and overview 

The Operational Sea Surface Temperature and Sea-Ice Analysis (OSTIA) system (Donlon et al., 

2012) was developed at the UK Met Office, primarily for NWP purposes. The system produces 

a daily analysis of foundation temperature (the temperature below the diurnal warm layer, or the 

pre-dawn temperature (Minnett and Kaiser-Weiss, 2012)) on a 1/20o grid. Lake Surface Water 

Temperature (LSWT) was included in OSTIA on 24 November 2011 as part of the daily foundation 

SST field, at the same resolution. Prior to this, the Caspian Sea had been the only lake included 

in OSTIA. A limited number of large lakes are currently included in the Met Office NWP land-sea 

mask. Prior to the inclusion of LSWT in OSTIA, a method involving either the nearest OSTIA SST 

measurements to the lake points or HadISST climatology was used to fill in the LSWT. Other users 

of the OSTIA product, for example ECMWF, used the OSTIA SST analysis but the LSWT from the 

NCEP RTG product (Gemmill et al., 2007). The development of OSTIA LSWT has therefore aimed 

to improve this situation. The Met Office is also involved with the Mobile Weather Alert project to 

produce weather warnings over Lake Victoria. This requires the high resolution (both temporal and 

spatial) LSWT for this region developed as part of the OSTIA system to run high resolution regional 

NWP. 

Section 1.2 provides some background information and a description of the methods used to 

produce this first version of OSTIA LSWT follows in section 2. Section 3 presents a validation of 
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the OSTIA LSWT analysis. A seasonal comparison of mean JJA (June/July/August) and DJF (De­

cember/January/February) OSTIA LSWT products is provided, using data from the ESA ARCLake 

project at the University of Edinburgh (Merchant and MacCallum, 2010) as an independent data 

set for validation. Global statistics and examination of case studies for three major lake systems 

are used for these investigations: Lake Victoria (centred on 33oE, 2oS), Lake Baikal (centred on 

108oE, 53oN) and the North American Great Lakes (centred on 85oW, 46oN). An examination of the 

relationships between errors in the LSWT analysis and lake parameters such as lake elevation and 

surface area is also included. An analysis of the output of a pre-operational OSTIA run including 

LSWT is also presented, and finally summary and discussion and future work sections conclude 

the report in section 4. 

1.2 Background 

1.2.1 Potential uses of lake temperature information 

An operational analysis of Lake Surface Water Temperature (LSWT) has many potential uses. Ac­

curate estimates of LSWT should improve numerical weather prediction (NWP) models on regional 

scales (Oesch et al., 2003; Merchant and MacCallum, 2010; Dutra et al., 2010; Samuelsson et al., 

2010; Balsamo et al., 2011). LSWT products can be used as lower boundary conditions for deriva­

tion of regional surface energy budgets in atmospheric models and are also required for lake energy 

balance models. Maps of LSWT are also valuable for understanding a wide variety of processes 

occurring in lakes, for example surface water transport patterns (Strub and Powell, 1986, 1987; 

Steissberg et al., 2005a; Oesch et al., 2008), river inflow patterns (Thiemann and Schiller, 2003; 

Oesch et al., 2008), water quality monitoring (Reinart and Reinhold, 2008; Coats, 2010), mixing 

regimes (Wooster et al., 2001), phytoplankton dynamics and primary production (Wooster et al., 

2001; Thiemann and Schiller, 2003) and wind-induced upwelling events (Mortimer, 1952; Moni­

smith, 1985, 1986; Imberger and Patterson, 1990; Steissberg et al., 2005b; Oesch et al., 2008). Sur­

face temperature maps can provide information relevant to the vertical structure of the lake (Wooster 

et al., 2001). 

Several studies have also used the surface temperature of lakes and inland water bodies as 

indicators of climate change, using both in situ observations (Coats et al., 2006; Quayle et al., 2002; 

Verburg et al., 2003) and infra-red satellite observations (Schneider et al., 2009; Schneider and 

Hook, 2010). Unlike the land surface it is possible to accurately monitor the surface temperature of 

lakes, as the emissivity of water is well known (Schneider and Hook, 2010). Results from these cli­

mate monitoring studies indicate that the global rates of warming in lakes are an order of magnitude 

greater than those found in the global oceans (Schneider et al., 2009). In addition, LSWT appears to 

be warming more rapidly than the mean surface air temperature around certain mid-latitude lakes, 

including the North American Great Lakes and in Northern Europe (Quayle et al., 2002; Austin 

and Colman, 2007; Schneider et al., 2009). Warming of lakes increases their thermal stability and 
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resistance to mixing, which may have important impacts on the biology and biogeochemistry of 

the lake (Livingstone, 2003; Sahoo and Schladow, 2008; Coats, 2010; Blenckner et al., 2010). In­

creases in Arctic lake temperatures may also be an indicator of locally thawing permafrost (Smith 

et al., 2007; Hulley et al., 2011). Therefore accurate monitoring of LSWT has important applications. 

1.2.2 Accuracy of LSWT retrievals 

Retrieval coefficients for lakes suitable for the ATSR series of instruments (ATSR-1, ATSR-2 and 

AATSR) are available through the ARCLake project (Merchant and MacCallum, 2010) but do not yet 

form part of the operational processing chain. Although LSWT data are routinely available as part 

of GHRSST (Group for High Resolution Sea Surface Temperature) SST products for several other 

infra-red satellite data types used in OSTIA (NOAA and MetOp AVHRR, IASI), none of these cur­

rently include lake-specific processing. Therefore the LSWT data used in this report and for the daily 

operational OSTIA analyses are based on the current algorithms for SST retrieval. This will intro­

duce errors into the LSWTs, owing to various issues. The use of cloud-clearing schemes (including 

cloud shadows) optimised for oceans will have a significant effect on the accuracy of retrievals over 

lakes (MacCallum and Merchant, 2010). There will also be errors associated with the elevation and 

continental location of the lakes, which affects the atmospheric thickness, water vapour column and 

aerosol corrections in the retrievals (Wooster et al., 2001; Thiemann and Schiller, 2003). Coastal 

contamination is also a potential issue, especially for long, narrow lakes, as are errors associated 

with the surface emissivity, which is salinity dependent. Errors in this latter quantity can lead to large 

errors in the derived surface temperature (Hook et al., 2003). Sampling is also an issue, contributing 

to artificial short-timescale variability in LSWT timeseries (Merchant and MacCallum, 2010). Sparse 

observations and subsequent sampling errors are likely to particularly affect retrievals for lakes in 

cloudy regions, or those for smaller lakes especially from satellite instruments with a narrow swath 

width such as the AATSR. Therefore the number of available observations may show considerable 

variation between lakes. In addition, sparse observations over lakes with large horizontal tempera­

ture gradients mean the observations may not be spatially representative of temperatures over the 

whole lake. However, although not ideal, the use of these SST retrievals over lakes is currently the 

only option for producing global operational analyses of LSWT and will bring the Met Office into line 

with other SST analysis products, for example NCEP RTG (Gemmill et al., 2007). 

Table 1 summarises results from various studies into the use of SST retrieval algorithms over 

particular lakes. Nighttime results are shown where possible as they are likely to be significantly 

more accurate than those obtained during the daytime, owing to the absence of differential surface 

heating (Hook et al., 2003; Oesch et al., 2005). It can be seen from table 1 that the magnitude of 

both the bias and RMS errors in the retrievals vary depending on the lake or instrument/algorithm 

used. Results for Lake Mond are the poorest, but with a surface area of only 14 km2 (Oesch et al., 

2005) this lake is much smaller than the others shown in table 1. It is much more difficult to produce 

an accurate result for a lake of this size because of sparse data and coastal contamination. This lake 
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is not included in the OSTIA mask (section 2). Results shown in table 1 for MetOp AVHRR (used in 

OSTIA) for the North American Great Lakes are particularly good, with a bias of 0.06 K and RMS 

error of 0.50 K against in situ temperatures from moored buoys (Marsouin, 2009). For the NOAA-17 

AVHRR MCSST algorithm (closest to the operational NOAA-18 AVHRR MCSST currently used in 

OSTIA) the bias is -0.04 and 0.70 K and the RMS 0.88 and 1.12 K for Lakes Constance and Geneva 

respectively. This indicates the accuracy and bias of the data obtained varies widely depending on 

the chosen lake and it is therefore difficult to assess the general accuracy of the algorithms over 

lakes. Overall however, biases for instruments used in operational OSTIA are mainly of the order 

0.5 K and RMS errors around 1.0 K (table 1). 

Several other studies have evaluated LSWT algorithms designed for specific lakes (Hook et al., 

2003; Thiemann and Schiller, 2003; Oesch et al., 2008). More recently these have been expanded 

to include larger numbers of lakes (Merchant and MacCallum, 2010; Hulley et al., 2011). Details 

of these accuracies are given in table 2. According to Thiemann and Schiller (2003), it should be 

suitable to apply regional algorithms derived for specific lakes to other lakes with similar climatic 

conditions, for example temperate or maritime/continental. A lower absolute accuracy compared to 

open ocean retrievals is found for lake-specific retrievals owing to the reduced spatial and temporal 

coverage over lakes (Oesch et al., 2005). 

There are other studies relating to satellite-derived LSWT from other sensors, e.g. MODIS 

(Oesch et al., 2005, 2008; Reinart and Reinhold, 2008; Crosman and Horel, 2009) but as these 

are not currently used in OSTIA they have not been covered in this report. Results for older NOAA 

satellites (NOAA-11 and earlier) have also not been included. Currently, there are no GHRSST 

microwave satellite SST retrievals which include LSWT. 

1.2.3 Accuracy requirements for LSWT retrievals 

For climate studies, an absolute SST accuracy of less than 0.3 K is required (Walton et al., 1998; 

Li et al., 2001) and, for NWP, 0.5 K is necessary (Walton et al., 1998; Oesch et al., 2005; Edwards, 

2012). Further, Walton et al. (1998) and Oesch et al. (2005) note these measurements should 

have high spatial resolutions of 0.5 to 10.0 km for NWP, with revisit times of between two and four 

measurements a day. It can be assumed the same criteria can be applied to LSWT retrievals. 

1.2.4 Thermal structure and skin effect 

A skin effect of a similar magnitude and variability to that seen in oceans (e.g. Katsaros, 1977; 

Fairall et al., 1996; Donlon and Robinson, 1998) can also be observed in lakes (Wooster et al., 

2001; Hook et al., 2003; Oesch et al., 2005, 2008). This is similarly attributed to differential solar 

heating and variations in wind speed, leading to the top few centimetres of the lake (i.e. skin and 

subskin layers (Minnett and Kaiser-Weiss, 2012)) warming unevenly on clear, calm days compared 

to windy days when the top few centimetres become well mixed (Hook et al., 2003, and references 
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therein). Therefore it is sensible to use the same criterion to remove diurnal warming contaminated 

LSWT data in OSTIA as is currently used for SST; i.e. only nighttime data or daytime data where 

the windspeed is greater than 6 m s−1 is used (Donlon, 1999). Thus a constant cool skin effect can 

be assumed. 

The magnitude of the skin-bulk correction applied to the AATSR SST observations in OSTIA 

(0.17 K, Donlon et al., 2002) may not be appropriate for LSWT. Hook et al. (2003) demonstrate 

that the average nighttime skin effect for Lake Tahoe is 0.46 K. However, this is dependent on the 

diurnal wind speed pattern and particular mixing conditions for the lake, meaning this result is not 

necessarily applicable to other lakes. For example, at Lake Geneva, Oesch et al. (2008) found a 

mean nighttime skin effect of 0.03 K, with a range of -0.18 to 0.20 K. At Lake Malawi, Brown (1994) 

found a mean skin effect of -0.32 K, with a range of -0.47 K to -0.17 K over the diurnal cycle. The 

wind regime is likely to be different over lakes than for the open ocean, related to the available fetch 

as well as summer circulation features of land and lake breezes. These will vary in direction over 

the diurnal cycle, depending on the characteristics of the site (Oesch et al., 2008). 

Lakes have a complex temperature structure in both vertical and horizontal dimensions. The 

vertical temperature structure of a deep lake is similar to that of the ocean, with a surface layer (the 

epilimnion), separated from the deep layer (hypolimnion) by a region of steep temperature gradient 

equivalent to a thermocline (metalimnion) (Brown, 1994). As well as differential diurnal heating, 

horizontal temperature gradients can also be caused by water temperatures for shallower parts of 

lakes being more closely coupled with the land temperature than are the deeper parts (Bussiéres 

and Granger, 2007). Variations in lake depth can lead to shallower areas warming more rapidly 

in the spring, and thermal barring during spring and summer can also develop, which is a circu­

lation pattern tending to preserve cooler temperatures in the centre of large lakes (Merchant and 

MacCallum, 2010). 

Tropical lakes are known to have modest annual thermal cycles whereas mid-latitude lakes dis­

play characteristically distinct thermal regimes, with one or more annual isothermal mixing events 

resulting from the maximum density of freshwater being at 4oC (Austin and Colman, 2007). Within 

10o latitude of the equator the seasonal variability of LSWT is less than 2.5 K; the largest ampli­

tude variability lies between 30oN and 60oN, rapidly decreasing poleward of 60oN (Merchant and 

MacCallum, 2010). However, independent of latitude, for lakes with small water volumes, a more 

prominent annual cycle is seen as the heat diffusivity is higher compared to larger lakes (Oesch 

et al., 2003). 

1.2.5 Ice Cover 

Wintertime freezing of a lake is dependent on the regional air temperature and depth of the lake (Austin 

and Colman, 2007). Some lakes remain ice-covered for all or part of the year (Brown, 1994) and in 

situ measurements, for example in the North American Great Lakes, stop as shipping ceases and 

the moored buoys are retrieved for safe storage over the winter months. Ice cover also prevents 
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satellite measurements of LSWT, meaning wintertime observations can be scarce. It has been ob­

served in the North American Great Lakes that surface temperatures will not normally exceed 4 oC 

if both ice and open water are present (Irbe, 1992). A surface temperature above the 4 oC threshold 

can therefore be used to indicate that the water body is ice-free (Bussiéres et al., 2002; Reinart and 

Reinhold, 2008). 

Ice cover has a significant impact on the surface heat budget. As well as reducing the interaction 

between the surface of the lake and the overlying air, it increases the albedo of the surface, which 

reduces the ability of the lake or water body to absorb shortwave radiation (Austin and Colman, 

2007). The ice-out date in lakes (the springtime date on which the lake becomes ice-free) has been 

investigated as a climate change indicator (Austin and Colman, 2007, and references therein). In 

general, on northern hemisphere lakes and rivers the percentage of ice cover has been decreasing 

over the previous few decades (Magnuson et al., 2000). For example, if the current rate of decline 

continues, in a typical winter Lake Superior will be ice-free in about 30 years (Austin and Colman, 

2007). For large northern lakes, the start of the summertime stratified season is a strong func­

tion of the previous winter ice coverage, which is itself sensitive to small variations in atmospheric 

forcing (Austin and Colman, 2007). 

2 LSWT analysis method 

A full description of the OSTIA system is provided by Donlon et al. (2012) but a brief introduction 

is included here for clarity. After quality control, near-real-time in situ data, extracted from the GTS 

(Global Telecommunication System) and various L2p (level 2 pre-processed) satellite SST data, 

available through GHRSST (Group for High Resolution SST), are assimilated daily on to a back­

ground field on a 1/20o (∼6 km) grid, using an optimal interpolation type scheme. The background 

field is produced from the analysis for the preceding day, with a slight relaxation to climatology. New 

data straying too far from the previous day’s analysis are rejected before assimilation. AATSR and in 

situ observations are used as reference data for bias-correction of the other satellite data. Observa­

tion error information provided in the GHRSST files is used in the analysis. In order to produce the 

foundation temperature described in section 1.1, the only satellite SST data used are nighttime data 

and daytime data when wind speeds are greater than 6 m s−1 (Donlon, 1999) (see section 1.2.4). 

In the new implementation of OSTIA including lakes, the land/lake mask used is that defined by 

the University of Edinburgh ARCLake Project (www.geos.ed.ac.uk/arclake/). The full mask includes 

all lakes with a surface area greater than 500 km2, plus an additional 10 lakes, giving a total of 263 

lakes. The ARCLake nighttime reconstructed AATSR climatology has been used to initialise the 

OSTIA LSWT, for comparisons to climatology in the following sections, and for the relaxation to cli­

matology step during the OSTIA assimilation procedure. The climatology is on the same 1/20o grid 

as OSTIA, so no spatial interpolation was required in order to use it. A linear temporal interpolation 

was performed on the ARCLake data to produce daily files from the original twice-monthly dataset. 
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This ARCLake climatology dataset contains the 248 lakes with enough data to produce a cli­

matology, so 248 lakes of the full 263 are included in OSTIA (see Appendix for list). Figure 1(a) 

shows an example of the global OSTIA SST mask including lakes and figure 1(b) shows the same 

mask for Europe. The global mask used for calculation of statistics in the following sections is the 

MyOcean land/lake/river mask which covers everything not defined as land or ocean, i.e. lakes only 

for OSTIA. As the mask is fixed, it is not possible for OSTIA LSWT to take into account ephemeral 

lakes or regions of flooding. 

It should be noted there are differences between masks used by different centres, for example 

the NCEP mask and the ARCLake mask. The position of larger lakes tends to be more consistent 

between masks than for the smaller lakes. An international comparison of masks is underway 

through the GHRSST IWWG (Inland Waters Working Group) in an effort to standardise the masks 

adopted by different data providers and users. Since a decision had to be taken on which mask to 

use in order to begin work on OSTIA LSWT, the ARCLake mask was adopted. This was practical 

because the ARCLake climatology has been used in the OSTIA processing and it is necessary to 

have a complete climatology for each lake. 

As described in section 1.2.2, the satellite surface temperature retrievals used for LSWT in 

OSTIA are optimised for SST and not LSWT. In addition, the OSTIA analysis method has not been 

optimised for lakes and hence lakes are treated in the same way as the oceans for this first version. 

This means the error covariances, length scales etc are not specific to lakes, but use of this method 

provides a starting point for future development work. 

Analyses of two case studies are provided in the following sections: a delayed-mode JJA 

(June/July/August) and DJF (December/January/February) run for 2009, conducted for a seasonal 

comparison to independent ARCLake observations, plus a near-real-time run for October 2011, 

originally used for pre-operational testing. The delayed-mode runs were given generous 6-month 

spin-up periods, giving the analysis enough time to depart from the climatology it was initialised 

with, allowing for the fact that observations over lakes can be sporadic owing to satellite orbits and 

cloud cover. This long spin-up should minimise the number of ‘good’ observations rejected through 

the background check. It was not possible to include a spin-up period for the near-real-time run 

owing to time constraints. 

Although there are many different satellite data types used in OSTIA, comparisons and analyses 

are shown here for only the data types which provide lake ‘SSTs’, namely the NOAA-18 AVHRR, 

MetOp AVHRR and AATSR instruments. In-situ data are also available for lakes through the GTS 

(Global Telecommunication System) in the same way as in situ SST measurements. There are 

currently no global microwave satellite SST datasets used in OSTIA so no microwave LSWT mea­

surements have been investigated. In improvements to OSTIA made for an operational change on 

24 November 2011, additional lake temperature data from IASI and NOAA-19 AVHRR have also 

become available, but these data sources were not available for the case study periods. 

No lake-ice mask is currently available for OSTIA, but this will be included in future developments 
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(a) Global 

(b) Europe 

Figure 1: Example OSTIA SST field for 16 January 2012 showing land/sea/lake mask for (a) global 
and (b) close-up of Europe. 
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for NWP requirements. Investigation of the operational LSWT output indicates the satellite data 

assimilated over ice-covered lakes is sensible and thus the quality control is working to prevent any 

poor data over ice from entering into the analysis. When the lake is completely frozen and there 

are no data available, the OSTIA LSWT will relax towards the ARCLake climatology. When a lake 

ice mask is included this relaxation will be replaced with a relaxation towards freezing (0oC), in a 

similar way as is currently performed for the SST (towards -1.8oC). 

3 Validation of OSTIA LSWT 

3.1 Delayed-mode runs 

3.1.1 Seasonal comparisons 

OSTIA LSWT data were produced for DJF (December/January/February) and JJA (June/July/August) 

periods to compare the products for different seasons with each other. In order to also compare this 

dataset to ARCLake observations, the year 2009 was chosen to make use of the most recent AR-

CLake data available at the time of writing as ARCLake data for the period of the near-real-time run 

were not available. As the majority of the lakes in the OSTIA mask are located in the northern hemi­

sphere (figure 1(a)) DJF and JJA correspond predominantly to winter and summer respectively. It 

should be noted that, unlike in the northern hemisphere, there are no lakes included in the OSTIA 

mask that freeze in the wintertime in the southern hemisphere. 

Table 3 shows the observation minus background statistics for OSTIA LSWT for the DJF and 

JJA periods. For each data type, the observations for a particular day are compared against a 

background field constructed from the analysis for the previous day with a relaxation to climatology. 

Depending on the assumed accuracy of the observation type, this comparison gives a measure 

of the accuracy of the analysis. Although the errors in the observations are not independent from 

the errors in the analysis, this method has been shown to provide useful results on comparison 

with independent data (Roberts-Jones et al., 2011). The daily results are then averaged over the 

three-month period to give the results shown in table 3. 

The mean number of daily observations for DJF is very small in comparison to JJA (table 3). 

For the in situ data, the majority of the global observations are located in the Great Lakes, which 

freeze in the winter and thus provide little opportunity for LSWT measurement. However, many 

more LSWT satellite data are available over this period than have been assimilated. This is due 

in part to the observations failing the OSTIA background check, despite the long spin-up period 

described in section 2. It is also partly related to the flagging of some of the observations as poor 

by the data providers, which prevents these data being included in the analysis. The total number 

of observations for lakes is so small that this presents more of a problem for the LSWTs than for the 

SSTs. The suitability of altering the flagging thresholds for lakes and raising the background check 

rejection threshold over lakes will be investigated. The number of LSWT observations entering 
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the current operational system for December 2011/January 2012 are comparable to JJA 2009, i.e. 

there is not the same problem of lack of wintertime data for the operational system. A quick check 

for December 2009 reveals the same issue as for December 2008. This indicates fewer data are 

currently failing the background check than would have done for previous years. This implies the 

conditions this year are closer to climatology or there may have been changes made to the quality 

flagging by the data providers. 

As the number of observations for DJF is very small and thus the statistics are not robust, further 

analysis will only be described for the JJA period. Overall, the JJA statistics shown in table 3 are 

encouraging. The global RMS error of the OSTIA LSWT to in situ data is 1.02 K and the bias is 

-0.13 K. These global statistics are similar to those shown in table 3 for the Great Lakes, which is 

unsurprising as the majority of the in situ data are located in this lake system. 

Compared to the Great Lakes and Lake Victoria, Lake Baikal has the largest biases and RMS 

errors for most of the satellite data types. This could be related to coastal contamination owing to 

the long, thin shape of the lake. The exception is the bias with MetOp AVHRR, which is marginally 

worse in the Great Lakes (0.42 K for Lake Baikal, 0.46 K for Great Lakes). The magnitude of 

this bias is an interesting result, given the bias of MetOp AVHRR shown in table 1 of 0.06 K on 

comparison to in situ moored buoys (Marsouin, 2009). Table 3 indicates the RMS error of the 

observation minus background for NOAA-18 AVHRR is smaller than for the MetOp AVHRR for each 

of the cases shown. The magnitude of the bias for NOAA-18 AVHRR is also smaller globally and for 

the Great Lakes than for MetOp AVHRR, but is slightly larger for Lakes Baikal and Victoria. Overall, 

Lake Victoria has smaller biases and RMS errors compared to the other lakes. Its low-lying position 

on the equator and large, round size mean a more accurate LSWT analysis is possible. Reasons 

for this are discussed in more detail in the following sections, particularly section 3.2. 

3.1.2 Comparison to independent data 

The ARCLake LSWT retrievals employ lake-specific coefficients, a cloud clearing scheme designed 

for lakes and a salinity-dependent emissivity. This not only means the observations are indepen­

dent from the AATSR data assimilated into OSTIA, which uses the operational SST algorithm, but 

that they can be considered the best global satellite observations of LSWT available. Therefore a 

validation of the OSTIA LSWT against this dataset was undertaken. It should however be noted 

the ARCLake observations are measurements of skin temperature whereas the OSTIA analysis is 

a foundation temperature. Nighttime ARCLake observations have been used in the comparison 

to avoid the effects of diurnal warming but a cool skin effect of around 0.2 K should be assumed 

present (MacCallum and Merchant, 2010). Only the JJA 2009 period described in section 3.1.1 has 

been compared with the ARCLake observations because, as noted above, a lack of observations in 

the DJF OSTIA LSWT analysis means quality assessment of this data would be unrepresentative 

of the errors expected in the operational system. 

Globally, the accuracy of the OSTIA LSWT against the ARCLake observations is 1.31 K (table 4). 
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Table 4: OSTIA LSWT minus ARCLake observations and ARCLake climatology minus ARCLake 
observations for June/July/August 2009. Lakes listed in order of descending surface area. 

OSTIA-ARCobs ARCclim-ARCobs 
Observation type Mean Error RMS Error Mean Error RMS Error Mean Daily No. ARCobs 

Global 0.65 1.31 0.00 1.78 4453 

Great Lakes 1.41 1.78 0.45 2.13 822 

Lake Victoria 0.40 0.44 0.08 0.29 137 

Lake Baikal 1.83 2.76 1.21 2.11 140 

Salton Sea -0.13 1.45 -0.15 1.44 7 

Lake Geneva -0.06 0.63 1.00 1.67 2 

Lake Constance -0.06 1.02 0.95 1.87 1 

Lake Tahoe -0.46 0.83 0.28 0.82 2 

However, at 0.65 K, the magnitude of the bias indicates that the bias correction using AATSR and 

the limited in situ data could be improved. However, as noted above, this bias does include the error 

introduced by comparing a skin measurement (ARCLake) with a foundation measurement (OSTIA), 

which is approximately 0.2 K, meaning the bias is likely closer to 0.45 K. The global statistics given 

in table 4 indicate that generally the RMS error for OSTIA minus ARCLake observations is better 

(lower) than for ARCLake climatology minus ARCLake observations, demonstrating that overall the 

OSTIA LSWT is more accurate than the climatology. Since the ARCLake climatology is derived 

from the ARCLake observations, the bias of the climatology against these observations would be 

expected to be smaller than that for OSTIA and indeed is zero when taking all lakes into account 

(table 4). 

Case studies of particular lakes are also shown in table 4. Both the Great Lakes and Lake Baikal 

have large biases and RMS errors compared to the other lakes and, in the case of Lake Baikal, the 

analysis performs worse than the climatology in terms of the RMS error. However, results for other 

lakes are relatively good, particularly Lakes Geneva and Constance. The magnitude of the OSTIA 

minus ARCLake observation bias and RMS errors are generally larger than the observation minus 

background errors shown previously (compare tables 4 and 3). 

Comparisons of table 4 with table 1 yield mixed results. For Lakes Geneva and Constance, 

compared to results using the NOAA-17 AVHRR MCSST algorithm (the closest to the assimilated 

NOAA-18 data), the OSTIA LSWT RMS errors are reduced and the bias is the same or better. 

For Lake Tahoe, the bias is improved but the RMS is worse for the OSTIA data compared to the 
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operational AATSR SST retrievals, and similarly for the Salton Sea. For the Great Lakes, the OS­

TIA results are poorer than those found for both the MetOp AVHRR and the AATSR operational 

retrievals. This indicates the OSTIA LSWT results for the Great Lakes are worse than expected. 

This could potentially be due to poor quality in situ data used in the analysis for bias correction. 

The in situ data used in this assimilation have not undergone the operational monthly check against 

OSTIA data for potential inclusion on a blacklist. In addition, the majority of these data come from 

ships which are known to provide data of reduced quality than that obtained from moored (or drift­

ing) buoys (Roberts-Jones et al., 2011). This could also suggest that the accuracy of the retrievals 

summarised in table 1 may not be consistently as good as the published results suggest. Compari­

son of table 4 with table 2 indicates the OSTIA LSWT analysis is not as accurate and has greater 

biases than LSWTs obtained from lake-specific non-operational LSWT retrieval algorithms. 

As described in section 1.2.3, the target accuracy of the LSWT analysis for NWP purposes is 

at least 0.50 K. At 1.31 K against independent ARCLake observations, the global RMS error of 

the OSTIA LSWT analysis does not meet this requirement. However, the use of the OSTIA LSWT 

data in the Met Office NWP system is an improvement over the previous method (Bovis, 2011), 

described in the introduction (section 1.1) and it has been demonstrated in this report that the 

analysis is an improvement over climatology. As would be expected, owing to the use of retrieval 

algorithms and analysis techniques optimised for SST rather than LSWT (section 2), the accuracy 

of the OSTIA LSWT analysis is poorer than for the SST (global RMS errors of 1.31 K (for JJA) and 

0.55 K respectively). 

3.2 Investigation of relationships to lake parameters 

Various metadata for each lake in the mask have been collated by the ARCLake project. In this 

section, the relationships between the RMS error and bias of the OSTIA LSWT analysis calculated 

using the ARCLake observations, and parameters including the elevation, area, and latitude of the 

lakes have been investigated. 

Figure 2 shows the mean bias for each lake over JJA 2009 with lake area, with an indication 

of lake elevation. There is not a clear relationship between the magnitude of the bias and the lake 

area, although it can be said that the smaller lakes are more likely to have a larger bias, and the 

largest lakes are more likely to have a bias closer to zero. Most of the lakes shown here have a 

minimum area of 500 km2 so it is possible the lakes would need to be smaller for an effect of area 

on bias to become apparent. As demonstrated for Lake Mond in table 1, very small lakes can have 

large biases. 

Figure 2 also indicates that lakes at high elevations are more likely to have a negative bias, 

although lakes at low elevations can also have a negative bias. The difference of the JJA mean of 

the bias for all lakes lying above 2500 m elevation (-0.37 K) is statistically significantly different from 

that of lakes below 2500 m (0.12 K) at the 0.05 level. This statistic was calculated using Welch’s 
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t-test for unequal sample sizes and variances, and the Welch-Satterthwaite equation for calculating 

degrees of freedom. This method assumes the two samples are independent (non-paired), although 

this may not be strictly true for this case as the errors are correlated. As indicated by the global 

OSTIA LSWT minus ARCLake observations statistics (table 4), overall the OSTIA LSWT has a 

positive bias. As noted by Schneider and Hook (2010), large lakes at modest elevations might be 

expected to provide the best results for LSWT using the SST products. According to figure 2, these 

lakes have a positive bias. This means that the LSWT for higher altitude, smaller lakes may have 

compensating errors, thus reducing the bias. 

Figure 2: Mean OSTIA LSWT minus ARCLake observations for each lake, over JJA 2009, with lake 
area. A red triangle indicates the elevation of the lake is greater than 2500 m. Note log-scale on y 
axis. 

There is little obvious relationship between RMS error with lake area and elevation (figure 3). 

In order to affect the accuracy of surface temperature retrievals, according to Oesch et al. (2005) 

the elevation needs to be extreme. In their study of Alpine LSWT, they did not find that the smaller 

water vapour content at around 400 m elevation exerted a significant influence on the accuracy of 

the retrievals. According to Schneider et al. (2009), larger uncertainties in LSWT may be expected 

for lakes at more extreme elevations on the Tibetan Plateau and in the Andes although figure 3 

indicates this does not appear to be the case for the OSTIA data. However, other compensating 

errors may be masking any effect. 

Figure 4 shows the bias of all OSTIA lakes for JJA versus the area divided by the perimeter, 

where these data are available. This metric provides a measure of the shape of the lake, where a 

high number indicates the lake is an even, smooth shape and a low number indicates the bound­

ary is an uneven, irregular shape. More accurate satellite measurements should be possible for 

lakes with an even perimeter and shorter coastline as this minimises potential contamination of the 

retrieval from land. It can be seen that lakes with a shorter perimeter compared to the area (i.e. 
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Figure 3: RMS error of OSTIA LSWT minus ARCLake observations for each lake, over JJA 2009, 
with area. A red triangle indicates the elevation of the lake is greater than 2500 m. Note log-scale 
on y axis. 

a high number for this metric) have a positive bias (figure 4), implying the bias must be related to 

other factors. 

Figure 5(a) is the equivalent plot using length divided by breadth as the metric. A high num­

ber indicates the lake has a long, narrow shape and a low number a rounder shape. This metric 

does not show the same relationship as figure 4, i.e. long, narrow lakes have similar results to 

rounder/squarer lakes. This implies the shape of the lakes used in the mask have a large enough 

length to breadth ratio that this metric makes no difference to the accuracy of the analyses. How­

ever, bias with breadth alone (the shortest lake axis) indicates that lakes with the largest breadth, 

which would be expected to produce the most accurate results with less land contamination, have 

a more positive bias than those with a smaller breadth (figure 5(b)). Again, this implies other factors 

are contributing to the positive bias for these lakes. 

As might be expected, a greater number of observations generally contributes towards a smaller 

RMS error for any particular lake, whereas a low number of observations may lead to a large RMS 

error (figure 6(a)). Figure 6(b) shows the RMS error with the observation density, i.e. the number 

of observations divided by the lake area. However, this does not illustrate the same relationship as 

figure 6(a), implying a large number of observations are important for accurate LSWTs regardless of 

lake size. The four lakes with a number of daily observations per unit area (km2) greater than 0.01 

are the smallest four lakes with enough data to produce this metric (lakes Almanor, Clear, Mono 

and Walker). 

Figure 7(a) shows the bias with latitude for each lake. At first glance it appears as though anal­

yses of LSWT for the southern hemisphere have a smaller bias than for the northern hemisphere, 
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Figure 4: Mean error of OSTIA LSWT minus ARCLake observations for each lake, over JJA 2009, 
with area divided by perimeter, a measure of the regularity of the shape of the lake. 

but as figure 1 also demonstrates, the majority of lakes are in the northern hemisphere, meaning 

the sample of lakes in the southern hemisphere is too small to show such a spread of biases. 

The difference between the mean bias of the lakes in the two hemispheres is thus not statistically 

significantly different from zero. 

Figure 7(b) shows the bias with the absolute latitude, i.e. disregarding whether the lakes are 

located in the northern or southern hemisphere. Also shown are the elevation and area of the 

lakes. It is clear from this plot that higher altitude lakes are likely to have a negative bias and larger 

lakes a positive bias, as discussed above. Lakes at latitudes below 30o have a smaller annual 

surface temperature cycle compared to lakes at higher latitudes (section 1.2.4), which suggests it 

could be easier to capture variability in a LSWT analysis. Indeed, figure 8 shows there is a difference 

between the RMS error of lakes with latitudes above 30o (1.41 K) and those below 30o (0.74 K), and 

this difference has been found to be statistically significantly different from zero. The mean biases of 

these two groups are not however statistically significantly different from zero indicating that latitude 

is not a contributing factor to biases in the LSWT analysis. 

Figure 9(a) shows that the bias correction using the in situ data is working well, as the obser­

vation minus background bias for in situ data remains around zero for all elevations. The exception 

to this is the outlier, which is located in Lake Ladoga. Clearly this particular in situ observation is 

suspect as it must be disagreeing with the rest of the data in the analysis for this lake. In compar­

ison to figure 9(a), the equivalent plot for the AATSR (figure 9(b)) shows more of a spread in the 

bias at different elevations, despite this also being a reference dataset. This may be related to the 

temporal sampling of the AATSR data, as there could potentially be several days or more between 

these measurements, allowing the LSWT analysis to drift away from the reference. 
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Figure 5: Mean error of OSTIA LSWT minus ARCLake observations for each lake, over JJA 2009, 
with (a) width divided by breadth and (b) breadth. 
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Figure 6: RMS error of OSTIA LSWT minus ARCLake observations for each lake, over JJA 2009, 
with (a) mean number of daily observations (all data types) used in OSTIA analysis for each lake, 
and (b) observation density (as figure (a) but divide number of observations by lake area in km2). 
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Figure 7: Mean error of OSTIA LSWT analysis minus ARCLake observations for each lake, over 
JJA 2009, with (a) latitude and (b) absolute latitude (i.e. disregarding which hemisphere). Each 
point represents the mean error for a lake. For (b), a red triangle indicates the lake has an elevation 
over 2500 m, and a black dot equal to or under 2500 m. A blue square indicates the lake also has 
a surface area of greater than 3000 km2 . 
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Figure 8: RMS error of OSTIA LSWT analysis minus ARCLake observations for each lake, over JJA 
2009 with absolute latitude (i.e. disregarding which hemisphere). 

Similar plots for bias and RMS error were examined for any relationships with lake depth and 

volume but none were seen. 

3.3 Operational monitoring and assessment 

A version of the pre-operational OSTIA suite including lakes was run for just over one month (2 

September 2011 to 5 October 2011) prior to operational implementation. Results from the analysis 

of this output are given in the following sections. 

3.3.1 Number of Observations 

The data used for the LSWT analysis test runs have undergone the usual OSTIA quality control 

procedures (Donlon et al., 2012). However, the in situ data have not been included in the usual 

monthly check against OSTIA data for potential inclusion on a blacklist, but in the operational system 

this procedure will be carried out in a similar way as for in situ data over the ocean. The thresholds 

used for inclusion on the blacklist will also be investigated to check they are suitable for lakes. 

The number of available infra-red satellite observations is affected by cloud cover meaning there 

is large day-to-day variability in the volume of data, as demonstrated in figures 10, 11 and 12. For 

MetOp AVHRR (figure 11), at 6 km resolution (after OSTIA subsampling), the spatial coverage over 

the lakes is the best of the satellite LSWT data sources (compare figures 10, 11 and 12). In contrast, 

the narrow swath width of the AATSR instrument means it takes 4 days to achieve complete global 

coverage (Robinson, 2004) and thus the number of observations can be sparse and very variable 

from day to day (figure 12). 
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Figure 9: Mean error of (a) in situ observations minus OSTIA LSWT background and (b) AATSR 
obsrevations minus OSTIA LSWT background for each lake, over JJA 2009 with elevation. 
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Comparison of the global number of in situ observations (figure 13(a)) with that for the Great 

Lakes (figure 13(b)) indicates the majority are located on the Great Lakes. The bias correction 

method in OSTIA LSWTs, as for the SSTs, is a correction to the in situ data and the AATSR. This 

indicates that for most of the lakes the only reference data for the bias correction is the AATSR 

dataset, which is uncorrected for lakes (section 1.2.2). It would therefore be a major benefit to 

the OSTIA LSWT analysis if the ARCLake processing were included in the operational AATSR 

processing chain. 

There are currently no in situ observations collected over Lake Victoria but this should be im­

proved soon as part of the Mobile Weather Alert pilot project mentioned in the introduction. 

3.3.2 RMS and Mean Error statistics 

Figure 14 shows timeseries of observation minus background and observation minus ARCLake 

nighttime AATSR climatology for the four data types: in situ, AATSR, MetOp AVHRR and NOAA-18 

AVHRR. These results should be treated with caution because the observations are not strictly inde­

pendent from the background, as the observation errors will be correlated. As the satellite data may 

contain biases, particularly as the retrievals are optimised for SST rather than LSWT (section 1.2.2), 

the in situ observations are likely to be the most reliable. If these are considered ‘truth’, figure 14(a) 

indicates that globally, OSTIA LSWT is clearly an improvement over climatology in terms of both ac­

curacy and RMS error. Results over the entire period are summarised in table 5. This improvement 

over climatology is also the case for the Great Lakes (table 5) but unfortunately there are currently 

no in situ observations available for the other lakes featured in this table. Figure 14 also indicates 

that the OSTIA LSWT data require a spin-up period of several weeks to depart from the climatol­

ogy used to initialise the analysis, and possibly longer for those lakes with limited data (e.g. Lake 

Victoria). This will have a detrimental effect on the mean statistics given in table 5. 

The satellite data also indicate that both the bias and RMS error are reduced for the observation 

minus background compared to the observation minus climatology, both globally (figure 14, table 5) 

and for the case studies of the Great Lakes and Lake Baikal (table 5). This improvement in the RMS 

is not the case for Lake Victoria (although the bias is improved) for a number of possible reasons. 

As there is no in situ data available (figure 13), a bias correction of the MetOp and NOAA AVHRR 

data is performed using only AATSR and this data may itself contain errors as it is not optimised for 

lakes. Additionally there are few days over this period when AATSR data are available (figure 12). 

In the absence of new data the field used for the bias corrections will decay exponentially (Donlon 

et al., 2012). Fewer observations for all data types mean that this lake will require a longer spin-up 

time than other, better sampled lakes, to diverge from the climatology it has been initialised with. 

Additionally, its position across the equator means that it does not experience large variations in 

temperature and is thus likely to remain closer to climatology than lakes at more temperate latitudes, 

for example the Great Lakes and Lake Baikal. This also means the surface temperature is easier to 

represent, so the RMS errors for Lake Victoria are notably smaller than for the other lakes. 
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(a) Global (b) Great Lakes 

(c) Lake Baikal (d) Lake Victoria
 

Figure 10: Number of observations: NOAA-18 AVHRR (note differing scales on y-axis)
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(a) Global (b) Great Lakes 

(c) Lake Baikal (d) Lake Victoria 

Figure 11: Number of observations: MetOp AVHRR (note differing scales on y-axis) 

3.3.3 Lake case studies 

Figure 15 shows the spatial distribution of mean observation minus background errors over the test 

period 2 September to 5 October 2011 for the Great Lakes and also illustrates the spatial pattern 

of observations for this lake system. The coverage of the in situ data in the Great Lakes is very 

good, owing to the presence of ship-based observations, although the accuracy of the data is spa­

tially variable (figure 15(a)). Data from the two AVHRR satellites, MetOp and NOAA-18, indicate 

that in the northern lake, Lake Superior, these observations are generally warm compared to the 

background (figures 15(b) and 15(c)). Similarly, both sets of AVHRR observations in the southern 

lakes (Lake Ontario and Lake Erie) are generally cool, with Lake Michigan-Huron perhaps in the 

middle, compared to the background. Biases are generally higher around the lake edges, particu­

larly for MetOp AVHRR (figure 15(c)) which seems to have a larger mask than the NOAA AVHRR 

(figure 15(b)) and so provides more data around the lake edge. This could also be related to the 

use of the quality flags for the data in the OSTIA processing, which deserves further investigation. 

There are notably no observations available in the northern part of the lakes for the AATSR (fig­

ure 15(d)) which also needs to be investigated. This means no bias corrections of the other satellite 

instruments will take place in the northern parts of the lakes if there are no in situ data available, 
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(a) Global (b) Great Lakes 

(c) Lake Baikal (d) Lake Victoria 

Figure 12: Number of observations: AATSR (note differing scales on y-axis) 

other than from information in the bias field spread from the southern parts of the lakes. This will be 

the case for the majority of the lakes in the mask. 

Figure 16(a) shows in situ observations at a single location for Lake Baikal, which are very warm 

compared to the background. In the same location the NOAA AVHRR data are very cold compared 

to the background (figure 16(b)) - it is possible the contribution from this in situ observation has 

warmed up the analysis which agrees better with the MetOp AVHRR and AATSR than the NOAA 

AVHRR. Similar to figures 15(c) and 15(d) for the Great Lakes, the MetOp AVHRR shows biases 

around the edge of Lake Baikal (figure 16(c)), and little data for AATSR in the northern part of the 

lake (figure 16(d)). 

Figure 17 shows the same plots for Lake Victoria. The best coverage is again achieved by the 

MetOp AVHRR, as in figures 15 and 16. Similar to figures 15 and 16, there is again an issue with 

the spatial coverage of the AATSR data for Lake Victoria (figure 17(d)) which requires investigation. 
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(a) Global (b) Great Lakes 

(c) Lake Baikal (d) Lake Victoria 

Figure 13: Number of observations: In situ (note differing scales on y-axis) 

4 Conclusions 

4.1 Summary and discussion 

Operational analyses of LSWT (Lake Surface Water Temperature) have many potential uses includ­

ing improvement of NWP models on regional scales, and thus LSWT was included in the Met Office 

operational OSTIA product on 24 November 2011 for 248 lakes globally. The OSTIA LSWT analysis 

is produced in the same way as the SST analysis using in situ data from the GTS (Global Telecom­

munication System) where available and GHRSST (Group for High Resolution SST) L2P (Level-2 

pre-processing) satellite data. Not all satellite data types used in OSTIA contain LSWT information 

so it was only possible to use MetOp and NOAA AVHRR, and AATSR data, at the time of writing. 

There is significant day-to-day variation in the number of infra-red satellite surface temperature ob­

servations available over lakes because of cloud cover. As the retrievals for these instruments are 

optimised for SST they will introduce inaccuracies when used for a LSWT analysis but there are 

currently no other data sources available to produce a near-real-time analysis. The OSTIA analysis 

procedure uses correlation length scales and background error covariances designed for oceans 

for this first version of the LSWT product. 

The global accuracy of the OSTIA LSWT product for JJA (June/July/August) 2009 against inde­
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(a) In situ (b) AATSR 

(c) MetOp AVHRR (d) NOAA-18 AVHRR 

Figure 14: Global RMS (blue) and mean (red) errors for observation minus background (solid line) 
and observation minus ARCLake climatology (dashed line). 

pendent satellite observations from the ESA ARCLake project at the University of Edinburgh is an 

RMS error of 1.31 K and a bias of 0.65 K (OSTIA minus ARCLake, and including a skin-bulk error of 

around 0.2 K). Against in situ observations the global statistics are 1.02 K and -0.13 K for the same 

period, although most of these observations (83%) are located in the North American Great Lakes. 

The global accuracy of the OSTIA LSWT analysis is poorer than that of the operational SST analy­

sis (RMS error 0.55 K) as would be expected and does not meet the ideal accuracy requirement for 

NWP of 0.5 K. However, it has been demonstrated that the OSTIA LSWT is an improvement over 

the use of climatology to capture the day-to-day variation in global lake temperatures. 

There are clearly a number of factors which can potentially affect the accuracy of an LSWT 

analysis for an individual lake. It might be expected that LSWT analyses for larger lakes at lower 

altitudes, i.e. those which approximate the seas for which the retrievals and analysis methods 

are optimised, would produce the best results. This would also apply to those lakes with a larger 

breadth, and higher area to perimeter ratio (more even coastline). It has been shown that analyses 

for these lakes tend to have a positive bias, so it is possible that compensating errors in analyses 

exist for smaller lakes at higher altitudes, or narrower lakes with more uneven coastlines, reducing 

the bias found for these lakes. It has also been demonstrated that the analyses for lakes within 
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Table 5: Global and regional statistics: Observation minus background and observation minus cli­
matology for lakes globally, and three case studies. Mean and RMS errors shown for time period of 
pre-operational test run (2 September 2011 to 5 October 2011). A dash (-) indicates too few data to 
produce statistics. 

Observation type 
Observation minus Background 
Mean Error RMS Error 

Observation minus Climatology 
Mean Error RMS Error 

Global 
In situ 
AATSR 

MetOp AVHRR 
NOAA AVHRR 

-0.18 
0.08 
0.15 
0.21 

1.20 
0.79 
0.95 
0.64 

-0.95 
-0.12 
-0.08 
-0.05 

2.30 
1.39 
1.44 
1.41 

Great Lakes 
In situ 
AATSR 

MetOp AVHRR 
NOAA AVHRR 

-0.21 
0.28 
0.23 
0.30 

1.23 
0.90 
1.05 
0.64 

-1.09 
-0.71 
-0.52 
-0.91 

2.38 
1.66 
1.64 
1.67 

Lake Baikal 
In situ 
AATSR 

MetOp AVHRR 
NOAA AVHRR 

-
-0.15 
-0.09 
0.21 

-
0.84 
0.83 
0.78 

-
-1.61 
-1.10 
-0.69 

-
2.04 
1.59 
1.32 

Lake Victoria 
In situ 
AATSR 

MetOp AVHRR 
NOAA AVHRR 

-
0.09 
-0.10 
-0.10 

-
0.49 
0.49 
0.32 

-
0.32 
0.14 
0.01 

-
0.49 
0.49 
0.31 

30o of the equator are more accurate and that a greater number of observations leads to a more 

accurate analysis, independent of lake size. Using all these criteria, the three “best” lakes in the 

OSTIA LSWT analysis are Lake Nyasa/Malawi (bias 0.30 K, RMS 0.33 K), Lake Tangany (bias 

0.37 K, RMS 0.41 K) and Lake Victoria (bias 0.40 K, RMS 0.44 K). Note these lakes meet the target 

accuracy requirement for NWP of 0.50 K RMS discussed above. Each of these lakes also has an 

average of several hundred observations per day for JJA. Sampling issues are however clearly an 

important source of error for many lakes in the LSWT analysis as cloud cover and the frequency of 

satellite overpasses mean the number of observations can be sparse. Although no lake ice mask 

is currently included in the analysis, the wintertime operational LSWT analysis produces sensible 

results (not shown). 

4.2 Future work 

There are a number of possible improvements which could be made to the OSTIA LSWT, as follows: 
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(a) In situ	 (b) NOAA-18 AVHRR 

(c) MetOp AVHRR	 (d) AATSR 

Figure 15: North American Great Lakes: Mean observation minus background (K) 2 September 
2011 to 5 October 2011. 

•	 The ARCLake land/lake mask has been used for the OSTIA LSWT. There are plans within 

the international LSWT community to produce a standard mask as the position of the lakes 

can vary significantly between different data providers depending on the data source used. A 

consensus mask would allow easier transfer of data between the various providers and users. 

However, as more users at the Met Office begin to adopt the ARCLake mask through OSTIA 

it may become difficult to alter it. 

•	 The bias correction for the OSTIA LSWT analysis is performed using AATSR and in situ data 

as a reference, as for the SSTs. Little in situ data is available outside of the Great Lakes and 

therefore most of the bias correction takes place against the AATSR data. The issue of the 

lack of AATSR data in the northern parts of lakes is therefore an important one and needs 

investigation (see below). In addition, as this AATSR data is uncorrected for use over lakes, it 

would be of major benefit to the accuracy of the OSTIA analysis if the ARCLake processing 

were included as part of the operational AATSR processing chain. Failing this, a cloud-clearing 

scheme optimised for lakes could be introduced as part of the OSTIA processing to improve 

results. In addition, the magnitude of the global skin-bulk correction applied to the AATSR 

data may not be suitable for lakes, owing to the different wind regimes over lakes compared 

to oceans. 

•	 The absence of AATSR data in the northern part of lakes needs to be investigated, and 

checked for in the delayed-mode run. Possible causes of these issues are the use of data 
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(a) In situ	 (b) NOAA-18 AVHRR 

(c) MetOp AVHRR	 (d) AATSR 

Figure 16: Lake Baikal: Mean observation minus background (K) 2 September 2011 to 5 October 
2011. 

quality flags appropriate for SSTs but not LSWTs. However, altering the minimum quality flag 

used may introduce poor data over ice-covered lakes into the analysis. 

•	 An increase in the amount of in situ data available outside of the North American Great Lakes 

for use as a reference for bias correction would be beneficial. As part of the Mobile Weather 

Alert project in situ data may soon become available from Lake Victoria which will be used 

firstly for validation purposes and then for near-real-time assimilation as a reference dataset. 

This is expected to improve LSWT in Lake Victoria. There are very few suitable independent 

in situ observations of LSWT available to use for verification of OSTIA LSWT. We have plans 

to collaborate with Simon Hook of NASA JPL who has undertaken extensive monitoring of 

Lake Tahoe and the Salton Sea in the US. It would be useful to use this in situ data as 

independent verification of a run assimilating ARCLake observations, and a control run using 

the operational AATSR retrievals. 

•	 Many of the northern lakes freeze over in the wintertime and therefore the inclusion of an ice 

mask is necessary, particularly for NWP uses. Similar methods currently used for the high 

latitude SSTs in OSTIA could be employed, where the LSWT would be relaxed towards 0oC 

(rather than the -1.8oC used for oceans) in the presence of a certain concentration of ice (set 
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(a) In situ (b) NOAA-18 AVHRR (c) MetOp AVHRR 

(d) AATSR 

Figure 17: Lake Victoria: Mean observation minus background (K) 2 September 2011 to 5 October 
2011. 

at 50% in the oceans). The OSI-SAF (providers of OSTIA sea ice data) have plans to shortly 

add the Caspian Sea to their sea ice field but further lakes will not be included until 2013. 

In the meantime, investigations into using the NCEP lake ice concentration product will be 

conducted. Once a lake ice mask is introduced, improvements to the way the Surface Fields 

Processing System (SURF, which handles the passing of SSTs to the NWP system) deals 

with sea ice in OSTIA can be undertaken. 

•	 The spreading of negative increments can push the LSWT (and SST) below freezing even 

if the original observations are accurate. For example, on 19 January 2012 the minimum 

temperature in Lake Baikal in the OSTIA LSWT was below 0oC at -0.97oC, which should be 

improved. In addition, the minimum temperature for observations in OSTIA is set to -2oC but 

this is not suitable for freshwater lakes. 

•	 In situ data undergoes a monthly check against OSTIA for potential inclusion on a blacklist. 

As the OSTIA LSWT data is less accurate than the OSTIA SST data, it may be necessary to 

alter the threshold for blacklisting in situ data over lakes. 

•	 Biases are generally higher around the edges of lakes, particularly for the MetOp AVHRR 

data. This may be solved by altering the quality flags or may be an issue with the data itself. It 
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may be appropriate to introduce a ‘buffer zone’ around the shore, as recommended by Oesch 

et al. (2008) for NOAA AVHRR who suggest 1 pixel. 

•	 The suitability of using a background error covariance matrix and correlation length scales 

appropriate for oceans for a LSWT analysis should be investigated. Long length scales may 

mean lakes erroneously influence each other. The absence of wintertime data in test runs 

indicates that the background error check should be investigated and relaxed if necessary. 

The error estimates of the data over lakes may also require adjustment. 

•	 Comparisons of OSTIA LSWT to other operational LSWT analyses (e.g. NCEP RTG, Great 

Lakes Coastwatch daily analysis) could be set up in a similar way to GMPE (GHRSST multi­

product ensemble (Martin et al., 2012)). 

•	 The effect of new instruments on the LSWT analysis could be investigated, e.g. IASI, NOAA­

19 AVHRR. 
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Appendix 

List of 248 lakes in OSTIA mask in alphabetical order, with centre latitude (oN) and longitude (oE). 

Lake name Latitude Longitude 

ABAYA 

ABE 

ABERDEEN 

ABY 

ALAKOL 

ALBERT 

ALEXANDRINA 

ALMANOR 

AMADJUAK 

ANG-LA JEN 

ARAL 

ARGENTINO 

6.30 

11.17 

64.55 

5.23 

46.11 

1.67 

-35.52 

40.26 

64.99 

31.53 

45.13 

-50.33 

37.83 

41.79 

-98.59 

-3.23 

81.75 

30.91 

139.09 

-121.19 

-71.13 

83.09 

60.08 

-73.03 

Continued on next page 
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Lake Name Latitude 

– continued from previous page 

Longitude 

ARTILLERY 

ASHUANIPI 

ATHABASCA 

ATLIN 

AYAKKUM 

AYLMER 

BAGHRASH 

BAIKAL 

BAKER 

BALATON 

BALKHASH 

BANGONG 

BARUN-TOREY 

BAY 

BECHAROF 

BELOYE 

BEYSEHIR 

BIENVILLE 

BIG TROUT 

BIWA 

BLACK 

BRAS D’OR 

BUENOS AIRES 

BUFFALO 

BUYR 

CARATASCA 

CASPIAN 

CAXUANA 

CEDAR 

CHAMPLAIN 

CHAO 

CHAPALA 

CHILKA 

CHILWA 

CHIQUITA 

63.17 

52.69 

59.10 

59.57 

37.55 

64.15 

41.98 

53.63 

64.13 

46.88 

45.91 

33.61 

50.07 

14.36 

57.85 

60.18 

37.78 

55.05 

53.77 

35.25 

59.05 

45.95 

-46.66 

60.22 

47.81 

15.35 

41.85 

-2.04 

53.33 

44.45 

31.57 

20.21 

19.69 

-15.32 

-30.74 

-107.82 

-66.14 

-109.96 

-133.75 

89.35 

-108.46 

87.07 

108.14 

-95.28 

17.83 

73.95 

79.71 

115.81 

121.26 

-156.40 

37.64 

31.52 

-72.98 

-90.02 

136.08 

-105.73 

-60.83 

-72.50 

-115.49 

117.69 

-83.85 

50.36 

-51.50 

-100.14 

-73.27 

117.57 

-103.05 

85.38 

35.71 

-62.61 

Continued on next page 
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Lake Name Latitude 

– continued from previous page 

Longitude 

CHISHI 

CHURCHILL 

CLAIRE 

CLEAR 

CLINTON COLDEN 

COARI 

COLHUE HUAPI 

CONSTANCE 

CONTWOYTO 

CORO 

CREE 

CROSS 

DAUPHIN 

DEAD 

DESCHAMBAULT 

DORE 

DUBAWNT 

EAU CLAIRE 

EBI 

EBRIE 

EDWARD 

EGRIDIR 

ENNADAI 

ENRIQUILLO 

ERIE 

ESKIMO 

EVANS 

EVORON 

EYASI 

FAGNANO 

FERGUSON 

GARRY 

GENEVA 

GODS 

GRANVILLE 

-8.71 

55.96 

58.59 

39.02 

63.94 

-4.25 

-45.47 

47.65 

65.59 

11.56 

57.47 

54.71 

51.27 

31.52 

54.78 

54.76 

63.13 

56.15 

44.86 

5.30 

-0.39 

38.07 

60.96 

18.49 

42.25 

69.10 

50.97 

51.48 

-3.58 

-54.55 

69.41 

65.95 

46.37 

54.62 

56.40 

29.72 

-108.29 

-112.08 

-122.77 

-107.45 

-63.37 

-68.76 

9.28 

-110.66 

-69.86 

-106.64 

-97.58 

-99.77 

35.49 

-103.45 

-107.28 

-101.44 

-74.40 

82.92 

-4.26 

29.61 

30.85 

-101.31 

-71.58 

-81.16 

-132.76 

-77.02 

136.51 

35.04 

-68.03 

-105.27 

-99.40 

6.25 

-94.21 

-100.21 

Continued on next page 

© Crown Copyright 2012 36 c



Lake Name Latitude 

– continued from previous page 

Longitude 

GRAS 

GREAT BEAR 

GREAT SLAVE 

GUILLAUME-DELISLE 

HAR 

HAR US 

HAR-HU 

HAUKIVESI 

HOTTAH 

HOVSGOL 

HULUN 

HUNGTZE 

HURON 

HYARGAS 

ILIAMNA 

INARI 

INDIAN RIVER 

ISLAND 

ISSYKKUL 

ISTADA 

IZABAL 

KAGHASUK 

KAMINAK 

KAMINURIAK 

KAMlLUKUAK 

KAOYU 

KARA-BOGAZ-GOL 

KASBA 

KHANKA 

KHANTAYSKOE 

KIVU 

KOKO 

KRASNOE 

KULUNDINSKOE 

KWANIA 

64.54 

65.91 

62.09 

56.33 

48.05 

48.06 

38.31 

62.10 

64.95 

51.02 

48.97 

33.34 

44.78 

49.13 

59.56 

69.04 

28.24 

53.85 

42.46 

32.48 

15.57 

60.79 

62.20 

62.96 

62.28 

32.87 

41.23 

60.34 

44.94 

68.36 

-2.04 

36.89 

64.53 

52.98 

1.72 

-110.38 

-121.30 

-114.37 

-76.28 

93.21 

92.30 

97.59 

28.52 

-118.44 

100.48 

117.38 

118.53 

-82.21 

93.30 

-154.90 

27.83 

-80.64 

-94.70 

77.25 

67.92 

-89.11 

-164.22 

-94.90 

-95.79 

-101.73 

119.31 

53.54 

-102.27 

132.42 

91.18 

29.23 

100.18 

174.44 

79.58 

32.65 

Continued on next page 
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Lake Name Latitude 

– continued from previous page 

Longitude 

KYARING 

KYOGA 

LABAZ 

LADOGA 

LESSER SLAVE 

LIMFJORDEN 

LLANQUIHUE 

LUANG 

MACKAY 

MADRE 

MALAREN 

MALHEUR 

MANAGUA 

MANGUEIRA 

MANITOBA 

MANYCH-GUDILO 

MARTRE 

MICHIGAN 

MILLE LACS 

MIRIM 

MISTASSINI 

MONO 

MURRAY 

MWERU 

NAHUEL HUAPI 

NAKNEK 

NAM 

NATRON 

NERPICH’YE 

NETILLING 

NGORING 

NICARAGUA 

NIPIGON 

NIPISSING 

NONACHO 

31.13 

1.50 

72.27 

60.84 

55.43 

56.78 

-41.14 

7.46 

63.96 

24.64 

59.44 

43.34 

12.32 

-33.16 

50.99 

46.26 

63.33 

43.86 

46.24 

-32.89 

50.82 

38.01 

-6.95 

-9.01 

-40.92 

58.64 

30.71 

-2.34 

56.39 

66.42 

34.93 

11.57 

49.80 

46.24 

61.82 

88.32 

33.01 

99.57 

31.39 

-115.49 

9.17 

-72.79 

100.38 

-111.30 

-97.66 

16.19 

-118.83 

-86.35 

-52.84 

-98.80 

42.98 

-117.91 

-87.09 

-93.65 

-53.25 

-73.81 

-118.96 

141.53 

28.74 

-71.52 

-155.67 

90.66 

36.02 

162.77 

-70.28 

97.71 

-85.36 

-88.55 

-79.92 

-108.92 

Continued on next page 
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Lake Name Latitude 

– continued from previous page 

Longitude 

NORTH MOOSE 

NUELTIN 

NYASA 

OKEECIIOBEE 

OLING 

OMULAKH 

ONEGA 

ONTARIO 

ORIVESI 

PAIJANNE 

PANGONG 

PAYNE 

PEIPUS 

PERLAS 

PETER POND 

PIELINEN 

PLAYGREEN 

POMO 

POOPO 

PRINCESS MARY 

PURUVESI 

PYA 

PYHAJARVI 

PYRAMID 

RAINY 

RAZELM 

RED 

REINDEER 

ROGOAGUADO 

RONGE 

RUDOLF 

SAINT CLAIR 

SAINT JEAN 

SAINT JOSEPH 

SAKAMI 

54.05 

60.25 

-11.96 

26.95 

34.92 

72.29 

61.90 

43.85 

62.35 

61.71 

33.82 

59.40 

58.41 

12.54 

55.84 

63.16 

54.07 

28.55 

-18.81 

63.93 

61.77 

66.07 

61.00 

40.03 

48.61 

44.83 

48.04 

57.19 

-12.91 

55.11 

3.53 

42.50 

48.66 

51.04 

53.22 

-100.16 

-99.40 

34.59 

-80.86 

97.27 

145.59 

35.35 

-77.77 

29.59 

25.49 

78.61 

-73.82 

27.59 

-83.67 

-108.55 

29.71 

-97.75 

90.40 

-67.06 

-97.66 

29.02 

30.98 

22.28 

-119.55 

-92.97 

28.97 

-95.08 

-102.27 

-65.73 

-104.83 

36.08 

-82.73 

-72.02 

-90.81 

-76.75 
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Longitude 

SALTON 

SAN MARTIN 

SANDY 

SARYKAMYSHSKOYE 

SASYKKOL 

SEG 

SELAWIK 

SELETYTENIZ 

SELWYN 

SEVAN 

SHAMO 

SHERMAN 

SIMCOE 

SMALLWOOD 

SNOWBIRD 

SOUTH HENIK 

SOUTH MOOSE 

SUPERIOR 

SYVASH 

TAHOE 

TAI 

TAKIYUAK 

TAMIAHUA 

TANA 

TANGANYIKA 

TANGRA 

TAPAJOS 

TATHLINA 

TAUPO 

TEBESJUAK 

TENGIZ 

TERINAM 

TESHEKPUK 

TITICACA 

TOBA 

33.30 

-48.75 

53.00 

41.88 

46.58 

63.32 

66.51 

53.23 

60.00 

40.39 

5.83 

67.79 

44.47 

54.19 

60.64 

61.37 

53.83 

47.72 

45.96 

39.09 

31.21 

66.28 

21.66 

11.95 

-6.07 

31.05 

-2.88 

60.54 

-38.81 

63.76 

50.44 

30.90 

70.59 

-15.92 

2.61 

-115.83 

-72.84 

-93.03 

57.61 

80.91 

33.76 

-160.73 

73.18 

-104.68 

45.29 

37.55 

-97.73 

-79.42 

-64.31 

-102.94 

-97.29 

-100.04 

-88.23 

34.74 

-120.04 

120.24 

-113.17 

-97.57 

37.31 

29.46 

86.59 

-55.14 

-117.64 

175.90 

-98.98 

68.90 

85.61 

-153.60 

-69.30 

98.90 
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TOP 

TOWUTI 

TROUT 

TULEMALU 

TUMBA 

UBINSKOE 

ULUNGUR 

UPEMBA 

UVS 

VAN 

VANERN 

VATTERN 

VESIJARVI 

VICTORIA 

VIEDMA 

VYG 

WALKER 

WEISHAN 

WINNEBAGO 

WINNIPEG 

WINNIPEGOSIS 

WOLLASTON 

WOODS 

XINGU 

YATHKYED 

ZILING 

65.62 

-2.79 

60.58 

62.99 

-0.82 

55.47 

47.22 

-8.65 

50.33 

38.66 

58.88 

58.33 

61.09 

-1.30 

-49.59 

63.54 

38.70 

34.61 

44.02 

52.12 

52.37 

58.30 

49.38 

-2.16 

62.69 

31.77 

32.09 

121.52 

-121.13 

-99.48 

17.98 

80.05 

87.30 

26.40 

92.81 

42.98 

13.22 

14.57 

25.39 

33.23 

-72.56 

34.84 

-118.71 

117.24 

-88.42 

-97.25 

-100.05 

-103.33 

-94.91 

-52.20 

-98.07 

88.95 
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