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& > TNTRODUCTION

This note describes the incorboration into the Mesoscale model of a direct

method for solving the set of Helmholtz equations

-Vl + A = F, k=12, (1)

In equation (1) VH‘ is the horizontal Laplacian, )‘\(> O is a constant
and FKe FK (X,&) is a field defined over a rectangular domain, The set
of equations (1) arise from a semi=implicit scheme for numerically integrating
the equations of motion. For a description of the scheme see Tapp and White
(1976). If the model has L¥*| 1levels then L equations of the type (1) have
to be solved every timestep., It has been demonstrated (Tapp 1976) that direct
methods can compare very favourably with iterative methods in the solution of
such equations, However it became apparent that direct methods afford other
programming advantages (most importantly core requirements) which are discussed
in this note. The novel approach adopted here is thought to be of interest in
any situation requiring the solution to the set of equations (1), especially
when L. is large. Direct methods also offer the advantage of producing a
solution even when /X\( is small where iterative methods would otherwise be

slow to converge,.

§ 2, INCORPORATION OF DIRECT METHODS AND I/0 STRATEGY

4

The semi=implicit scheme for numerically integrating the Mesoscale model
requires the solution of the set of equations (1) every timestep. The existing
method adopted to solve these equations has been the alternating direction
implicit (hereafter ADI) method of solution (Peaceman and Rachford 1955). ADI
is generally considered to be one of the most efficient iterative schemes,
especially when (as in the Mesoscale model) the boundary conditions for (1)

are of the Neumann or gradient type.

Despite the efficiency of the ADI method one drawback is the large amount
of core required to store the right hand sides appearing in (1) (even in single
precision)., Thus for the current British Isles model about 131 k bytes of
program are devoted entirely to this. Early attempts to remedy this by writing

the appropriate fields to disk proved unsuccessful due to the excessive I/O



X
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required, Separate work being done at about the same time indicated that a

direct method might ‘be more efficient at solving‘the set of equations (1) in

terms of accuracy. However it was soon realised that, by coding the program
in a certain way, the appropriate fields could be written off to disk and

retrieved without penalty in overall efficiency.

To solve equations of the type (1) by direct methods, the recader is referred
to Tapp (1976), but for completeness a brief outline is included here. For each

Helmholtz equation on a rectangular grid of n rows and m columns, a matrix

Yi §X+/\§ (2)

can be written, The square tri-diagonal matrlccs Y and X represent the finite

equation of the form

g g\. -~

difference operators of = = and respectivel and § is the solution

" gb\ ax\ y’ -

matrix of order n X m,. w is simply the matrix of right hand sides. Since )\
-9

is a constant over. the rectangular domain, this matrix equation is especially

simple, A matrix E is sought such that

E"XE ™

where M is a diagonal matrix mth elements (/ﬁ(‘ ) = \ 2 m) equal to

>

the e1genva1ues of X . Thus from (2)
-3

FE+EMABE -FiE ©)
Putting é: g; ’:‘SK.:F;E , (3) reduces to the system

(I + (/\w/‘(c)};) Kc(é) s Kg(\g ,,), i=),2,..m, 4
where KQ(Q) denotes the ith column of the~matrix (é . Once the solution for

has been found, the final answer may be recovered from

4
. ¢ = LE

e
Each of the equations (4) now depends only on the y co—ordinate., The solution

vector K,(lf) and right hand side vector KC(SK are of dimension n. With |l

—

Helmholtz equations to solve, the problem can be reduced to solving \.)(ﬂ\ independent

tri~diagonal equations of the type (4). Since /\K>O and /‘l;?o the matrix

)_: +</\K+/(c)£

is diagonally dominant and the standard tri-diagonal algorithm given by Varga
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(1962, p.195) may be used to solve (4). The method, which is a special adaption

of Gaussian elimination, is often referred to in the literature as the double

sweep method. For the equation

—Z‘j‘“-.f(z-fo—)zd ‘&d-lzgj) i1, ..M (5)

with boundary conditions g° =f, ; gl\-l-l = gr\ (typical Neumann conditions)
and (= /\K*/"‘C , the solution may be written as (Richtmyer and

Morton 1967 p 200)

g‘j = ¥ g-j“-f-/g-j ;) = L2, (6)

where

= “‘ @
% T 24 0-%50 ) B3 "’(Sj *(Sj—b“j, el ..,

The boundary conditions give

|

%= \+ o ﬁ‘-:j‘\o(\'

g,\_ = (Sm “'/gn-)/( \+ O’—°(n-|)

Thus from the boundary condition which gives 0(‘ and {3' in (8a), the sequences

(8a, b)

[0(3} - ang {ﬂ)§ may be computed inductively for increasing 3 o e
boundary condition (8b) also gives the solution for j:{\, ; The rest of the
solution may then be found inductively from (6) in the order of decreasing 3 2
The method is very efficient and can be shown to be absolutely stable with respect
to round off error, It is apparent that the solution can be developed with the

sweeps reversed, that is

Zg;j = °\’1ZJ'-:+46,', §Fd3,. .0 8

where

Salaier G N e
°<‘1 T24T gy ! £4 -(5‘3-:-{33.,,)0(3 ) 370, 2. 4
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+» VWhichever method is adopted, clearly the calculation of the 0(5 A and ﬂa N or

the final solution g depend only on the immediately preceding calculation.

7

"~ It is precisely this property of the double sweep method that enables the Helmholtz

/
fields to be written to disk, since only one row of g and one row of o4 and
o
-

/3'4 per Helmholtz equation are ever required at any one time,

For the Mesoscale model only a limited number of rows (three) of data are in
main storage simultaneously for a particular calculation., It is thus convenient
to order the solution of the set of equations (4) for each k so that they are all

solved together, row by row. Instead of considering horizontal arrays of data

EK CK=|,2'...L) as in (2), then since

,—EK"’ 256%},

where 1 refers to columns, ') to rows and K to the different Helmholtz equat—

ions, it is possible to reorder so that

s+ [Cond,= [ Feand,

for a fixed row J . The matrix Q1 is then of order LAMm( \_ rows and ﬂ\columns)
and contains all the FCjK values for a particular row 3 of the set of
equations (1). The elements of 91 are ofdered so that each r'ow corresponds
to a Helmholtz equation. Hence ﬂ:e' right hand side of (4), for each row can be
computed as the matrix product
2 -

g"! =1&CK15= %1\;? : (11)

For each dfk, using the recurrence relations for the double sweep method, a

pair of coefficients °(CK and ﬁCK can be calculated. Each line calcul-

ation of the Mesoscale model gives the right hand sides FC‘SK for all (, and

I but only for a particular row. 3 . However this is all that is 'necessary
to

(a) decouple the equations in the x-direction according to (11) and

(b) to do the elimination process in the y-~direction for the next row of

«'4 ana ﬂ'.o :




. Each elimination is performed per row for all the l\X(“- equations together

and the resulting buffer containing the o and ’3 values can be written to
a dataset each time., The solution for the final row may be developed in core

since this requires storing only one row of answers.per Helmholtz equation,

The answers to the equations (4) ngK and the final solution

can be ordered as above, so that

B (858 ) L5 [

: -~

- ’ '
for fixed j . The matrices §_) and Zg are of order | _xMm . The
- o

’ =
solution field § for each row can be found from the matrix product
= .
3. Z B ‘ (12)
=1 T =2 \::3 '

The matrix products (11, 12) may be computed using fast Fourier transform

techniques.

Because of the nature of the double sweep method, the °(' ﬁ reéords must
be accessed in reverse order to the order in which they are written up. Each
record read down can be used to compute the next row of answers ( 51' )
overwriting those currently held in the buffer., The strategy adop'te.; here for

solving a large number of equations simultaneously is similar to that adopted

by Wang (1974) in devising the block-ADI method for virtual storage machines,

The Mesoscale model uses a main work data set (usually residing on the
fixed head disk) which stores data temporarily while row calculations are being
performed., To incorporate the above direct method of solution this dataset, as

‘well as the Hélmholtz dataset, has to be scanned in alternating directions each
timestep, This approach is considered quite novel since the usual approach is
to process the data in the same direction each timestep, The new I/O system

is displayed in figures 1-=3, Note that apart from the first timestep, three
writes and three reads of data (to the fixed head diék) are saved every.time—

stepvbecause of the alternating direction of scan,




8 3, PROGRAMMING CONSIDERATIONS
—— s

In the previous section it has been tacitly assumed that the datasets used
by the program can be processed sequentially forwards and backwards., This is
easily achieved using the elementary access technique called execute channel
program (EXCP). Since the records involved areAlarge, the starting addresses
for each, all begin on a new track. Access to a particular record can be made
ﬁsing the cylinder (CC) and head (HH) or track number., Once the datasets are
established, the CCHH numbers can be stored in the program in an array affording
a unique correspondence between elements of that array and the records stored
on a disk. Since with the EXCP method, access to the records need not be
sequential, they may be processed in any convenient way. For the purposes of
solving the set of equations (1) only a sequential forwards and backwards
processing is required. Clearly for the main work dataset on the fixed head
disk this results in no loss of efficiency at all = since the heads do not
move. In fact use of this dataset is improved since at the turnround stage
between timesteps no reading or writing is taking place. The Helmholtiz dataset
is placed on system space (3330 disk) since this uses a separate channel - I/O
to the two datasets can thus run concurrently. Each record of the Helmholtz
dataset contains a row of «'4 am ﬁ'A (stored in double precision) which
conveniently fits on one track. One problem which may arise for this dataset
is that of excessive head movement in reading and writing in both directions.

However, to date, no difficulties have been encountered.

For the Mesoscale model, approximately 46 k bytes of program are devoted
to storing aﬁd solving the set of equations (1) = a saving of about 90 k
over the ADI method. The maximum value of WX M that can be catered for is

640 vwhile there is now no restriction (in principle) on the number of rows.

Defining north to be in the positive y-~direction, under the old system
the dataset was always processed from north to south each timestep. The
procedure used in the new soheme,-deséribed here, is to scan from north to

south on the even timestePs and south to north on the. odd timestepS. In the



' odd timestep scan, the buffers appear in the twrong'! order for the routines used

in the even timestep calculation, One can either write different routines to do
the odd timestep calculations, or transform the data after processing so that
the existing routines can still be used. The latter approach has been adopted
in the Mesoscale model. The grid system is displayed in figure 4. Thus at each

timestep, the co-ordinate transformation
! = ¢
f g
b =9 (13)
- S
is applied to prepare the data for use at the next timestep. In the equations

of motion scalars (density, pressure, temperature etc) are unaffected by such a

transformation, while the velocity )ﬁ obeys

(U" Vl) \J') N (U Nt ,\J)

in component form. The coriolis term must also be transformed as

$'s-f
since the vector product j B A .\f is determined by a different rule
in each co-ordinate system. Since the \/’45 are staggered in the y-direction
with respect to the grid, they must be moved around between the buffers to appear
in the right position for the routines each timestep., This presents a slight
technical problem but it does not prove expensive in terms of CPU time., In fact
it takes zbout half a percent of the computing time but is more than offset by

the efficient program that results,

The direct method has been incorporated in the cumulus version of the Mesoscale
model. (The appendix gives the routines and what they do for reference). As a
rigorous test of the system, the method was programmed as above, and also the
alternate way keeping the right hand side fields in core and using the old I/O
routines, Differences between the forecasts highlighted a special problem that
could arise, Since the same routines are uséd for the two different grid systems,
data appears in reverse order in fﬁe buffers (in the y-direction sense), This
means that although the routines perform the same operations on the numbers (and

should in theory get the same result), the order of operations may change. For

% | S |



example, suppbse at a particular grid point calculation three wv=component veloc—

ities for the lines (\~\, 0 and (\&)\ have to be added together. Normally

. one would write

V = V'\,\ + \/l\* Vf\*l . J ‘ (14)

However, in Fortran this would be added as though

V= (_\/(\-t +Vl\) + Vam
In the transformed grid (apart from the sign of V' which is automatically taken

care of) the variables would appear in reverse order, so that

V= Vayt Vax Voo = (Vt\u*'\/t\)"' Via-r - (15)

In floating point arithmetic (14) may differ (slightly) from (15). Thus unwittingly
the programmer may introduce different rounding errors between each timestep.
However, in floating p&int arithmetic, the result of adding or multiplying two

numbers together doesn't depend on their order, so that

A+t R = BtA AB=BA . 2

Hence (14)may be reprogrammed to give

V2 (Vo +Vi)* Va, L

which is now invariant (apart from sign) with respect to the grid transform. In
this way, differing rounding errors on the two grids can be eliminated in the

dynamical calculations,

The only remaining possible source of error is the solution of the tri-
diagonal systems, which must be evaluated in opposite directions each successive
timestep., Tested on the same data, the two methods of sweeping show differences
only in the last two hase digits of the double precision answer. Since the
final results of the Helmholtz calculations a.ré required only in single precision,

this error can never feed back into the dynamics.

10



To summarise, by using the simple laws of floating point arithmetic (16),

- the Fortran programmer can ensure that the results will be consistent in both
co—ordinate systems. Since only the y-axis is effectively transformed only
those operations (such as derivatives or averaging) involving that co-ordinate
need be scrutinised. In practice this usually requires inserting extra brackets

to force the cémpiler to add the terms in the desired way,

The only remaining problem is what happéns at restart points. Since the
time-stepping scheme is leapfrog, two datasets at consecutive time levels are
needed at each restart point., To fit in with the current scheme, the writeup
data is written to disk in the normal way (during an even timestep), but the
restart data (at the odd timestep) is written up in reverse order. Since the
restart dataset is only there to enable the integration to continue, it is of
no consequence that thé data is 'jumbled', It is a straightforward matter to

tunscramble! the appropriate data when needed.

Despite the extra I/O (increased by a factor of about 2,5) the new version

of the model suffers practically no loss of efficiency. Measured as

CPeL TwmE X \Ooolo
ELARSEY T

it is normally around the,95% mark. Experience in running has shown no practical

disadvantages - only the gain in superior program design and flexibility.

1
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. APPENDIX

This appendix lists the main I/O routines and those involved in the solution
of the Helmholtz equations. A basic flow diagram is given in figure 5. Routines,
that calculate the main dynamics are called from LINE but are excluded from figure

5 for clarity.

BEGIN Sets up main work dataset for a forecast and writes initial or restart

data to it.

STEP s Reads down sufficient data to perform row calculations and writes the
computed results back up. The dataset is processed a row at a time
until the calculation is complete. Direction of scanning is switched

every timestep.

MOVE Before both time level buffers are written up the w=component of

velocities is transformed, This necessitates moving the v's between

the line buffers and a temporary holding buffer.

LINE H Calls various routines (not included in figure 5) to perform line

calculations.

DECPLE : Computes a row of right hand sides for each Helmholtz equation. After
transforming the rows (call to UNCPLE) the coefficients for the
elimination process are calculated and written to disk (call to WRTE),

UNCPLE ¢ Transforms by row the right hand sides of the Helmholtz equation.

FFT2 : Computes a basic sine transform.

FINAL : Reads down the X @ coefficients (call to READ) to complete the
solution of the tri-diagonal equations. After transforming the rows
(call to RECPLE), the results are used to complete the dynamical
calculations of the previous timestep.

RECPLE ¢  Effectively performs the inverse transform.to UNCPLE to recover the

solution,

13
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