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1.  INTRODUCTION

In a physical problem described by fluid transport equations, eg the
Navier-Stokes equations, it is common for the prognostic equations to
contain flux divergence terms, such as those representing advection or
diffucon. These terms have the property that they conserve the
transported quantity in a volume integrated sense and there are no net
sources or sinks, except perhaps on the boundaries of the fluid region.

For a numerical model to accurately represent such behaviour it is
usual to constrain the differencing to satisfy similar requirements and indeed,
conservation of quadratic functions of the model variables can be a
convenient way of ensuring stability during an extended time-integration
(Arakawa 1966). 1In practice designing a conservative form of differencing
for the interior points of a discrete grid is relatively easy and the
simplest numerical schemes often conserve 1inear quantities. Equally for
schemes second-order accurate in Space, ensuring the interior conservation
under advection of quadratic properties, such as kinetic energy, is also
fairly straightforward'(Bryan (1966), Lilly (1965)) in the case of an

incompressible fluid. Piacsek and Williams (1970) have proposed a

Tl

quadratically conservative scheme which does not require zero divergence Of s tnan
the velocity field but is weakly non-conservative of linear quantities.
Methods have also been devised to give energy conservation in compressible
atmospheric models (Haltiner and Williams (1980)). However it should be
noted that most methods only conserve the relevant properties to the
accuracy of the time integration scheme.
To complete the specification of a numerical scheme boundary
conditions must be specified and these must also be consistent with the

required conservation properties. For a second-order accurate scheme the
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boundary conditions need only be first order"éécurate and this gives

sufficient freedom to design such conditions relatively simply (eg Clark
(1977)). However for higher order Schemes,when the boundary conditions
must be no more than one order less than the interior scheme in accuracy
(Gustafsson et al 1972), the design of suitable conditions becomes very
complex.

This note describes a simple constructive method for
such conditions and is illustrated by an example at a rigid boundary in a
4th order accurate model. 1In particular this provides a method for the
design of the boundary conditions in the proposed Met 0 15 mesoscale model

(Nash 1983).




2, THE METHOD

Consider a transport equation for a variable 95 that contains a flux

divergence term, viz

(1)

wherefgrepresents any remaining terms and the domain is 0 < x < 1. The
equation is semi-discretised using a spatial grid Xi, where Xy = (1 -1)/
(N-1), (1=0,1, 2, ..., N) are the grid points, and the finite

difference equivalent of (1) is
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is a finite difference representation for the flux divergence term, and ‘:
is a known function on all the half-grid points i = 1/2, vrey A Yo mug

scheme is assumed to be accurate to order m, that is
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Integrating equation (1) gives
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and we would like the numerical differencing to satisfy an analogous
constraint. Clearly S‘F and ¢ are only known at the grid points Xy
so that the integral in equation (4) must be replaced by a numerical
quadrature to give an equation linking these parameters.

Let Q be an nth order quadrature such that

| i
. Q(cpt ,i.—.o,n,...,N)=f¢oL,< + o(Ax™)

Since S*F is known at i =1, 2, 3, .y N, the numerical constraint

consistent with equation (4) is

Q( (S*F)a o= O,|,..,N>= FGYy-_Ffloy Y

This is sufficient to determine (ng)° and becomes the conservative lower
boundary condition for the scheme. It is necessary to check the accuracy

of this expression as an approximation to 'aF/gx at X.= 0, By

definition,
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and using the quadrature (5), it follows that

Q( (3F/3>Q(x= xD)CsO,l,--,N) = F(D— F(o) + O(A”‘KD (7)

Substituting from equation (3) gives

Q((‘aF/Bac)(xsx,),(SxF)i,u\,.,,N> = F(D=-F(o) ® |
-+ O(Axn>.‘. O(AXM)

since integrating the VO(A%M) term over an interval with length of order
unity gives a term that is also O(Ax"‘). (Note that if ng is O(AxM-'>
on a small number (r) of the grid points where r<<N, then the integrated
error term is still O(A‘AM)-
Comparing equations (6) and (8) shows that (gKF>o , defined by

equation (6), must satisfy

(gx_ F>a = (QF/BJD(Z-:- Xeo) * -0 (AXM(n(m'n)-‘)(9)

where the error order decreases by unity since (S,‘F>° appears in Q in a
linear combination weighted by a multiplier which is O(Ax) .

Thus the numerical boundary condition (9) is accurate to an order one



less than the accuracy of the quadrature (5)’ ';'a'nd the interior differencing

(3). Since it is possible to choose Q of arbitrary order accuracy the
method will specify boundary conditions of sufficient accuracy for any
oraer of differencing in principle. Clearly as g,‘F must be known at
all but one of the grid points, ng must be calculated by one-sided
differences at any other point that liestoo close to the boundaries to use
the interior (centred) form. This restriction appears to limit the utility
of the method to deducing only one of the boundary conditions at X = 0 and
X = 1 but not both. However this is not the case as will be demonstrated

in the example described in the next section.




3. AN EXAMPLE

Consider an equation of the form (1) given by

£ o¢ + & o<x < | (10)
okt ox

where '3¢/3>r. is differenced in the interior by the fourth-order accurate

expression
-_— —2x
S.F = 3 -L8,.7 (1)
where ¢ (¢‘+P -+ ¢ P) The operator (11) is a function of

five points and so is def‘med for Xi, i = 25 Joiveey N= e 95‘.. is known

on the entire grid at a given timestep. Assume two computational points at

X-1 and XN + 1 with CP values given by O(Ax“) extrapolation, (Nash 1983),
€g

¢"‘I= l‘(‘¢°— b¢|+‘+¢z—- ¢3 (12)

Then equation (11) can be calculateq at Xy and Xy - 1 and is an o Ax3
1 N 1

approximation to 8¢ /33 there. The method of section 2 will now be used

to deduce a finite difference approximation for 3¢/3>c at Xo and XN that



1 .
is conservative and Q(Lx)accur'ate.

The integration formula given by
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has an error of O(Ax“‘) and is therefore of sufficient accuracy to derive
an O(bxg) boundary condition. (The quadrature was designed to be symmetric
in the interior so that substantial cancellation should occur for the

summation of flux-like terms and thus results in a strictly local boundary

condition : Simpson's rule, for example, would not have this property).

Substituting ng for % in equation (13) gives

RUEY = I‘:{QAx (SR v arFoys s o F
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Then putting Q(‘c‘) into the conservation constraint (6), gives one
equation but two unknowns. Equation (14) is clearly satisfied if (SKF)O

and (S;_F>~ are given by the pair of equations
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which can be considered to be the applicable forms of equation (6) for ’
solving two related half-infinite problems: that is, 0 < x < e® such that
F>0 as x»00 ang ~00< x < 1 with F=»0 a5 X-»T02 . The splitting of
equation (7) into two equalities is also physically reasonable since the
nature of the flux term suggests that (S,LF> should always be a function
of 95 values local to itself.
Without loss of generality only the lower boundary condition will be

evaluated. Substituting for Fin the first of ‘equations (15) and using the

extrapolation (12) )

o Nl MG, ~ Py + HO @, — L]
(gx >° lo%b%{ g %3 2

+ 328 ¢, + %9 qso} (16)
- 2% B (o)
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Defining ¢(9) equal to #. . it may be confirmed that this
expression has an error o(bx:") as intended. The final form of the lower :

boundary condition is

"}

Lo ool
(g&F>° = el {-954_4-4-0:}3_ 16% ¢, (17)

+32% ¢, — 199 95,}
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4, EXTENSIONS AND STABILITY

The method presented in section 2 can be used to construct
conservative boundary conditions of arbitrary order. Whilst the accuracy
is a§sured the method does not guarantee stability of the resulting scheme.

. For an inflow or rigid boundary stability is probably less sensitive to
the boundary formulation (Oliger (1972)) but on outflow more care is
required in designing a stable Scheme. 1In practice the method described is
unlikely to be used at other than rigid boundaries, for which a definite
zero—-flux constraint exists.

However in principle the method could be used to ensure quadratic
conservation and stability would then necessarily follow. For example,
consider the advection of a passive quantity Qﬁ in a two-dimensional
incompressible fluid with velocity components u and w. Theq equation (1)

is generalised to

2% + 2 («#> + 2 (wed . O 1)
3 D 22

and the velocity components satisfy a continuity equation

RO e TR S (19)
D o=
i B
Then the quadratic ¢5 is conserved by the advection since from

equation (18)

"
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and the last term is zero due to equation (19). Equation (20) shows that

=
the total ib integrated over a closed domain can only be changed by

boundary fluxes.

A finite difference scheme for equations (18) and (19) can often be

similarly manipulated. Consider the second order semi-discrete system

;’;E = =S (@ P — (T FY) | n

It may be shown that

) = - S5 88 - g 7%

where g;x - ¢ (’C"’ Ax/?_).¢ (x"A"‘/?-) .

If the continuity equation is approximated as

12



then the advection of 95 is described by a flux process in the numerical

system. Then the method of section 2 may be applied to the flux terms
alone in equation (22) to deduce quadratically conserving boundary
conditions for the finite difference scheme (21). In general only one
constraint per boundary can be applied by these methods and linear
conservation may then be sacrificed. However quadratic conservation is an

attractive property due to its guarantee of stability.

13



5.  SUMMARY e
A method has been presented that ailows boundary conditions for a
numerical model to be constructed safisfying certain spacial conservation

constraints.

In some cases either linear or quadratic conservation may be
incorporated but not both. The method has its main application in
designing conditions for higher order finite difference schemes when a
heuristic approach becoﬁes very difficult.

Boundary conditions were designed for a fourth-order centred
difference scheme as an illustration of the approach. This example is

directly relevant for the proposed Met 0 15 mesoscale Model.
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