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Introduction

In this talk I shall describe:

fhe the Met Office mesoscale model

2. the description of surface exchanges in the mesoscale model.

S a simple experiment to discover, in selected situations, the comparative
effects of varying the parameters that determine the nature of the surface.

L, the effect of varying the surface resistance to evaporation on a simulated

sea breeze in Florida.

The Mesoscale Model

The basic formulation of éhe model has been described by Tapp and White (1976).
It was developed as a prototype local weather forecast model, and also in order to
study the whole range of mesoscale phenomena e.g. rainbands on fronts, gales, sea
breezes and convective storms. The study of mesoscale systems is carried out because
it is interesting, because an understanding of the controlling mechanisms will
hopefully lead to improved forecasts and in order to improve the parameterisation of

mesoscale phenomena in larger scale models.

There are two aspects to modelling local weather systems. The effects of
orography and topography require a full three dimensional model of the sort developed
ﬁy Tarp and White, but many features of boundary layer structure (e.g. the clearing‘
of stratocumulus) can probably be modelled very well with a one-dimensional model.
These two aspects come together in the study of sea breezes, for which the effects
of orography and topography are of basic importance but for which the timing, vigour

and inland penetrative could be sensitive to the surface exchanges of heat and

~. momentum. An example showing 50m wind forecast by the mesoscale model for the



U,K. on a good sea breeze day is given in Fig 1.

In the form that produced the forecast shown in Fig 1, the model has a grid
of 61 x 61 points and 10 levels. The horizontal grid length is 10 km, and the
levels are at irregular intervals with the lowest level at 50m and the highest at
LOOOm. The finite difference scheme is (mostly) second order accurate and uses a

staggered grid. The model equations are
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The remaining rotation is standard.

Boundary layer turbulence is modelled through the vertical diffusion term on
the right of equations 1 to 4. By implication, the flux of any quantity is always
down the gradient. There remains the problem of specifying the diffusion coefficients.;
The present calculation of these coefficients hasonly aweek basis in theory or observation,

but is desinged to ensure the development of awell mixed boundary layer capped by a sharp



inversion in dry conditions with strong surface heating. The diffusioncoefficient close to
e the surface ensures continuity with the surface fluxes, and the diffusion coefficient
at the level of the inversion ensures a downward heat flux which is a fixed fraction

(0.2) of the upward heat flux at the surface. Carson(1973), Tennekes(1973).

"There is a convective adjustment in the model that prevents lapse rate
instability developing. The hydrological cycle and orography have been included in
other versions of the model, but are absent from the model‘gjving the results shown
here. Similarly, the effects of radiation are excluded except insofar as they

(and humidity) are required in order to calculate the surface exchanges.

Surface Exchanges

- If

is the surface flux of momentum (a vector)
is the surface flux of sensible heat

is the surface flux of water vapour

is the heat flux into the ground and

is the net radiation flux: into the surface
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where éza is the density of air,
(Lb and Cy are both transfer coefficients and
CV is humidity mixing ratio.
Suffix "O" indicates a surface value, and suffix "1" a value at the lowest model

level.



Over the sea the surface temperature and humidity are held constant (100%
relative humidity) and the roughness length 2, used in the calculation of Cﬁ>

gy Y
and C (see below) is always 10 'm.

The net radiation is given by
R=¢ + B, =8, (10)

where S is the specified solar radiation (after taking account of albedo and

atmospheric absorption),
K%
@0’0\'90

is the long wave cooling of the surface and

IZ = A 0O~ E;. i ( & = C).()é?)

is the downward flux of long wave radiation, which has been calculated from the

()

temperature at the lowest model level

The heat flux into the ground is calculated using a two level model that is
intended to reproduce the properties of uniform homogenous soil. The equations

governing the diffusion of heat in such an ideal medium are
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wh2re 2 is depth into the ground,

f?g is &£0il density
C$ is soil specific heat capacity and
I{ is soil thermal diffusivity.

By replacing the depth & by
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; all parameters except ZES Ce Jl@ can be eliminated from 11 and 12. The

model used for G is S o
5 ' o 3
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: : h, (=2125.T.) and \(=8.54x107>8.T)
where hﬁ(s&3¢5$¢1p)ol~ are chosen so that equations 13 and 14 reproduce the
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properties of 11 and 12 for variations with periods of a day or less, and

95 is a "soil temperature''.

%
A comparison between ground heat fluxes calculated from 13 and 14 and from 11 and

12 is given in Fig 2 . Fig 3 shows that the ground héat flux can have a
(2)

maximum comparéble with those of the other heat fluxes if the value chosen for

@s Csm is typical of slightly moist soil (950 mks).

In addition equation 8, the surface evaporation is given by

E - eu = - Cp 2)

which incorporates the idea of a surface resistance to evaporation (Monteith(1964)).
The surface mixing ratio CLC, can be eliminated from 8 and 15, and is never

calculated in the present model.
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The humidity difference
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is required for the calculation of the surface layer stability parameter Qi
(equation 19). The surface resistance " is calculated by specifying a value
f; that is believed to be typical during the day of the vegetation, soil

conditions and season appropriate to the current study, and then using

* In both cases the full surface exchanges scheme described in the text was used
with specified incident solar radiation.
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This diurnal variation of ¥ ’is believed to be broadly realistic, but ignores the
effects of increasing physiological stress during the day, and can have the

intefesting effect illustrated in Fig 4 at dawn and dusk.

The equations for the surface fluxes are closed by the specification of the
bulk transfer coefficients Cy and Cy . These are functions of two dimensionless

numbers, which are

TE/}C” where % is the height of the lowest level and 2_ is the roughtness length,
and the bulk Richardson number ﬁl] 3 -

R, = a"%ﬁ ( 8- 98406l06,(q -q.)) (19)

and are calculated by bi-linear interpolation between entries in a table. The table
of values for Cy and Cu has been calculated from Monin - Obukhov similarity theory,

which gives
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|{ is the von-Karmon constant (0.4 isused) and

(bﬂ and c?q are the Monin - Obukhov similarity functions defined by
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in the usual notation. The expressions used for qbu and qbf1 are
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in stable conditions (Webb(1970))
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in unstable conditions (Dyer(1971)).

In very unstable conditions this calculation is abandoned in favour of free

convection similarity theory, which gives

S b yg(u,»}/}(};—l 553 o

The transition between the two expressions is made, for given 12/3‘> s at

: dCu
the value of {14 for which they give equal '—EJQ Lt The constant of proport- |

ionality in equation 28 is fixed by imposing continuity at the transition.

Varying the Surface Parameters

-

In the model described above there are only three parameters available to

describe the nature of the surface.

eg ¢ 2ITA (ground heat flux)
pioh (roughness length)
r; (surface resistance to evaporation)




In order to assess the comﬁarative and absolute effect of using different values ’*W
for these parameters, the surface exchanges model was integrated with different

values for the parameters for three days (the third day gives tpg same results as g
the second day) with the atmospheric conditions at 2 = 10m held constant.

Five sets of values for the surface parameters*were used

1 2,=5cm, p ¢ Ji2 = koo nks, Iy =50 sec e
2 20 cm 400 50
3 5 1400 50
b 5 400 100
5 5 . 400 50

and 5 sets of atmospheric conditions at 10 metres were used (25 integrations in all)

A B, =380 q, = 0.01 Juel = 5 m sec™
B 290 0.015 2m sec—1
c 285 ' 0.01 2m sec-ll
D 290 0.015 5m sec|
E 285 0.01 Biiiaar!

The solar radiation represented a clear spring day in England.

The mirface parameters are the same for 1 and 5, but the definition of the bulk_
Richardson number R was modified in 5 in order to assess the importance of a
correct calculation of the transfer coefficients (LD and Cy 3 the calculation used
in 5 was

D g}x (0 B B

e

The results from B and C were similar, as were those from D and E.

» A realistic range of Z, values is rather higher than values that are usually observed
because hedges, buildings and trees will introduce effects that are usually deliberately
ignorede CCJT{ =400 is a reasonable value for a wide range of dry soils, QC—R=1LDO_,\

| is reascnable for a w;q.e range of moist scils., r_=50sec m is slightly high for

... grassland rs=100sec m is typical for forests.

B



Fig 5gives the surface exchanges in case A1, and Fig 6 shows the sensible

heat flux for the 5 different surfaces. In this situation changing '2_ had

- the most effect, varying F} had a comparable effect but no ch;nge was very significant.

Fig 7 shows the sensiblé heat fluxes for situations B “+ In this case
changing the surface resistance Ty has the most marked effect, and changing ETC.LH?
has some effect. Figs 8 and 9 show the surface fluxes for case B with, respectively,

low and high values for fg (surfaces 1 and 4).

Fig10 shows the surface fluxes for situation D , and Fig 11 the
comparative sensible heat fluxes for case D. Here again, changing [; has the
most effect during the day, but at night the sensible heat flux is sensitive to the
calculation of the transfer coefficients CD and CH' This is probably because the
sensible heat flux is not a monotonic function (for given wind speed) of the

surface temperature in stable conditions, a fact that should be expected to cause

problems in a 3D modelling context.
These comparisons, in particular that between Figs 8 and 9, show the importance
of the surface resistance to the calculation of the surface exchanges, in particular

the sensible heat flux.

Florida Sea Breeze Case Study

The remaining figures:show the effect on a simulation of sea breezes over
Florida of varying the surface resistance to evaporation. The values used for
were 50 sec metre"1 and 100 sec metre-1 and it is quite clear that the higher surface
resistance produces a more intense sea brecze that penetrates some 20 km further

inland.

Conclusions
It seems that the surface resistance to evaporation is the most important

surface parameter in determing the calculation of surface exchanges. The surface

resistance is well known to depend on the crop covering the surface, the condition

ST



of the crop and the condition and nature of the soil. In the present context,

the values chosen should not represent a single crop but a variable combination

of roads, hedges, rivers and forests all of which can be present in a 10 km square.

Footnote

»

(1) Mr J BStewart suggested that 0.68 were a rather low value for a. I replied that

the present value gave a low equilibrium value for surface temperature at night and

this experience suggested that he was correct.

(2) Prof J L Monteith pointed out that ground heat fluxes of this magnitude are

not observed beneath vegetation cover, and suggested that this may be because of the

insulating layer of &ir trapped by the vegetation. I agreed, but pointed out the

_difficulty of describing the variation between deep vegetation cover and no vegetation

2

that.could occur within an area of 100 km .
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