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Abstract: 
We propose a new approach to probabilistic forecasting, based on the generation of an ensemble of equally likely analyses of 
the current state of the atmosphere. The rationale behind this approach is to mimic a poor-man’s ensemble, which combines the 
deterministic forecasts from national met services around the world. The multi-analysis ensemble aims to generate a series of 
forecasts that are as skilful as each other and the control forecast. This produces an ensemble mean forecast which is superior not 
only to the ensemble members, but to the control forecast in the short range. This is something that it is not possible with traditional 
ensemble methods, which perturb a central analysis. 
Our results show that the multi-analysis ensemble is more skilful than the Met Office’s high-resolution forecast by 4% over the 
first three days (on average as measured for RMSE). In contrast, the ensemble mean for the ensemble currently run by the Met 
Office performs 2% worse than the high-resolution forecast (similar results are found for the ECMWF ensemble). We argue that the 
multi-analysis approach is therefore superior to current ensemble methods. 
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1 Intr oduction 

Ensemble forecasting has its roots in attempts to 
understand the limits of deterministic prediction of 
the atmospheric state (Lewis, 2005). By running a 
number of forecasts from a set of initial conditions, 
which are consistent with our knowledge of the cur­
rent state of the atmosphere, we hope to gain an 
insight into the uncertainty in the forecast. Generally, 
this has been performed by creating a set of pertur­
bations to add to a given best-guess (or analysis) of 
the current state of the atmosphere (Toth and Kalnay, 
1993; Buizza and Palmer, 1995). 

An additional benefit of ensemble forecasting 
is that the ensemble mean forecast typically out­
performs a forecast based on a single run of a 
numerical model. The latter forecasts are often 
described as ‘deterministic’ forecasts. Since each 
ensemble member has a different realisation of 
certain less-predictable small-scale features, the 
ensemble mean forecast will not contain such fea­
tures, these having been averaged-out. This aver­
aging is a curse as well as a blessing, since it 
means that the ensemble mean forecast will become 
increasingly smooth as the forecast progresses and 
the uncertainty increases. Thus, one needs to be 
very careful how the ensemble mean forecast is 
used (Smith, 2003). This means that the ensemble 
mean is of little use on its own, and is often supple­
mented by the probability of various events occuring 
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derived from the whole ensemble. Nonetheless, any 
improvement to the ensemble mean forecast has a 
large effect on the quality of the ensemble forecast 
(Buizza et al., 2005). 

The size of an ensemble is typically much 
smaller than the number of degrees of freedom in 
a numerical model (the number of grid-points of 
an operational numerical model is currently O(108)). 
This means that the focus in ensemble forecast­
ing has been to choose perturbations to the deter­
ministic analysis which grow very rapidly. The two 
schemes initially used for medium-range forecast­
ing are error breeding (Toth and Kalnay, 1993) 
and singular vectors (Buizza and Palmer, 1995). 
Error breeding repeatedly re-scales the differences 
between two runs of a numerical model. The 
repeated re-scaling ensures that any differences 
which are not rapidly growing are rapidly damped. 
Thus, the perturbations project on those structures 
which have been growing rapidly in the recent past. 
The singular vectors method uses a linearised ver­
sion of the numerical model to calculate structures 
which are expected to grow rapidly in the near future. 

The ensemble run by the Meteorological Service 
of Canada has recently upgraded to using an ensem­
ble Kalman filter (EnKF) (Houtekamer and Mitchell, 
2001). This system attempts to perturb all the inputs 
to the data assimilation to provide an ensemble of 
analyses which are consistent with the uncertainty in 
the best-guess analysis. Inputs such as the obser­
vations, the background forecast, the sea-surface 
temperature and the version of the forecast model 
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used are all perturbed. This system provides anal­
yses which are of comparable quality to the 3D-Var 
data assimilation method, as measured by the root 
mean square error (RMSE) of 6-h forecasts against 
radio-sonde observations (Houtekamer et al., 2005). 

1.1 Poor man’s ensembles 

A poor-man’s ensemble is one which is created 
by collecting the output from the deterministic fore­
casts from National Meteorological Services (NMSs) 
around the world. It is described as a poor-man’s 
ensemble since it does not require any additional 
model runs to produce it. A number of studies have 
investigated their properties (Atger, 1999; Ziehmann, 
2000; Ebert, 2001; Buizza et al., 2003; Arribas et al., 
2005). Many of these have concluded that a poor-
man’s ensemble is an effective method for ensemble 
forecasting. For example, Atger (1999) fitted a Gaus­
sian distribution to a very small poor-man’s ensemble 
and found that this provided more skilful forecasts 
(in terms of Brier skill score for the first five days) of 
500 hPa height than the ECMWF ensemble predic­
tion system (EPS). Buizza et al. (2003), with a very 
limited poor-man’s ensemble, found that it provided 
better forecasts than the ECMWF EPS, but that a 
planned upgrade to the ECMWF EPS was even more 
skilful than the poor-man’s ensemble. Arribas et al. 
(2005) tested a hybrid ensemble with some ensem­
ble members from the poor-man’s ensemble along 
with some from the ECMWF EPS, as well as testing 
a standard poor-man’s ensemble. They found that 
the hybrid ensemble performed best, with the poor-
man’s ensemble being nearly as skilful. 

Other studies (Harrison et al., 1995; Evans et 
al., 2000; Richardson, 2001; Mylne et al., 2002) have 
tried to ascertain the relative merits of running an 
ensemble from a set of differing analyses using a 
single model or multiple models (known as the multi-
analysis and multi-centre approaches, respectively). 
These experiments were different to a poor-man’s 
ensemble since initial condition perturbations gener­
ated by singular vectors were added to the analyses 
generated from individual centres. Thus, the singu­
lar vector perturbations could attempt to counter any 
lack of spread in a poor man’s ensemble. The results 
showed that both the multi-centre and multi-analysis 
ensembles performed very well, generally giving bet­
ter performance than the ECMWF ensemble (which 
is based on singular vectors alone). At this time the 
ECMWF ensemble was heavily under-spread in the 
short-range, and Richardson (2001) performed a fur­
ther test which included ‘evolved’ singular vector per­
turbations to the initial condition. This ensemble was 
nearly as skilful as the multi-analysis ensemble. 

There are currently a number of regional EPSs 
which are similar in spirit to a poor-man’s or multi-
analysis ensemble (Tracton et al., 1998; Stensrud et 
al., 1999; Garcia-Moya et al., 2007; Eckel and Mass, 

2005). Notable amongst these is the ensemble run 
by INM (Garcia-Moya et al., 2007). Initial conditions 
for this ensemble are given by analyses from the 
Met Office, ECMWF, DWD and NCEP. Five different 
forecast models are run from each of these starting 
conditions, these models being provided by the Met 
Office, UCAR, DWD, the HIRLAM consortium and 
the COSMO consortium. This results in an ensemble 
containing 20 ensemble members. Despite the obvi­
ous difficulties in maintaining five separate numerical 
models and receiving data from four different cen­
tres, the results have been impressive, with good 
ensemble spread and low error in the ensemble 
mean forecast. 

Results from a poor-man’s ensemble are shown 
in figure 1. These results are taken from data cal­
culated by Arribas et al. (2005) but not shown 
in that paper. This shows the root mean square 
error (RMSE) of the ensemble mean forecast for 
the ECMWF ensemble and a poor-man’s ensemble 
(consisting of the 6 forecast models which were most 
readily available at the time). Also shown is the RMS 
spread for each ensemble. The forecasts are veri­
fied against ECMWF analyses over Europe. Verifying 
against ECMWF analyses, rather than independent 
observations, artificially reduces the RMSE of the 
ECMWF ensemble, particularly in the short-range. 
At all lead times the ensemble mean of the poor 
man’s ensemble is superior to the ensemble mean 
from the ECMWF ensemble, with a reduction in the 
RMSE typically in excess of 10%. This result does 
not necessarily imply that the poor-man’s ensemble 
is better than the ECMWF ensemble (Buizza et al., 
2003). From figure 1 it is clear that the poor-man’s 
ensemble is under-spread (the spread of the ensem­
ble is less than the error of the ensemble mean). 

There are a number of practical problems that 
hinder the wide-spread use of poor-man’s ensem­
bles. There are issues related to the difficulty of 
transferring large amounts of data between NMSs. 
There is also a reluctance for NMSs to base their 
operational forecast output on the output of other 
NMSs - over which they have no control. There is 
also a feeling that with a poor-man’s ensemble “we 
don’t know what we’re doing”. However, probably 
most important is that poor-man’s ensembles are 
severely limited in the number of ensemble members 
that are available. 

1.2 Why are Poor man’s ensembles better? 

An important issue which has been discussed 
recently Palmer et al. (2006) is the relationship 
between the mean square error (MSE) of an ensem­
ble member forecast and the ensemble mean fore­
cast. This relationship is 

MSE(member) = MSE(mean) + MSS (1) 

where MSS denotes the spread of the ensemble. For 
a well-calibrated ensemble the spread will equal the 

cCrown Copyright � 2007 



Preparedusingmystyle.cls DOI: 10.1002/qj

3 

Figure 1. Root-mean square error (solid) of ensemble-mean fore­
casts of 500hPa height, and RMS spread (dashed) of ensemble, for 
ECMWF ensembles (stars) and a poor-man’s ensemble (triangles) 
verified over Europe. Below is shown the relative improvement in 
RMS error for the poor-man’s ensemble mean over the ECMWF 

ensemble mean. 

error of the ensemble mean forecast (on average), 
giving 

MSE(member) = 2MSE(mean) (2) 

For traditional ensembles, which are generated 
by adding perturbations centred around a high-
resolution analysis, the ensemble mean and control 
forecast are very similar on large scales in the short-
range (0-3 days). This is related to validity of the lin­
earity assumption used in 4D-Var and in calculating 
singular vectors (Gilmour et al., 2001). For ensem­
bles which are initially centred around the control 
analysis, they will remain centred around the control 
forecast for as long as this assumption holds, which 
is typically in the short-range for large-scales. Thus, 
a good approximation for these ensembles is 

MSE(member) � 2MSE(control). (3) 

The implication of this is that on average the ensem­
ble members are always much less skilful than the 
control forecast. However, it would be wrong to 
assume that this is an unavoidable characteristic of 
ensemble forecasting. It is a consequence of degrad­
ing the best-guess analysis by adding perturbations 
around it. In many ways the traditional approach of 
adding perturbations to a best-guess analysis is an 
appropriate strategy if only a single data assimilation 
cycle is available. 

However, the degradation of the perturbed fore­
casts hinders the interpretation of traditional ensem­
ble forecasts. A common method for presenting 
ensemble information is via “postage stamp” charts. 
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These charts display the forecasts from each ensem­
ble member side-by-side for a particular area. The 
interpretation has been that any of the scenarios 
presented could occur, and are equally likely to 
occur. However, since the ensemble members are 
degraded forecasts relative to the control, the control 
forecast is more likely to be close to the truth than 
any one of the other ensemble members. This effect 
is largest for forecasts covering a large area and at 
short-range; for point forecasts and at long-range the 
chance that the control forecast is better than any 
other ensemble members is reduced (Palmer et al., 
2006). This makes the job of a forecaster difficult, 
since they are often required to combine a set of 
forecasts which are of unequal skill. 

In contrast to traditional ensembles, a poor-
man’s ensemble does not generate perturbations 
which are degraded relative to a control forecast. 
We can understand why a poor-man’s ensemble 
performs well by looking at the skill of the ensemble 
mean with respect to the control forecast. Eq. 1 may 
be re-arranged to give 

MSE(mean) = MSE(member) − MSS. (4) 

In a poor-man’s ensemble each member is approx­
imately as skilful as a control forecast from a tra­
ditional ensemble. This means that the ensemble 
mean forecast from a poor-man’s ensemble will have 
lower RMSEs than any of the forecasts from which 
the ensemble is composed. Each of the forecasts 
derive from an analysis produced independently by 
different NMSs - none of them is degraded with 
respect to the control forecast. Model and observa­
tion uncertainties are represented by the diversity 
of approaches used at different NMSs. The differ­
ences in the forecasts serves to create the spread 
that ensures that the ensemble mean forecast is bet­
ter than any of the contributing forecasts individually. 
The attribute of having different forecasts of similar 
skill is central to the success of poor-man’s ensem­
bles. Since none of the forecasts have been sub­
stantially degraded relative to each other we may say 
that the poor-man’s ensemble has generated nearly 
the correct spread “for free” (see figure 1). Further 
explanation of the relationship between the error of 
the ensemble mean and control forecasts is given in 
the appendix. 

As is discussed in section 4, the use of RMSE 
as a verification score can cause problems, since 
smoothing to the forecast fields can result in a 
reduction of the forecast error. However the RMSE 
of the ensemble mean is the natural quantity to 
consider since the spread of an ensemble is normally 
tuned to match the RMSE of the ensemble mean. A 
reduction in the RMSE of the ensemble mean should 
be accompanied by a reduction in the ensemble 
spread, and would combine to give a reduction in 
the Brier score of the ensemble forecast, which is 
the main measure of ensemble quality. 
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2 Proposal for a new approach 

Inspired by the performance of poor-man’s ensem­
bles we propose to use a multi-analysis approach for 
generating ensemble forecasts. The aim is to mimic 
the performance of a poor-man’s ensemble and cal­
culate an ensemble mean forecast which is more 
skilful than the deterministic, high-resolution fore­
cast even in the short-range. In order to improve the 
ensemble mean the approach illustrated in eq. 4 is 
followed. Each analysis will be a best-guess, approx­
imately as skilful as each other. The differences in 
the analyses will therefore contribute to generating 
an ensemble mean which is more skilful than any of 
the ensemble members, including the control fore­
cast. 

This proposal is different from other methods for 
generating an ensemble of analyses (Houtekamer et 
al., 1996) (R. Buizza, M. Fisher, personal commu­
nication) which include perturbations to the obser­
vations. At this stage the sole aim is to improve the 
ensemble mean performance, not to create a reliable 
ensemble. This issue of how to generate a reliable 
ensemble will be discussed later. 

2.1	 Data Assimilation framework 

In order to shed light on the relationship between the 
multi-analysis approach and other ensemble meth­
ods, we consider the framework provided by the 
ensemble Kalman filter (EnKF) (Evensen, 1994). 
The update equation of the Kalman filter is the same 
as the equation that is solved by variational meth­
ods (such as 3D-Var and 4D-Var) (Lorenc, 2003) 
although these use an approximate solution. For 
the EnKF the ensemble mean analysis is calculated 
according to 

x̄a = x̄f + Pf HT 
� 
HPf HT + R 

�−1 
(y − Hx̄f ) (5) 

where x̄f is the ensemble mean forecast from the 
previous cycle, Pf is the forecast error covariance 
matrix, H is the observation operator (here consid­
ered linear), R is the observation error covariance 
matrix, T denotes the matrix transpose, and y are the 
current observations. When updating each ensemble 
member it is necessary to perturb the observations 
to maintain sufficient spread in the ensemble. For a 
poor-man’s ensemble a different, static, Pf is used 
for each member. Errors in the forecast model are 
accounted for by using a different forecast model for 
each ensemble member. The observations are not 
perturbed but observation errors are accounted for 
by the fact that each model will use a slightly dif­
ferent set of observations and different observation 
operators. Due to this myriad of differences between 
the forecasts, and the chaotic nature of the atmos­
pheric system, the analyses of each centre do not 
converge to the same solution, even though they are 
all attempting to solve the same problem. 

3 Description of tests 

3.1	 Set up of multi-analysis system 

In the tests that have been run, an N216 forecast 
(approximately 60km resolution in the mid-latitudes) 
has been used in conjunction with the 4D-Var system 
run at N108 resolution. This is compared with the 
forecasts from the operational suite, which are run 
at N320 resolution (approximately 40km in the mid-
latitudes). All the forecasts use 50 vertical levels, 
and are performed for data times between 0Z on 
10th May and 12Z on 19th May 2006. The forecasts 
are all initialised from the analysis of the operational 
suite valid at 0Z on 6th May allowing 4 days for each 
system to “spin-up”. 

The set-up of the system (apart from resolution) 
is the same as that for the high-resolution deter­
ministic global model which became operational on 
14 March 2006. The system is based on the stan­
dard Met Office 4D-Var trials suite developed by Mike 
Thurlow. 

3.2	 Perturbation strategies for the data assimilation 
cycle 

A number of small differences in the data assim­
ilation and forecast cycles were used to perturb 
the analyses produced. These perturbations are 
designed to produce differences in the analyses but 
without degrading their quality. The control forecast 
was based on the standard suite as used by the high-
resolution forecast with no perturbations. Ensemble 
member 1 was created by using the same suite as 
the control forecast, but introducing a small pertur­
bation to the analysis produced at 6Z on 6th May 
2006. This perturbation was based on the differ­
ences between the analysis at 0Z and 6Z. This 
test was designed to demonstrate that two identical 
cycles with slightly different starting conditions do not 
converge, but do produce very similar forecasts. 

Ensemble member 2 is the same as the con­
trol cycle, but a random component was applied to 
the thinning of satellite observations. Since satellite 
observations are more dense than can be assimi­
lated, they are routinely thinned to a grid with spacing 
of approximately 154km. Normally the observations 
which are closest to the points of the 154km grid are 
assimilated, but we are free to choose an observa­
tion which is not the closest to the grid points. Mem­
ber 2 uses a random choice of observation within 
each 154km grid-box, rather than closest. 

The background error covariance matrix used by 
the 4D-Var scheme is determined using the ‘NMC’ 
method of Parrish and Derber (1992). The covari­
ance matrix used operationally is based on the differ­
ence between two forecasts, valid at the same time, 
but for forecast lead times of T+6 and T+30 - these 
are referred to as the ‘early’ covariances. The ‘late’ 
covariances are based on the differences between 
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T+24 and T+48 forecasts. Ensemble member 3 uses 
the ‘late’ covariances and random thinning of satellite 
observations. 

Ensemble member 4 is the same as the control 
forecast, but a 3D-Var analysis scheme is used 
instead of a 4D-Var scheme. This is expected to 
produce worse forecasts than the control, but is 
much cheaper computationally. 

The next three ensemble members use a new 
scheme which perturbs the calculated departure 
points in the semi-Lagrangian advection scheme. For 
each time-step in the forecast model the value of a 
variable at a given grid-point is calculated by esti­
mating the location from which the fluid at that point 
would have come. This is illustrated for a 2D-grid in 
figure 2(a). Thus for a 3D-grid, at each time-step the 
value of a variable at a given point is interpolated 
from the values at the 8 nearest grid-points to the 
estimated departure point. The interpolation each 
time-step creates a repeated filtering of the fields 
being forecast. Removing the effect of this interpola­
tion from ensemble and climate forecasts has been 
the subject of study recently (Shutts, 2005; Jung et 
al., 2005). The schemes developed thus far have 
relied on adding vorticity perturbations to undo the 
effect of the interpolation. However, in this study we 
have perturbed the calculated departure points in 
order to reduce the effect more directly. 

In this scheme the departure point perturbation 
is restricted to the 2-D case, this means consid­
ering interpolation from the 4 grid-points that are 
nearest to the calculated departure point. The semi-
Lagrangian scheme still interpolates in 3 dimensions, 
but the perturbation is restricted to the horizontal. 
Rather than interpolating the field at a given loca­
tion from the 4 grid-points nearest to the calculated 
departure point, it is possible take the value from one 
of the 4 grid-points directly. This would be equiva­
lent to moving the calculated departure point to rest 
exactly at one of the 4 possible points. However, such 
a scheme would likely cause the model forecast to 
fail since it would introduce large amounts of noise 
into the advection scheme. An alternative is to move 
the calculated departure point closer to one of the 
4 grid-points. This allows the introduction of a tun­
able parameter α (see figure 2(b)) which can control 
the strength of the perturbation. α = 0 corresponds 
to no perturbation, and α = 1 corresponds to moving 
the departure point to rest exactly on one of the 4 
grid-points. 

The scheme implemented in this paper ran­
domly chooses one of the 4 grid-points in the hori­
zontal. The probability of choosing one of the grid-
points is based on an area-weighted scheme for the 
proximity of the un-perturbed departure point to each 
of the 4 grid-points to ensure highest probability of 
moving towards the nearest points. This also means 
that the average departure point calculated is the 
same as when no perturbation is used. In this study 
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we used α = 0.5, which means that the perturbation 
to the calculated departure point moves the point to 
be half-way between the original departure point and 
the chosen grid-point. The random numbers used 
to choose the grid-point towards which to move the 
departure point have no spatial correlation. 

Ensemble members 5 and 6 are the same as 
ensemble members 2 and 3, respectively, but they 
use the perturbed departure points scheme. Ensem­
ble member 7 is the same as ensemble member 6, 
but uses a different (lower) value of the ‘Jc’ filtering 
term (Gauthier & Thepaut, 2001). This filtering term 
is used to suppress undesirable gravity waves in the 
data assimilation process, so ensemble member 7 
uses less filtering than the normal assimilation. 

Ensemble member 8 uses the analysis pro­
duced by the system of the control forecast. How­
ever, the forecast is run using the high-resolution 
(N320) forecast model. The aim of this member is 
to determine if the differences in the analyses pro­
duced by the two systems, or the differences in the 
forecast model are more important. 

4 Results 

The following results are based on the ensemble 
containing the high-resolution forecast, and mem­
bers 3 and 7. This set of forecasts was chosen since 
it minimises the root-mean-square error (RMSE) of 
the ensemble mean forecast for the index of fore­
cast variables discussed later. A different set of fore­
casts could be chosen with similar results, although 
here the best combination only is presented. Adding 
more ensemble members does not improve the fore­
cast, since this would mean the ensemble would 
have many more low-resolution forecasts than high-
resolution forecasts (of which only one is available). 

Figure 3 shows the RMSE as a function of lead 
time for forecasts of 500 hPa height from the high-
resolution model, and members 3 and 7. Also shown 
are the RMS spread of this three member ensem­
ble, and the RMSE of the ensemble mean fore­
cast. These forecasts (as all presented in this paper) 
are verified against radio-sonde observations from 
across the globe valid and 0Z and 12Z between the 
10 and 22 May 2006. Since there are more radio­
sondes in the northern hemisphere than elsewhere, 
the statistics will be biased towards the ensemble 
performance in the northern hemisphere. It can be 
seen that the forecast from the high-resolution model 
is approximately as skilful as member 3, and more 
skilful than member 7. This illustrates for 500 hPa 
height that the enhanced horizontal resolution only 
weakly influences the quality of the forecast. The 
ensemble mean forecast is more skilful than any 
of the individual ensemble members. The improve­
ment of the ensemble mean forecast over the high-
resolution forecast varies between none (at T+0) and 
4% (at T+72). 
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Figure 2. (a) The semi-Lagrangian advection scheme interpolates the value at a given point, from the four nearest points upstream of the 
point being considered. (b) In the perturbed scheme one of the four points is chosen with a probability related to the area-weighting of the 
boxes shown, and the departure point is moved a factor α closer to this point (+). The bottom left point would be selected with a probability 

(1 − Lx)(1 − Ly ) so the points nearest the standard departure point are most likely to be selected. 
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Figure 3. Root-mean square error of forecasts of 500hPa height, and 
RMS spread of ensemble 

The ability to produce a forecast which has a 
lower RMSE than the high-resolution forecast in the 
early part of the forecast period is not trivial. Rod-
well (2006) found that the ECMWF high-resolution 
forecast had a significantly higher anomaly corre­
lation coefficient (and therefore lower RMSE) than 
their ensemble mean forecast for the first 5 days. We 
know of no other system, aside from a poor-man’s 
ensemble, which can produce forecasts of 500 hPa 
height which are more skilful than the high-resolution 
model. 

Similar results to figure 3, but for wind speed and 
temperature at 850 hPa, are shown in figures 4 and 
5, respectively. At these lower levels of the atmos­
phere the high-resolution model would be expected 
to perform better than the lower-resolution models, 

since the effect of variations in surface height will 
be more noticeable at this level. This is reflected in 
figure 4, for which the lower-resolution forecasts per­
form clearly worse. Member 7 is the least skilful of all 
the forecasts, indicating that the perturbed departure 
points scheme is not performing well for this variable. 
Consequently the ensemble mean forecast performs 
worse than the high-resolution forecast. However, for 
850 hPa temperature, the difference in performance 
between the three forecasts is much less. Members 
3 and 7 perform worse than the high-resolution fore­
cast, but the degradation is less than for wind speed. 
Additionally, the spread of the ensemble is greater 
(relative to the RMSE of the high-resolution forecast). 
Both these facts result in the RMSE of the ensemble 
mean forecast for this variable being much less than 
the RMSE of any of the members individually. 

For all the variables shown in figures 3-4 the 
spread of the multi-analysis ensemble is much less 
than the error in the ensemble mean forecast. This 
indicates that the multi-analysis ensemble is unlikely 
to be useful without further modifications, which will 
be discussed later. The spread is also less than is 
seen with the poor-man’s ensemble (c.f. figures 1 
and 3) indicating that there are some uncertainties 
sampled by that ensemble which are not accounted 
for here. 

How do the results of figure 3 compare with what 
can be achieved using a traditional ensemble where 
ensemble members are created by perturbing a cen­
tral analysis? Figure 6 shows comparable results for 
the Met Office ensemble (MOGREPS) (Bowler et al., 
2007). The perturbations to the initial conditions are 
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Figure 4. Root-mean square error of forecasts of 850hPa wind 
speed, and RMS spread of ensemble 
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Figure 5. Root-mean square error of forecasts of 850hPa tempera­
ture, and RMS spread of ensemble 

created using the Ensemble Transform Kalman Fil­
ter (ETKF) (Bishop et al., 2001) and the forecasts 
are run at N144 resolution (around 90km in the mid-
latitudes). The control forecast is run at N144 resolu­
tion and is started from the high-resolution analysis, 
but without any perturbation. From this figure a num­
ber of things are apparent. The perturbed ensem­
ble members are much less skilful than any of the 
control forecast, the ensemble mean forecast or the 
high-resolution forecast. The control forecast and 
the ensemble mean are less skilful than the high-
resolution forecast. One may note that the ensemble 
mean forecast is slightly less skilful than the control 
forecast. This is believed to be due to the ensemble 
spread being slightly too large. 

The improvements in the ensemble mean fore­
cast for the multi-analysis ensemble over a number 
of variables, relative to the high-resolution forecast 
are shown in figure 7. The results have been com­
piled by finding the sum of the RMSE values for each 
forecast lead time, out to T+72, and weighting the 
sum linearly so that T+0 values receive weight 1, 
and T+72 values receive weight 0.5. The percent­
age improvement of this sum relative to the high-
resolution forecast is reported in figure 7. An index 
of these values has been created to mimic the NWP 
index used by the Met Office, using weights shown 
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Figure 6. Root-mean square error of forecasts of 500hPa height, 
and RMS spread of ensemble for MOGREPS. Each of the ensem­
ble member forecasts have a much higher RMSE than the high-
resolution forecast, and the ensemble mean forecast is worse than 

the high-resolution forecast at all lead times. 
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Figure 7. Index of forecast quality for an ensemble consisting of the 
deterministic forecast, and two lower-resolution forecasts 

in table I. The error bars are the two standard devi­
ation estimates of each value, estimated from the 
standard deviation of the component RMS errors, 
and using an estimate of the number of spatial and 
temporal degrees of freedom in a similar set of fore­
casts. Since these are two-sigma error bars, they 
represent 95% confidence intervals on the improve­
ment in the ensemble mean forecast. The number of 
degrees of freedom are derived using the Z method 
as described by Wang and Shen (1999). For all but 
the 850 hPa wind speed, the ensemble mean fore­
cast is more skilful than the high-resolution forecast. 
The benefit of the ensemble mean varies with vari­
able considered, but the index is 4% higher for the 
ensemble mean than the high-resolution forecast. 
This benefit comes from the averaging in the ensem­
ble mean forecast, and the ensemble members per­
form with similar skill to the high-resolution forecast. 

Figure 8 shows similar summary results for 
the MOGREPS ensemble. As was seen for 500 
hPa height the ensemble mean forecast is less 
skilful than the high-resolution forecast. For some 
variables, such as 500 hPa temperature, MOGREPS 
performs better than the high-resolution forecast. 
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Variable Weight 
Height at 500 hPa 

Temperature at 850 hPa 
Temperature at 500 hPa 
Temperature at 250 hPa 
Wind speed at 850 hPa 
Wind speed at 500 hPa 
Wind speed at 250 hPa 

0.25 
2 

1.6 
1.2 
1 

0.5 
0.85 

Table I. Weights given to forecast variables in order to calculate an 
index of forecast quality. 
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Figure 8. Index of forecast quality for the MOGREPS ensemble 
mean. 

Overall, the results are clearly worse than for the 
multi-analysis ensemble. 

Relative values for this index of forecast vari­
ables for all the experiments described in section 3.2 
are shown in table II. This also shows the root-mean­
square differences between the forecast members. 
All of the low-resolution forecasts have large differ­
ences with the high-resolution forecast, indicating 
that change of horizontal resolution is an important 
component in generating spread in a multi-analysis 
ensemble. The next most important differences are 
created by the perturbed departure points scheme. 
Although this scheme degrades the forecast, the 
extra difference that it creates with the reference 
forecasts means that the ensemble mean of the high-
resolution and member 7 is the most skilful fore­
cast combination. Surprisingly, the control forecast 
appears more skilful than the high-resolution fore­
cast. Although this result is not statistically signifi­
cant, it appears to be largely due to the better fore­
casts of the low resolution model of temperature and 
wind speed at 500 hPa, and wind speed at 250 hPa. 

The member which uses a 3D-Var analysis 
(member 4) gives a noticeably worse forecasts than 
the high-resolution, demonstrating the benefits of 
the more sophisticated analysis scheme. However, 
because there are substantial differences between 
this forecast and the control forecast (around 43% of 

the RMSE of the high-resolution forecast) this degra­
dation is not reflected in a degradation of the ensem­
ble formed by member 4 and the high resolution 
forecast. The differences between member 1 and the 
control forecast are small - indicating that two paral­
lel assimilation cycles will produce very similar fore­
casts. However, the feedback of a different forecast 
model onto the analysis is significant. The difference 
between the member using the control analysis but 
high-resolution forecast model (member 8) and the 
high-resolution forecast is much larger than the dif­
ference between member 8 and the control forecast. 
Therefore, it is the differences in the analyses of the 
high-resolution and control forecasts that are most 
important, not the differences in the forecast model. 

Using root-mean-square error as a measure 
of the forecast quality is known to have deficien­
cies, since a forecast may be improved by a sim­
ple smoothing algorithm. RMSE heavily penalises 
any large deviations of the forecast from the verifi­
cation, through the use of the square of the error. 
When a simple smoothing (box-averaging with length 
of side between 3 and 15 grid-points) is applied to 
the deterministic forecast, the maximum reduction 
of the RMSE for the index of forecast variables is 
around 2.6%. This suggests that the averaging of 
the ensemble mean is more beneficial than can be 
achieved by a simple smoothing, which supports the 
results found by Toth and Kalnay (1993). The com­
parison between the multi-analysis and MOGREPS 
ensemble means is not prone to the issue of using 
RMSE, since the means of both ensembles are 
constructed similarly. Hence the conclusion that 
the multi-analysis ensemble is able to improve the 
ensemble mean in a way that traditional ensemble 
cannot is not susceptible to issues related to the 
choice of verification measure in the same way as 
comparison with a deterministic forecast. 

5 Practical considerations 

5.1 Dealing with the ensemble spread 

In this paper, we have focused entirely on the per­
formance of the ensemble mean forecast in terms 
of RMSE. Another important aspect of an ensem­
ble prediction system is the spread of the ensemble. 
From figures 3 to 5 it can be seen that the multi-
analysis ensemble has slightly less than half the 
spread that would be desired for a perfect ensem­
ble. Originally, when embarking on this study we 
had hoped to produce a well-calibrated ensemble for 
which each forecast is almost as skilful as the high-
resolution forecast. A poor-man’s ensemble (see fig­
ure 1) is close to this goal. This, however, may be 
out of reach for a single-model system as described 
here. 

Since it has now been demonstrated that it 
is possible to generate some ensemble spread 
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Ensemble member High-res Control 1 2 3 4 5 6 7 8 
RMSE 1.000 0.990 0.989 0.991 0.987 1.005 1.015 1.013 1.007 1.008 

RMSE (average with hi-res) - 0.970 0.969 0.968 0.964 0.973 0.963 0.961 0.959 0.973 
RMS difference hi-res - 0.471 0.476 0.489 0.509 0.510 0.616 0.619 0.615 0.514 

RMS difference control 0.471 - 0.149 0.187 0.250 0.436 0.423 0.431 0.425 0.329 

Table II. Summary of the results for each ensemble member configuration and the differences between each member in terms of the index 
of forecast variables. The numbers in this table have been normalised by the RMSE of the high-resolution forecast. 

without degrading individual ensemble members, 
it is reasonable to work to avoid degrading each 
ensemble member more than is absolutely neces­
sary. One possible way to gain the benefits of a 
multi-analysis ensemble, whilst maintaining a large 
ensemble spread is to use a system similar to that 
tested by Evans et al. (2000). This involves generat­
ing ensemble perturbations, such a singular vectors 
or ETKF perturbations, which degrade the ensemble 
member forecast performance, and adding these to 
the ensemble of analyses. Since the multi-analysis 
ensemble already has some spread, these perturba­
tions may be smaller in amplitude than if they were 
added to a single analysis, meaning that the ensem­
ble member forecasts will be more skilful when con­
sidered individually. Another approach would be to 
perturbed the observations used by each of the anal­
ysis schemes (Houtekamer et al., 1996). However, 
one would have to be confident that the perturbations 
to the observations did not introduce undesirable fea­
tures in the assimilation. 

The TIGGE (TIGGE, 2005) multi-model ensem­
ble is very similar to the multi-centre ensemble con­
sidered by Evans et al. (2000). However, each fore­
cast centre will calibrate its own ensemble to have 
approximately the same spread as the error in its 
ensemble mean forecast. Since the spread of a poor-
man’s ensemble is substantial (see fig. 1) these 
perturbations may be larger than necessary. Ide­
ally, one would reduce the size of the perturbations 
applied to each contributing centre’s ensemble to 
ensure that the resulting multi-centre ensemble is 
well-calibrated. 

5.2 Computer time comparison 

One difficulty with a multi-analysis ensemble is that 
the analysis system is computationally expensive, 
and running a number of analyses would require 
compromises in other parts of the forecasting sys­
tem. Table III gives typical computational costs (in 
CPU seconds on the NEC SX6 at the Met Office) 
for the various forecasting system components. A 
standard forecast cycle consists of 8 6-hour 4D-Var 
analyses per day (each analysis is repeated once the 
full set of observation data has been received). Addi­
tionally, 2 forecasts are run to T+171, 2 forecasts are 
run to T+70, and 4 forecasts are run to T+12. 

Rather than run a full forecast cycle, one might 
run an extra data assimilation cycle without forecast­
ing, to provide extra initial condition perturbations 
for an ensemble forecast. Removing the forecast­
ing burden substantially reduces the computational 
cost of running such a system. However, the cost 
is still equivalent to over 20 ensemble members (10 
members per cycle for 2 cycles per day). This would 
entail a large increase in the computational cost of 
the ensemble suite. Since the 3D-Var data assimi­
lation method is much less expensive than 4D-Var 
it is more realistic to run such a scheme to provide 
extra initial conditions for an ensemble. The cost of 
such a system is less than 4 ensemble members, 
thus representing less than a 10% increase in the 
cost of ensemble forecasting at the Met Office. 

Also included are tentative estimates for running 
an N512L90 forecast model, which would give a hori­
zontal resolution of around 25km in the mid-latitudes 
(with an assumed 10 minute time-step which com­
pares with the 15 minute time-step used by the 
N320 model). This is included because ECMWF 
recently upgraded their high-resolution model from 
T511 (∼ 40km) to T799 (∼ 25km). This upgrade only 
improved the performance of the 500 hPa height 
forecast by 1% in the northern hemisphere (Martin 
Miller, personal communication) which is less than 
the improvement we report here. It should be noted 
that since the resolution upgrade some problems 
with the data assimilation system have been identi­
fied and addressed. Nonetheless, a 4% improvement 
in forecast quality typically represents between 1.5 
and 2 years development of the Met Office forecast 
system. 

One extra comparison is between this system 
and the ensemble Kalman filter, which is the sub­
ject of much study (Houtekamer and Mitchell, 2001; 
Ott et al., 2004). The EnKF requires a very large 
number of ensemble members (∼ 100) in order to 
provide forecasts of comparable quality to 3D-Var 
data assimilation systems. This is a prohibitively high 
cost, and is likely to remain high for the foresee­
able future. It may be possible to reduce the number 
of ensemble members, but this would require sup­
plementing the background error covariance matrix 
with one generated from a long time-series of statis­
tics (Hamill and Snyder, 2000). Although 4 dimen­
sional versions of the EnKF are possible, if the EnKF 
uses a static background error covariance matrix, 
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then it becomes the equivalent of a 3D-Var anal­
ysis scheme. This implies that for an EnKF to be 
competitive with 4D-Var than it must avoid the use 
of static background error covariances through very 
large ensembles. Therefore, investigating methods 
which can provide improved analyses at the cost of 
performing a small number of additional analyses 
may provide a better way forward. 

6 Conclusion 

In this paper, results from a multi-analysis ensemble 
have been shown. The aim of these tests has been 
to mimic some of the properties of a poor-man’s 
ensemble, in particular the improved performance of 
the ensemble mean forecast in the short-range. This 
has been achieved, with the RMSE of the ensemble 
mean forecast less than the high-resolution forecast 
for all quantities, except wind speed at 850 hPa. Most 
notable is that the ensemble mean forecasts of 500 
hPa height are better for the multi-analysis ensemble 
than for the high-resolution forecast. It is not possi­
ble to achieve this improvement for short-range fore­
casts using “traditional” ensembles. Therefore, this 
is one respect in which an ensemble of analyses 
is intrinsically superior to all other ensemble meth­
ods which depend on a single analysis. Comparisons 
with a simple smoothing method applied to the deter­
ministic forecast have shown that the multi-analysis 
ensemble improves the ensemble mean forecast by 
more than is possible by using simple smoothing 
alone. 

By focusing on the ensemble mean performance 
it has been possible to generate a certain amount 
of spread in the ensemble without degrading the 
quality of individual ensemble members. For such an 
ensemble the interpretation of the products is made 
simpler, since each forecast from the ensemble is 
equally likely to occur. 

These tests have given an insight into why a 
poor-man’s ensemble is an effective forecasting tool. 
Experiments with the random thinning of observa­
tions have shown that this source of uncertainty has 
a small effect on the forecast. Much more signif­
icant are the choice of model resolution and the 
background error covariance matrix. These will affect 
the determination of the current analysis, but their 
effect will also feed back to the initial conditions 
through the repeated iteration of analysis cycles. 
The chaotic nature of the atmosphere, amplifying 
small differences between forecasts, serves to mag­
nify the importance of this feedback. Therefore, we 
assess that the initial condition spread in a poor-
man’s ensemble derives from differences in model 
formulation, such as described above, which amplify 
through a repeated analysis cycle. Differences in the 
resolution of the forecast model have a larger impact 
on the analysis than differences in the resolution of 
the forecast model alone. 

In order to gain the benefit from a multi-analysis 
ensemble, whilst generating an ensemble forecast 
with appropriate spread, it may be necessary to 
include initial condition perturbations which degrade 
the forecast. Such a set-up was tested by Evans et 
al. (2000). This kind of system is also very similar 
to that of the TIGGE multi-model ensemble (TIGGE, 
2005). Given that the spread of a poor-man’s ensem­
ble is often quite close to the RMSE of the ensemble 
mean forecast (see figure 1) the initial condition per­
turbations in this set-up will need to be quite small, 
which is not the case with TIGGE. Therefore, post­
processing of TIGGE forecasts may be necessary to 
reduce the spread of the contributing ensembles in 
order to achieve a well-calibrated ensemble. 

The computational cost of the multi-analysis 
ensemble has been examined. The cost of running 
a separate N216L50 forecast cycle is similar to the 
cost increase in upgrading from a 50 to a 70 level 
version of the N320 forecast. A 3D-Var analysis is 
much cheaper than this, although the forecasts pro­
duced from this system are inferior to those pro­
duced using 4D-Var. However, the forecast improve­
ment from combining the low-resolution 3D-Var fore­
cast with the high-resolution 4D-Var forecast is still 
around 2.5%. 

In the case of a “traditional” ensemble it is a 
simple matter to choose a-priori the best member ­
provided that the verification region is large enough 
- the control will be the best forecast. In the case of 
a multi-analysis ensemble each member is approxi­
mately equally likely to the best member. This raises 
questions about the use of deterministic forecasts ­
how does one choose between a set of different fore­
casts of approximately equal skill? One may consider 
running a forecast from the ensemble mean analy­
sis, but this would be a poor proxy for the ensem­
ble mean forecast itself, since much of the bene­
fit in the ensemble mean forecast comes from the 
smoothing of uncertain features. On the other hand, 
using the ensemble mean forecast may be seen as 
unacceptable since it does not contain small-scale 
information. One solution could be to choose the 
individual member closest to the ensemble mean 
over the area of interest, or if identifiable, the mem­
ber closest to the mode. The problem of choosing 
between forecasts of approximately equal skill has 
been present for many years due to the existence of 
poor-man’s ensembles, though political and opera­
tional constraints have hindered NMSs basing their 
output on data from external sources. Now these 
constraints may be mitigated by the use of a multi-
analysis ensemble. 

Further avenues of study include running such 
a system for a second case, for a longer series of 
forecasts. This will allow a greater level of confidence 
in the improvements gained from a multi-analysis 
system. Since resolution plays a very important part 
in the benefits from a multi-analysis ensemble, a 
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Forecast system component CPU time (SX6 seconds) Ensemble member equivalent 
UM forecast (N144 T+72) 5,143 1 
N320L50 forecast cycle 
N216L50 forecast cycle 
N216L50 analysis cycle 

N216L50 (3D-Var) analysis cycle 
N512L90 forecast cycle 

458,696 
205,384 
110,732 
18,344 

2,264,647 

89.19 
33.93 
21.53 
3.57 

440.34 

Table III. Average computer time (equivalent on one processor of NEC SX6) for components of the operational suite 

Member 2

Truth

Member 1

e  − e2 1

ee 2 1

Figure 9. Index of forecast quality for the MOGREPS ensemble 
mean. 

For the ensemble mean to be closer to the truth 
than ensemble member 1, we require 

1 1 
2 
�e1� + 2 

�e2� − e1.e2 < �e1� . (8) 

Re-arranging this and writing in terms of the notation 
of equation 1 then we find 

1 1 
MSS > 

2 
MSE(member2) − 

2 
MSE(member1). 

(9) 
Thus, for the two-member ensemble to have smaller 
errors than either forecast individually, then the sec­
ond forecast needs to be more different from the 
first forecast than it is worse. It is for this reason 
that the mean-square differences between the high-
resolution and low-resolution forecasts are reported 
in table II. This also illustrates that although the per­
turbed departure point scheme degrades the fore­
casts, it introduces even greater differences with the 

logical next step would be to test differences in 
the inner-loop resolution of the analysis system. In 
addition testing different estimates of the background 
error covariance matrix may yield further benefits. 

At this stage, one returns to the quote of George 
Box “All models are wrong, but some are useful”. 
From the work presented above we have a better 
understanding of how to define useful - a model 
is certainly useful if it can improve the ensemble 
mean forecast. However, we are still a long way from 
understanding why an ensemble of configurations of 
the same model should be more useful than just one. 
Why can a forecast from a low-resolution version of 
a model add useful information to forecasts from a 
high-resolution version of the same model? 
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Appendix: A vector explanation of the ensemble mean 
error 

As an extra explanation of why an ensemble 
approach works, we consider the conditions under 
which an ensemble of two members has a lower 
RMSE than either member. Figure 9 shows a vector 
illustration of the errors of two forecasts. The truth is 
taken as the origin of the diagram, e1 is the error of 
the forecast from member 1, and e2 is the error of the 
forecast from member 2. From this representation it 
is clear that the error of the ensemble mean forecast 
is

1 1 1 reference forecast, and hence improves the ensem­e1 + e2 

2 
= 

4 
�e1� + 4 

�e2� + 2 
e1.e2 (6)
 ble mean. 

The condition described in equation 9 explains 
why adding a poor-quality forecast to a poor-man’s 
ensemble can improve the ensemble mean. Pro­
vided that the forecast is more different to the other 
forecasts than it is worse, then the ensemble mean 
will improve. For “traditional” ensemble the ensem­
ble mean is equal to the control in the short range. In 

where �.� denotes the square of the length of the 
vector (mean square error) and e1.e2 is the scalar 
product of the two errors. Similarly, if we consider the 
difference between e2 and the error of this ensemble 
mean (in effect the mean square spread of the two-
member ensemble) then its length is given by 

e2 − e1 

2 
1 1 1 this case each ensemble member is exactly as much 

(7)
= 
4 
�e1� + 4 

�e2� − 
2 
e1.e2. worse than the ensemble mean as it is different. 
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