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1«  INTRODUCTION

Most mid latitude rainfall is associated with depressions. Understanding
the structure of the associated frontal regions has produced great improvements
in forecasting, from the early work of Bjerknes (1919) to the more recent
studies of Browning (e.g. Browning (1974)) and Hobbs. A particularly clear

review of the latter's group's work is given in Matejka et al (1980).

Precipitation is typically organised into several bands orientated
parallel to the front. Many suggestions have been made to explain this
phenomenon, and are discussed in Nash (1982a), but no one theory is

generally accepted.

Bennetts and Hoskins (1979) proposed Conditional Symmetric Instability
(CSI) as the explanation of the orgénisation. This is an attractive theory
as the atmosphere in a frontal region is often preferentially unstable to
such a motion. The instability prodﬁces a'meéoscale roll parallel to the
front, which moves with the local fluid velocity and which evolves slowly
over many hours. The motion modifies the environment to produce convective

activity in certain regions.

The theory of baroclinic symmetric instability in a dry atmosphere is
discussed in Section II., Particular attention is drawn to both the nature
of the motion in a bounded region and to the energy exchange with the
environment.. The conclusions of the dry analysis are used to motivate the

description of CSI although no analytic solutions exist, for a wet atmosphere.
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The numerical model, originally developed by Bennetts and Hoskins (1979),

.

has been extended to study CSI and the results are described in Nash (1982a)
and Nash (1982b). The formulation of the model is presented in Section III,
together with a discussion of its characteristics, Appro;imate radiation
boundary conditions are described in the form of damping layers that allow the
modelling of CSI in an atmosphere with infinite horizontal extent. The finite

difference energy equations are given in an Appendix.
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II. Analytic Theory (i) Basic equations.

Consider a fluid rotating with angular velocity 2f in sheared motion
parallel to the y axis of the Cartesian reference frame Oxyz such that the

velocity is given by

V" \/(X, (2.1)

and B\(/'éx 3\!/3-;. are constant.

The fluid is stablly stratified with a temperature distribution

(9 = 3 (x,%} | (2.2)

in thermal wind balance with the velocity V, and 38/3% i8 also constant.

The flow is governed by the primitive equations

P
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where (u, v, w) are the Cartesian veloclty components, & < 9 ( !9

is potential temperature and 8 o & consta.nt reference value), ]-Lis the
diabatic heating and the dynamic pressure = ' /é'. (@ is the mechanical
pressure and e° a constant reference value of density). The Boussinesq

approximation has been applied to the momentum equations in that variations

of density are ignored (and (o used) everywhere except where it leads to a

buoyancy force (i.e. b 2__ Q = 'SQ/éo ). The motion is assumed two-

8 .
dimensional so that all : 3/3 terms are zero. In the initial state u =
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and the statement of thermal wind balance isk
(aVa el
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“é‘o BX. . (2.8)

The equations will now be scaled to reveal the dimensional dependence of

the flow.

Define the parameters

o OX Q¢ (2.9)

e (2.10)

F = 'P (-p * ;V/Sx) | (2.11)

Let L, H be length scales in the horizontal and vertical respectively and
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uo be a scaling velocity in the x direction. ‘Then linearising the equations

(2.3 - (2.7) .about the basic state (V,z ) gives

Dw ‘—s:‘("')—f—

.3-: ax - (2.12)
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where u, v, w, p and 6 are all peturbations about the basic state variables.

The non dimensional'(primed) variables are defined by 3C = Lx"i - H%’ ;

' ! '
Uus uou-.) vV = E."-AO.V > w= -'.i UQ W,'P: LF“Q P‘)é:’_L:_Fug“
and substituting in (2?%2) - (2.16) gives H
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where N\ =_F__fg; . k& is now chosen Fequal to S"‘;/N’Lto give a balance of the

N .

advective terms in (2.20). If the hydrostatic approximation is made the term

W ] '

( !E ) au/ak' disappears in (2.19), and the equations are the same as used
by Stone (1966) to describe symmetric instability in the case ]-c_ = 0.

In the following analysis, K will be given by

M = Aw

(2.22)
where A =§\zx€ ,*). H (w), H is the Heaviside step function and so }{. is
a nonlinear term in general.
Then (2.20) can be rewritten
. l ! A !
G 3 Greye (-m_ W
k! '

Thus in an unbounded atmosphere or an unbounded channel with lids at ¥ = (@)

(2.23)

: ! W" N >
hydrostatic limit only & determines the motion.

Tt
and 2= H the flow can only depend on 2:., S . and * + In the adiabatic,

(ii) Infinite atmosphere solutions.

It is simple to derive normal mode solutions Iin an infinite atmosphere,
following Hoskins (1974), Elliasen (1962), Ooyama (1966). The adiabatic
equations<(2.17) - (2.21) with ]{: 0},are combined into a single equation
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for w where w = is assumed.

8 (o] oK e n li

AR




Then
2\t ' 2.
(\=w™)RE e:_s;'_ 2ck'dy' — (u-(g, ) o RC) k!
dt d!' N* (2.24)
o — . on
If W = W, @i%'2' then
| —(& h
2 ' +{ ) (2 25)
The hydrostatic approximation w111 now be' made, i.e. s* k! , and
Gv "L
then the denominator becomes unity. oa' varies as a quadratic function
' .
of the aspect ratio ('l ' which is order one from the scaling. The minimum
~ b !
value of O‘ , which corresponds to the most unstable mode, is at .’.l_ = g
-

motion parallel to the isentropic surfaces. This mode has growth rate

given by

. i L d
% ; -)
atn , 2 (2.26)
(4 WV

W'<€O corresponds to instability and w' » © to neutral propagation with

horizontal velocity b'/k' . For unstable modes to exist

R SO

and these correspond to aspect ratios such that

b e R A el gl

(2.27)

(2.28)

yhere | — Xv - R—C

The most unstable mode was descril;ed by Bennetts and Hoskins (1979). In a non-
hydrostatic atmosphere the most unstable mode has particle displacements
at a small angle above the & surfaces, (Hosicins 1978). It is important to
notice that (2.25) has no explicit wavenumber dependence, only the aspect ratio
appears. Thus there is no preferred length scale. McIntyre (1970) showed that the
add:ltion of laminar incosity favoured the longest scales and the most unstable mode

: has infinite horizontal scale in an unbounded atmosphere.
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(iii) Pseudo-energetics.
It is informative to consider the energetics of the instability. The
equations (2.17) - (2.21) lead to the equation
*> o »* :
D (e v (Sva( L 2 fwe) & 2 (W)
T PY It

e 08 gl e gl gl 50 1229)

This equation is not equivalent to the energy equation which will be
revealed below. A growing disturbance must have

~ v S" \\
é%' g W 4V *(;3»)"" de d= > O
p =

and so
(Q_:‘V'w‘ — 6'N‘7 de d= < O

since the other terms reduce to surface integrals which can be assumed zero in
most cases.
RJ:- V‘W' represénts a local exchange between the zonal shear and the peturbation.
It is analogous to the mechanic;ﬂ work term of the kinetic energy equation.
It is the dominant term for the most rapidly growing modes of symmetric instability.

| .
é‘w represents the interaction of the disturbance with the thermodynamic state of the

. L e
environment. It is analogous to a potential energy conversion. Let denote an
average taken over a horizontal wavelength, _ 2w

¢ Nk Germes 9‘(1) d~
2T Xe
for any % ) : independent of X,
: (2.29) integrated over a representative wavelength gives
. ' :
P {
R . SRS vl ok gt
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is a measure of the amplitude of the disturbance.
~

r ¢,= Re & €7, o =Re ?e, then

AP = "5'_ Re (9‘\452,*)

and the correlations in (2.30) can be simply written down in terms of the

normal mode solutions.
The full field solutions to (2.17) - (2,21) forJ_= ©  are
' -wmed'es d
CRTTR=W)
w2 Ra'&’
e' . RO CRe) g
1 (w—l)“] ﬁ/k’

where real parts are understood, f ¢° exp § (Rx'+wad +Q't ) and

£
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(2.31)

@ is given by the dispersion relation {2.25).,

Then

- T B [ (R ks ]
= R (k &) 9‘! k\M Iu(w)(Z 32)
W' = %\ .c(h—m)gxhw 9{]

e (.._ 1) [ han T .55)
or writingA: Rwa T (N'? ,¢| /?. e
gV (B -@QRCA TR R

Writing —. h ')\ (= -% ),the phase line slope ofr aspect ratio of the

and

particle displacements,(2.32), (2.33) become

T

(’u (!_-___> A

s Mk (2.34)

P (2.35)
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where MK and PK represent net contributionﬁ to the scale of the disturbance
from the dynamical correlations and the transport of heat_.
Fig (2.1) shows the signs of these quantities in relation to the phase
slope relative to the absolute vorticity vectorz‘which has dimensionless
slope Q,L. , and the isotherms which have unit s-;ope. Also marked are the phase
lines corresponding to neutral étabili;ty. All the unstable modes lie in between.
The diagram shows clearly that MK 0 if the particle motion is steeper than
the absolute vorticity and negative if less. PK»O0 if the phase slope lies

below the isothemal surfaces and PKL O if above. Both quantities tend to zero

as the(® = 0 lines are approached.

®
F'.5°(2‘0 |




> A D

IRRGR 4 d ok dadds

T b—

i saa

—
< = 32 3 Y s aRE EguR Ness
- - + 34 b B i T 3 e T2 —
i T
- - :na Y ht
- = T t -~
- -2 - B ke RERN Tt L 2 -
: pRES : *
T t 13T T {
o 2 T ¥
T $ o + o e sy T _ a: s a3
Teotr - e ane b baane b b it el e e o) AR Sy, ) P Viossd i o
: =t Poeas T + ) s W s iar s b
an ot + T Lot Ty 1 - Jocd R
Z e : 1B Rl T % ) &
- e S e T * + ¥ 1 o y ool T A ¥ L2 BN SRR Y L
* + T ™ 3 v T T > A Vs > 3 1 170 14 By ¢ -
i = 2 s o b 19 I ' 83 ot HEE + o 2 o s
v et
TIT = ; T o $ -
T T T 1 e s iba o s
feis
= Loaael - T 1 1 -
7 & was T H L 3350 R ¥ a2l s v s 1024
* * ‘' e e - - o et -
3 ' o s 3 T 1 T e T . 3 0y e ? T
3 < b ol r o > : - we i ' 1 3ma ae z > 3 - '
1 e : t T ;9 Lasy s war iy
T T : T T ~ v
e -
~ = : riets
T xa T e e T T
x Iyt b b : + : e T §
s T Frtrer w685 s 83 v T
+ .
15 ;3 J
T 1
T o ua i
L - § > 2
T
8
R b - - 9
2 i i : |
pasex awana s pang Loy LAY,
4
R § {ade
ERORC SRR PRTSU R SRy .

e S NS LS
- -




The relative importance of the terms for‘>\ lying between these lines is

PR o =R | ;
R A=R¢ : (2.36)

. Vo
The (0 = O points are given by >\ =\ (\— Ri) . (R.,\. <\>.
It is apparent that the PK

given by

contribution is dominant nearA.=£q: . The PK contribution is a minimum when
)\ = 1, motion on isentropic surfaces. Thus the most' unstable mode of symmetric
instability grows almost exclusively from the mechanical term.

In general the efficiency of this converéion depends on the shear in the
zonal wind v . For a given aspect ratio )\ lying in the unstable region,

(2.34) shows that the rate of growth due to MK is given by

M o 2 (h- )\ ) = 2(0-8) § &'AGR-) -l‘i
1 K' . )\(\-‘2.;) A(1- ﬁg) | l+-;i;:)\" - 9(2.37)

The value of this quantity gives a measure of the efficiency with which

energy is fed into the peturbation from the zonal wind. Fig (2.3) shows the

|

i

form of (2.37) for the case R: - 0.2 and the hydrostatic limit. The most unstable
mode has za,'/'z 2 a.tX: 1. The efficiency of energy transfer increases rapidly

with )\ to a maximum near the most unstable mode. For>\ 2 1 the modes are
attéenuated by working against the stable stratification and this produces a

weaker correlation between v' and w', reducing the efficiency of the mechanical

conversion as well.

Further since
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and

P
K . (2.39)
where%& and ?‘J are the slope angles of the absolute vorticity vector and

isentropes respectively, growth is large if ¢0‘ >> ¢Z . d‘is small in baro-
clinic zones, i.e. large '&3[‘3)( , or on the warm side of a jet, i.e. b‘xx < O.

- 2 2
%d is large near enhanced baroclinicity or lower stability, i.e. reduced N,
Ih\a fronfal situation where there is often a jet parallel to the front, instability

will be encouraged. Also the release of latent heat in a moist atmosphere will

reduce the effective stability and this leads naturally to the concept of
Conditional Symmetric Instability. -

However before considering this, the nature of symmetric instability in an
infinitely long channel bounded by horizontal 1ids will be explored. This reveals
- roll peturbations and justifies the use of a rigid upper boundary as an approximation
to an upper level inversion.
(iv) Channel solutions.

Consider a fluid confined between rigid lids at § = -Hand £=H _, on

c2
which w = 0, and unbounded in X . The fluid is composed of two layers separated
by 2 = 0 (an approximation to a material surface) each of which is governed by

(2.17) - (2.21). The upper layer has Brunt-Vaisala frequency Ng and the lower

2
symmetrically unstable layer, N2 Both layers have the same C and 82.

7 \
-
" The length scale L is chosen for both layers such that i = §_ and the
- L N ‘
height scale in the lower layer is chosen as H. The height scale of ‘the upper
H k™
layer H2 is chosen as :‘ = ;S,—;_ « Then this scaling ensures that the
g

dispersion relation (2.25) holds in ear’: layer, given the local scaling.
The interface matching conditions, with subscript to denote the solution

region, are

WI(O) = '.\'J,_' (°>

W, (o) = {!"_3—(03 (2.39)
dz d=z .
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in dimensional form, where the second condition follows from continuity of

|
pressure and temperature at & =0. PO I T |
: t (h;x *Gd¢ (:)
e )

!
If the dimensionless vertical velocities are written as u\- (2)

L =1, 2, then (2.3%9) becomes in dimensionless form,

(o) (2.40)

¢
dz, 2
(2.40) shows immediately that
/ ’ ! Y, /

The general solution to (2.24) in each layer is

. ' , \ '
/ VWAL R twa, %
W'z Ale " L8 e

-
. ] /

' \'M' t' VWA, B
.N;'-'-‘- Aze 1**‘8 R

’

- (2.42)

M‘-' ':— b“' . | & \/ b o s i) '
2 Re, (‘-—u"){ ( . i€ 22}.’43)

(the hydrostatic approximation has been made).

_ : 7 '
Now let ”00 = 0 so that there is only one layer. Then VJ‘ =W in (2.4'2.)

and the boundary conditions

- (\M":M,;)

wW(-N=z = A« g\ e = O (2.44)

That is
g‘ - A'
’

4
-— = T :
M\-\- Mu - 2w : (2.45)

‘where n is an integer other than zero. (If n = O no non-trivial solution exists).



Then Appendix 1 shows that () is real and such that

-)
' -~
58 i (2.46)
\»I‘I can now be written as
. ¢ ™ [
A e,\ (M‘** ARTPREE " ¢ ’ Y
| . SM(M,_',—M'_ 'E (2.47)

*
where A1 - 2iA1. i

Then writing M,: -+ M :__ = 2a' and using (2.45), the full solution is
| (k'}t'+¢'%'+ w'{-')
w A Sun o e_ (2.48)
These solutions first found by Elliasen (I‘M-Q ) are a series of closed

cells contained within regular parallelograms with edges parallel to & ’=
constant and k'x'«# o(,’t ,= constant lines. The characteristic slope of the
cells is given by |

Bl -w)

A

’ (2.49)

Since (.;“') (1 - &, ), k ¢ ': the cell boundaries slope at an angle
less than the J.sentroplc surfaces. (The mode with W= - &-'corresponds
to ‘n = 0 for which no solution exists).

The neutral mode has slope tlc and the growth increases with the slope,
tending towards but never attaining the limit at k’/ a} =1,

¢ is related to the vertical wavenumber n from (2.43) and (2.45) by
W = k'\/('- 2 (1-a™))
E ) 2
As the cell slope.increases and co"'.—a;' [ - Qd-’ s then,
AT
b |

Thus the most unstable mode for fixed ¥l. occurs in the limit 'Q'-§O .

_ e (2.51)

and so in the atmosphere there would be a large number of very small cells, not of

mesoscale proportions.
- 13 <
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This unfortunate result was approached by Emanuel (1979) who showed that
in a viscous fluid, over a range of viscosities, that the most unstable mode

nTe
hag === oy and has the structure of the inviscid modes outside the 1lid

b\
boundary layers. This is the justification for considering inviscid
solutions in interpreting symmetric instability in the atmosphere.

These modes can be understood in terms of a superposition of the infinite
atmosphere solutions. The energy transfers are analogous and the importance
of a high aspect ratio for the cell growth is clearly evident from (2.49).

‘N _ R .
If a cell has slope c = 4., then the mode is a superposition of two

infinite atmosphere modes with aspect ratios

S - ‘/(,;?"c).

: T : :
Now consider the two layer problem with 8 00 and &I—>, > R"

(2.52)

. 80 that the upper layer solution 'is

v )
' \m, &
W, = R e'™:

(2.53)
where M;’ is the appropriate value from (2.43) which gives evanescence as
-Z'-; OO . Appendix I shows that for general ¢ there is one and only
one-such oot of (2.43).

. Then substituting into the boundary conditions gives

1= gt ](_g%:) ; <£L:-> (250

P 2 C(M'_-M’
Mp—m,_ e 'A '+ =m_[AL
T (2.55)
i

wma B = =A et Memi

From (2.43) it-follows that
\ S . S S
M= ﬁ"‘\- = 2R JQ—&,(\-;&“}) |
R‘.'o C""‘w"') (2.56)

ahAlS



S S o A e

\ Y

L




and

A w™) . (2.57)
' \
Thus E___")M“, s M|_ and (.Q\“‘ are determined by (2.54) - (2.51).
‘ . . b
The solution is difficult to express in closed form. Assume R"‘Zl | =t ))) ' ,
i.e. the lower layer is symmetrically unstable lying underneath a very stable
: N
upper inversion and CO"is not close to 1. 1/
“ %
The leading order solution in an expansion in ﬁacl_is given in Appendix II
and shows that the single layer solution is a first approximation to the
' !

inversion capped problem and has an error as small as o( &;‘ )s

Appeal to this result justifies the upper boundary condition used in a sub-

stantial portion of the numerical work on the development of Conditional Symmetric .
Instability. This modified form of symmetric instability will now be described.

- (v) Conditional Symmetric Instability.

The éonclusion of the energy discussion above was that the dominant energy
conversion is from the zonal kinetic energy into the perturbation. This is
maximised by particle motions as steep as possible but not so steep as to induce
retarding buoyancy forces. In a dry 'atmosphere this means motions shallower
than the isentropic, 8 , surfaces. However 9 surfaces, even in frontal regions,
are. often shallower than the absolute vorticity vector and then no growth can
result (except possibly baroclinic travelling disturbances along the front). In
intense fronts or near strong jets instability can be realised,ki( I s provided
there is a horizontal temperature gradient of 4-5 K (100 Km)—1 or a zonal

velocity shear )Véx A2 10 ms" (100 Km)-1. '

Bennetts and Hoskins (1979) suggested that in a saturated atmosphere,

these requirements might be relaxed. The release of latent heat on ascent allows

a neutrally buoyant motion with a steeper angle of ascent than would be possible in -

a dry atmosphere, makimg it more likely that a peturbation cam extract energy from

the zonal wind on ascent. On descent the atmosphere is assumed dry and so

a8



the downdraought branch of the roll will be unsaturated on the mesoszcale.

Then the particle motions on descent lie close to EB surfaces.

This return branch might be a sink of energy due to its shallow slope. For a
viable instability the extraction of energy from the environment on the
updraught must be sufficient to dominate this sink.

Fig (2.4 ) indicates the civenlation envisaged. The updraught,
parallel to the surface, €%0= constant, Qhere wy 18 the wet bulb
potential temperature, is an intense flow while the return branches are
broader and slower.

The updraught AB is a strong source of eddy kinetic energy
which is maximised by the aﬁéle of slope and the intensity of the flow, BC
is an energy sink as warm air is forced down against the atmospheric stability.
This loss is minimised by the flow being very slow, and correspondingly broad.
The downdraught, CA, is close to thermodynamicaily neutral but loses energy
to the zonal wind since the motion is below the vorticity vector. This sink
is also minimised by a broadening of the flow.

The numerical results of the work performed in Met O 15 and those of
Bennetts and Hosking (1979) show that the instability is as described. On
the memsoscale the particle velocities are small, and the time
for a particle to traverse the whole circulation is much longer than
characteristic growth times. In particular moisture advection is not important
and the flow is equivalent to one in which only the updraught region is.

saturated.

Bennetts and Hoskins (1979) offered an heuristic argument to predict the

dimensional growth rate 8 of a Conditional Symmetric Instability roll.

y = ! L T
: N> N¥

| 4= o (2.58)
whereg{ is an empirical constant relating to the geometry of the flow and is

usually about 2,

Ra oy



(2.59)

YAz, s F=SYNY
VN = FZ"‘S*//\I"

>
where NVJ is the moist static stability, ( % aQw

%//N'i' and %N/NE; can be regarded as the components of absolute

(2.60)

vorticity perpendicular to the 9 and &wsu:faces respectively, multiplied
by a buoyancy parameter.
That is
w f
e = (%
9

ﬂ//m = (P%-

>6 . Vg
(2.61)
>§' Vg ' (2.62)

' wherez is the absolute vorticity.

Emanuel (to appear) has proved a more rigorous result relating the

geometry of a roll to the growth rate, which agrees very closely with the result

above. Analytic solutions in.the saturated atmosphere cannot be found and
recourse to numerical results must be made,
The model that has been developed for this is now described in the next

section.

R
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3. Numerical model (i) Formulation.

A much more flexible tool is a finite differente model of the fluid equations.
The Bennetts and Hoskins (1979) model was adopted and further developed.
The model equations are those for a compressible atmos;)here with diffusion

and diabatic heating Q, written with respect to coordinates (x, z) where

[ (-E‘ y_] (” Reo;’*v g’ p is the pressure, and zero suffices refer

to representatlve surface ‘K?alues. Z 15 almost 1dent1cal to physical height h in

the troposphere, e.g. at p = 300 mb, z = 8000 m and h = 9200 m.

Defining ¥ as the pseudo-density

v DAz = ebx A (3.1)

and making the hydrostatic approximation leads to

ou _ _Q P! A
ok ¢ G‘“}f a':z(rm) fv-— 5 +U"3“ m“'%"‘-“ 7
oV

o T (D ER e dens e

IxY -

%_;E Q'Q-) g | (3.4)
'ae a(‘*8>' (m)5> + O Atk 8+u,‘3 3

W

=™ (3.5)

du
—— _. LT\
Ox '3% 5

The flow is assumed two-dimensional so that all a/'\d terms have disappeared. ¢

(3.6)

is the geopotential,

) .
.2 Lo G’/Q)A » M B “"'é— 3_‘& (3.7)

defines the '"vertical velocity" O
I8 r = ' the equations describe a Boussinesq fluid
with pressure ¢ and this corresponds to the limit &4 —_—> (o) where

H is the height scale of the motion. He

S b



The domain of the model is a rectangle bounded by horizontal w:o boundaries

~

at = Q and Fz ‘.' and lateral boundaries at wg (Q and y = L_ The
peturbation of potential temperature, 8 (8 (9 8 where 8 is the initial
temperature) and all other variables are assumed periodic at X= O L. .

The grid arrangement is shown in Fig (3.1). The grid is staggered with u,v, 8
and é held at the main points andV")held at intermediate points.

The finite difference equations follow Williams (1967), are written in flux
form, centred in space and time. Using the notation of Shuman (1962) 5 for

example

CSp = Dls o olfeqibs
\‘/ )(xo, o) — '\‘U( o é{ )%o)"' \{’(XO'%)%cb

2.

S,("I’) (xb,zo) = "P&wb.;.f\%o)-’{- (x,-b_%’;‘.) (3.9)

(3.8)

the finite difference equations can be written

-t et
g’ku - -ADVU «+ -FV - ‘_¢ +‘\)’LS u +‘u;g t-| (3.10)

x4
-k %-!
~ADVV — =,
gkv . ¥ . §\A *\J&g‘u».v ‘U%S;\ . (3.11)
-
8.4 =(2N9
%¢ (GD (3.12)
-k
g e 5 '\*"
wxd +1)¥§ (3.13)
x_—n g (YM)) w
(3.14)

where all variables on the right hand side are taken at the central time level
except for lt\he dlffus:.on terms which are taken at the prev:Lous step to ensure
'atability. 3 is the perturbation of 9 from the initial temperature e .

An occasional first order step is made to suppress the compwtational mode

associated with the leapfrog time integration.
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The advective terms are written as

WOVE < B (@l )L S, (. B

where g can be W,V or (9 :

™
In this form g is conserved exactly by this term and g is conserved

with an error of the order of ) - gx’;’!‘. -';.g‘t.("‘)) which is always very

small.
I %
Fig 3.1 : ;
N ¢
: :
t 5
rw, re W rwl
(P\ o‘_;\ :'}\\ j\.
: ] §
{ a
u v
&) wossnsonne » ®.
: ge
A% i b
eI \ 5
OB N o R WG ': @mm-r;w rw K w
& ~\ A ¥ ‘Y; = gt ~ T
) :
E
, 8
! g
! A o
~ _—

i
AX !
The upper and lower boundaries run through V"@) points.

The lateral boundaries lie between (L points.

The boundary conditions are

Vv

(3.15)

A3

(3.16)



at Z - O,H. The second derivative conditions were chosen in order to close

the system without inducing an Ekman boundary layer.

The periodic lateral boundary conditions are formulated as follows. The flow

i8 regarded as a perturbation about a simple baroclinic.state, given by

> x + O (% x) u°._,(rm>° = iy

0 28
R

“(56) (2)

P

T

(3.17)

,<’&(9 i x &

ox

where 8’ is any function such that 9 ()(__.,O %) 8 ( L, %) Then

the perturbation fields u/_'u_ao’v = e Vi etc are assumed to have period L.

For example, in order to calculate 8 at Xs ‘.é_)s_ the first point

outside the domain,

ST ) @) - o

o

e ‘ 0

V is calculated explicitly from ¢ in turn calculated from 9 using the

same finite differencing as the model in order thattruncation errors do not lead

to spurious forcing on the boundaries.

H-da/2

2J b/

H .
The final boundary condition is f raudz = 0 y (.,
°

r.(lj) u(Zj) A3 = O

for 2ll (x, t) (3.19)

This constraint implies there is no inertial oscillation of the geostrophxc

wind, and can be deduced from the equations gnq the choice of a balanced

initial state.

The heating function Q is defined as

Q > %V‘COA

e
w——

where @ = —3G \8
W >

o

cons bt

if O>»0 el 3 o0
otherwise

is the rate of increase of potential
ST



.

temperature as a saturated parcel ascends in the atmosphere from absolute

pressure ¢ .

From the equation
49 = grw A. T (m)

where I(u)) -..,' 3f w)-o)zero otherwise it follows immediately that

[
9*2 9 — ‘}oﬂaf’A O‘% ' (3.22)

is conserved on ascent .nd is equivalent to the wet bulb potential temperature

(3.21)

gw)provided the parcel remazins saturated. On descent parcels are assumed

unsaturated but sufficiently moist that any subsequent upward motion results
3 9

in immediate saturation. 8 will now be written as w

The model definition of 9,“ is

S"" = 8 & (3.23)
where S A STA def:.ned at Ye) points and A(%; A%‘) (SrA b?’ .

= o .
Then requiring the finite difference analogue of d@u/&{ =Q on

ascent leads to the heating function

(3.24)

* '/r S‘% (fb)).

where O(D) means a term of the order of D = 8 =

Hence the heating function is chosen as

-——-% 3
QXe= ! rw.srﬂ 'fC«d)'O

s
a0 ' c'f w< O

(3.25)
in the model.

The calculation of ¢ is made at every time step in two stages, prior to

incrementing the \A field, The first step is to integrate the hydro-
static equation (3.12) assuming f-,- (o) at = O to give g*’
S



N -
?5* i Z 0(9 ‘; A% 4 MG( 4 é_%_ (3.26)
2 ' e ] | A 2
N+§ ! B J E/Z—
where EJ'_-_ \) Az the ™) grid points of the model.
Then the final pressure is calculated as .
+ /
525 = + (,>(:>
¢ ¢ (3.27)
where ;K, is calculated from a balance equation, derived as follows.
If the (& momentum equation (3.10) is written as
Sl: . = Sia o é%c @ (3.28)

where .9“ represents all the terms on the right hand side that do not involve

the pressure, then on using (3.27) and integrating over 't from O to H gives

the balance equation

B-dl,

Z; r(z;). S,(JC&, bz - 'Zr(su—s;,_?x)m ;-(Zrﬁ Q

s x
The left hand side is the discrete analogue of (3.19) and thus SX ¢' is

"3
determined. Only ﬁ* and O, @  are held in the model as ﬁ itself is

never needed.

A stream function '\f is also calculated diagnostically such that

s S
‘VV‘Q.: %'\') r-oo:"‘,,_‘f.
by using a direct method (*) to solve the Poisson equation
(Soce 8D+ 567 = 8,

with boundary conditions ’*50 at ¥ e O,H and

N‘($=O>'& “PCX:L—) :

(3.30)

(3.31)

" (*) Ref; Met O 2b Technical Note 33 C Temperton (PSOLV1)

P S
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The model is initialised in two steps. First a background state is

assumed of the form
(o)
é) = (Dx-\qk:>

A zonal velocity field V is calculated in thermal wind balance assuming v=0

(3.32)

at 2 = O The discretc equationsare used to ensure no spurious forcing in
the (4 momentum equatign (3.10) due to round off error.

Then Q@/gﬂ) is identified with C8°< L,z:)-ao(CJ,'t)] /l_
a.nd'must be constant with height. This parameter is used in the boundary
formulationy e.g. equation (3.18(.

The distribution of moisture is spec¢ified by defining Y‘AS as a function
of height.

The second step is to add a dynamical perturbation inside the domain whose

- evolution is then studied. The circulation chosen is spécified by

(=]
. = W (:)( 1%;)
Heh/y, - / (3.33)
where Z rU'AZ-; O i ;
rw is calculated from the continuity equation (3.14) to ensure mass

conservation in the disturbance.

- A single first order step then initiates the integration.

(ii) Rayleigh damping.

A mixture of propagating and stationary components are excited by the

pertﬁrba.tion. The travelling disturbances have gravity wave phase speeds

_and amplitude comparable to the velocities of the initial circulation. Although

damped by the diffusion they can survive for a significant time. Due to the

periodicity the waves will then travel around the domain and will interact

with the stationary components. If strong growth has not occurred before

this happens then the interaction distorts the development of thes_e components.
In order to model the flow in a rather longer or infinite box simple

damping boundary conditions can be used which effectively absoro the propagating

PRl T
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waves when they réach the computational boundaries. Rayleigh damping layers
for L...d< x ¢ L and O% % £ d were used tc damp the perturba~
tion fields of w,\¢ and 9 e The treatment of each is the same so that des-
cribing the implementation in the V momentum equation (3.1-1) is sufficient.

Writing (3.11) as
St\l i S\/
where g\l is the entire right hand side, then the equation is modified to

- I °
Si'cV = S, — ~ (V"_V 7 - (3.35)

(o)
where V  is the V field at the initialisation time e-;Oa.nd 'C is a relaxa~-

(3.34)

tion time given by
'\C - o outside the é.amping layers
= © (x) -inside the damping layers
T(’_) increases slowly to a constant yaﬂ.ue in order to minimise reflection of
waves back into the interior of the domain.
No evidence of reflections has been seen with the model. The calculated
reflection coefficient shows that sigxfiificaht 'reflection will occur if A”C
is comparable with the angular frequency of the incident wave, where b“c is
the change in U from one grid point to the next.
" Care was taken to ensure the layers were not too near the motion of interest.
Comparison with very long domain integra.ti:ons showed that even for an unstable cell
reaching the Rayleigh regions the growth was little affected, but was inhibited

if the regions were much larger, as the slowly growing circulation cannot penetrate
the layers.

(iii) Dissipation.
It is important to consider the dissipative characteristics of the model.

Diffusion is represented explicitly by the laminar terms in ’\Ju and W/ t
(eqns (3.10) = (3.13)). These terms model anisotrophic diffusion in a Boussinesq
fluid. In the compressible equations they are only an approximation to the

equivalent. property. This can lead to spurious sources and sinks in the flow

- 28y
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but these are always small when the model 1s ﬁsed close to the Boussinesq limit.
The advective differencing and leapfrog time integration is formally non-

dissipative but a full analysis of the numerical scheme is very complex. The

model was used with no explicit diffusion and the model proved stable. The

fields developed some roughness only when the nonlinear terms became significant.

Then the Richardson number was varied in a dry ihtegration to find the neutral
point of symmetric instability. Analytic theory shows Q:':, ' is the
inviscid value. Fig (3.2) shows the variation of symmetric growth rate from
the same arbitrary initial disturbance for various Qd .
The growth rate is scaled with the parameter F (defined in II),
The analytic curve is based on the most unstable inviscid mode which has

vam.sh:.ng horizontal length scale, The model results suggest a neutral point

s Rim bl rhe model growth rates are significantly differeat from the

analytic prediction away from this point. At ¢ —2 the growth rate is

different by a factor of 2.

The most unstable mode in the model will not be the analytic one due to the
finite resolution. Reducing the grid spacing by a factor of 2 smaller wavelength
modes were resolved, the growth rate increased by 30% and the cell slope doubled.
Further improvements in resolution would be expected to bring the growth rate
nearer the analytic value.

Usually the model is used to study the viscous problem with typical d:l.ffusn.on
coefficients‘\) - Q.GQM S ) \)*_.. \ wa o -‘ . Then for DX 3> 1000w ang
A'%‘}lOOM the flow is generally well resolved as the results are noﬁ -sensitive

to further reductions in grid g;é,gcing.
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The stabilit& criteria that must be satisfied are the following conven-

tional ones

‘..A.._.é-t ) &.)Ak )é_x_,‘:' : é—?‘" <
bx bz G4-Vy HVy '

The diffusive terms are handled with a forward time step to give stability.

(EF

The scheme is vulnerable to time splitting and so occasionally, say every
150 steps, a first order step is made for all the fields. The inexact
conservation of kinetic emergy means there is the possibility of a nonlinear

error growth but this has not been seen.
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Appendix I

Proof that for complex , there is just one evanescent mode in region 2
of the two layer analysis of Section II.
Given (2.43) in region 2
)
M{i = k , {li/(l—&z<'-w&)>}
&" ('_u\") AI.1
vhere @6 L 4 wmite 2 = 1= R (- € €

Now

M2.+ = _k_Z___ (l . ‘Z"")
= -2 AL2

dropping redundant suffices and primes,
Write
M = R Q ‘ '
| V=2 \* | AL3
vhere ® = (\- =* J(1 £ 2¥*) , ¥ denoting complex conjugate.
Then if 2 = re'? |e(£ T,

: / : .
E()e P Sin D 2 - s %—_0‘”‘).

- w8 i % i—i—g—;zi x'(l-{-x")} Bl ™

= ixs%ﬁ/zim\'imee/ 4-[} AL.4

and it is easily seen that De”t X &m 9/3_-!- |90 for a11 xe R .
Thus for any «~ such that ¢ S.\v\, _Q O there is one root of
(A1,2) with positive imaginary part and ong'with negative. Hence there is one

and only one evanescent mode for a.ny&)"pr’ovided '—R.i 1( I—w") is not a

positive real number or zero.

ST
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‘" = (1-2]* _ ALS)

V)
and making the substitution} = x¥ e: 5 'G , ¢ T , as above

2k ) e O
Tu(memm)s g (005

Thus the difference of M) iy and M __is real if and only if 2. is real

. 2R2™ ok i'/"(l-a*)

and positive ( ® = 0), or zero.




Appendix II.  Asymptotic solutionof (2,54) - (2.57) + (2.43)

From (2.43),

o R a
Mo = Re, (1-w™ >§I.t/(l = Rkgllsa ))} (11.1)

where the sign is chosen such that Im (M' ) >» 0 and Jl is defined such
that O& cus,/?; A il

If R 7.7[ and R\Lll-—m"’/ > / too, then

=/a,.

my = CkR(-a)e + (-4 )k (- ) €

-3/:., (II 2)
where & = Q-'/L T O ( k (l w" 3)

Now assuming ¢} remain bounded as QLL-?OO then (2.55) shows

WM~

mq Aa

;< ("‘"n-l‘.-&- {w\,_l:’< [\
Ay

S>hAre Ko 4 Kiso(d) (m3)

then (2.55) gives K‘ k (|_ w"j ¢
:
((‘”‘\:‘MIQ R i Ve

Mie—M € = (K4 [iK (-2 ]-a) & + O()

while (2.54) gives , (I_ ‘-}-) :
; L : :
[ @ () “'?_,_ R, Ko & &+ 0({\.)
k(- oY) 7 (11.5)

Now write M‘:M,f Mo"' M‘ £ 40 (g‘-) , then (II.5) becomes

l—ef ("‘\M E-\-O(E"D R Koi + 0 E"')
k(l w\,) Y (II 6)

o aiee g 2 D



“Ho Bf. Ko (11.8)

and M, e =

k ('.—w\-).'lb
—r Mg = 247 (11.9)

"’(;. &. Ko
M, = : - - ¢ ,
' R (’_ o )__,/; (11.10)

Hence the leading order solution has the same structure in the lower layer

as the single layer solution considered in Section 2.

The first order correction can also be evaluated from the expansion terms

above, but is beyond the scope of this appendix.



Appendix III, Dimensional analogues of some Symmetric Instability results

The dimensional analogue of the structure equation (2.24) is

w _ 287k dw _ N E"w = O
o N E (Ft-w”>
and the dispersion relation (2.25) ’
¥ as ks 4 NVR/F
| + (k/M)" (111.2)

so that the most unstable mode's growth rate (2.26) is given by 5 such that

(I11.1)

L
W =

T oW
\ B _
Co._:—b_ = F'—g/,,_ $/v
WAty _ N N
~ (111.3)
where % (’;;{ Ertel potential vorticity of the basic flow and is a

conserved quantity in the adiabatic frictionless equations ((2.3) - (2.7); = 0)).

The energy equation is

LN S e
ok > ,> axc P> Sz—cw@ |

—_— 3_\[ e i) 2_\_/ =+ W g (111.4)
ox 3z '
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III. ENERGY AND MOMENTUM BUDGETS IN THE NUMERICAL MODEL

The analytic equations on which the model is based (3.2) - (3.6) obey

the following kinetic energy equation

) RO A (e

where ¢

3 S s ”} 2
R R N ML T
‘Eff éﬁf’ B L A <;JiLﬁ

Y 2% o ¢

The terms are grouped onto lines so that their meaning can be summarised.
The first line is the advection of kinetic energy and the last term the
buoyancy production term. The r;ext ‘line are the pressure work terms which only
give a surface contribution. The third line is a viscous diffusion of energy
across the bounding surface of the fluid domain. & is the dissipation but

is not strictly positive definite unless ?:.' =  ; this is the spurious

source/sink alluded to in the main text due to the incorrect form of diffusion

in the transformed coordinate system. The term is however small in prlactice.

- R



The potential energy equation is

2 /-2 2D w-arxd ) oL 3 =
'y 5 ) ' go) ra-;(v‘w. %::;8

—3‘3__@ -y 3%&
8, 8,

202 [0 )+d 2 (002 29
% §,

’a% 60 31— (I11.3)

The first line terms are advection of potential energy, the second line
has loss by buoyant production of kinetic energy and generation by diabatic -
seurces. The third liﬁe is diffusion and is a surface effect but the last term
has no significance and is due to the unphysical form of diffusion. It is a
surface eff‘e_ct and génerally smal'l but unlike its kinetic counterpart does not

affect the dynamics.

The finite difference analogues of (III.1) and (III.2) are derived

e =7 ~ % —

P g),(¢P )-.-. 97(?{ E3)+ P,i. S),g !
2

+35.8,%-5,(# )

where ",P can be W or V, ﬁ is any function and

23 = p(h+2k) « -?(t-bk)

Tr = plyet ?(7—?_?_:’)
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S, o . 5 8at. v8t
VARV = & -tl % '\7 -V- (I11.5)
L 5 2E t
so that applying this combination to (3. [0 .) and g. l)) gives
” €
by I8
o ST —ADVKE —DIVPY 4+ CPK
' i B (111.6)
+D|SS
+ZCKI+NLAbv+coR]

where

oS ~ : AT AR
AWKE = §, (3% RIN*) « L & (rw. @AVV )
[ r 2

the analogue of advection,
wev = §(@.F )+ L8 (F5. F)

the "pressure work" !

- i
re Q.

‘ 26
Ll = = _é_a

the buoyant production

DisS = S [’U (u §u+v x.]
+;Lg%[v‘ (ra g,_u-a—rv S;V)_] — E

g



E = ‘V(S‘ S")q—‘u(g’ ng>

rL v, (Fyus,a)+ -}_—-w(v“-‘&:@v>+-—’3* it

the viscous diffusion and dissipation) and the purely numerical terms

CkT = 5x9x$x+ L S (rw)

NLADY = - w¥a v g i K gtl—‘-‘- ADVY
I B

Cok — .Q(Gv—-?iQ:AL—".F (v&:gu—'u&\-")

where the last two have been written correct to ¥
A . o B

These last three terms are all small. The dissipation has the analogue of

the unphysical term in (III.2) as its last term, this may lead to a source of

energy but is small. The positive definite terms are only positive to

O( _b t) since for example
' X ~aX = e
'Vx gxu. 9,3 = '\)x(g‘x M)'L & bﬁ:"u,( S;u S;H_u, e O(ﬁk“’)

but the second term is much smaller than the first so no net source of energy

is possible.

The potential energy equation is found by considering g %e ’

then defining I i 3% o /9

o -
Sk:\: ,,mv.e — CPk—_DIEFO
+ [NLaDdI ]

o



where

ADVIE = Sx (&”, -fx> ""rl: Qe(rw. .-fZD

the advection of I,

CPk = L. re3d

the conversion between kinetic energy and potential energy,

-'DIFCQ = -"%;‘ 'U,LS“ 8""‘0% g%%s}

and the numerical term
NL@I 2 (&_g__:? ># S (ra.g%8>

The diffusion term can be written analogously to the form in (III.})

as

DIFFD = S (0 SeI) + &, (WS I)

& 25 V. gt'é'% (111.8)

— R
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L, CONCLUSIONS

Dry symmetric instability theory (SI) has been reviewed and presented to
emphasise the energy exchanges and aspect ratios of the motion. SI is a
motion that draws its energy predominantly from the kinetic energy of a
sheared jet along a front and to do this particles ascend at an angle steep
compared to the absolute vorticity vector. For this to be thermodynamically

consistent the potential isentropes must slope at close to this angle.

The presence of an upper inversion was shown to only slightly modify the
analytically simpler solution of the rigid upper lid. The work of Emmanuel
(1978) is crucial for the physical intetpretation of the bounded instability
‘when viscosity forces the motion to adopt finite scales which are theemselves

independent of the ‘value of viscosity.

Moisture was shown to allow thermodynamically consistent motion with a
steeper angle of ascent and this will promote an enhanced extraction of energy
from the environment. A physical descriptioﬁ of Conditional Symmetric Instability

(CSI) then followed.

A two dimensional numerical model was described in which a simple moisture
parameterisation allows the study of CSI. Results from this model are given

in Nash (1982a, 1982b).
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