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Met O 11 Technical Note no. 196 : Sl

Solutions in flow over topography using a Geometric Lagrangian Model.

Summary .

The Geometric Lagrangian Method (Chynoweth 1984) is extended to a
problem on a non—convex domain with general data. The algorithm is then

\ ~ applied to a case study of frontal flow across the Alps.




1. INTRODUCTION

In this paper, the algorithm described in Chynoweth (1984) (hereafter
referred to as "C") will be extended to consider the case of
two—dimensional frontal flow over topography. The model is essentially a
two dimengsional Lagrangian conservation form of the Semi-Geostrophic -
Equations. These are solved by geometric construction.

Undér certain restrictions, the Primitive Equations can also be
modelled using this method. This involves calculating a correction to the
momentum of an element from its horizontal acceleration. The restrictions
are imposed by stability considerations.

The algorithm was applied to a case involving the passage of a cold
front across the Alps after Buzzi and Tibaldi (1978) (hereafter referred to
as BT). The case was actually a study of cyclogenesis and so not all
aspects of the motion could be modelled with a two dimensional method. The
data was extracted from vertical cross-sections reproduced in the paper.

The incorporation of the topography into the model is by a method
which acts on the mass conservation properties of the flow, yet permits
fluid to travel through the mountain. This "porous" representation was
chosen in preference to a barrier due to the non—-uniqueness of the solution
if the mountain is impermeable and the extremely non-trivial logic which
results. However some justification can be made for this model which will
be given 1atgr.

The method can be considered in several natural sections. Firstly the
discretisation of the data into pieqewise constant elements will be
described. Fo;lowing this will be the first guess procedure, the geometric

construction involving the topography and the iteration towards the correct




solution. Two ways of inserting the neglected terms to give solutions to
the Primitive Equations will be described. Finally the results from the
experiments will be discussed.

2. DATA DISCRETISATION

In contrast to standard Eulerian or semi~Lagrangian numerical methods,
the geometric method is totally Lagrangian. Therefore, instead of
considering a spatial distribution of fluid properties, it is important to -
look at the conserved quantities of individual fluid parcels (namely the
potential temperature ©, the absolute momentum M and the area A). The
geometric algorithm requires these three quanﬁities to be prescribed for
each fluid element. Following an Eulerian inspiged philosophy one would
discretise over A by sectioning the initial field into elements of uniform
area, and then calculate relevant values of M and ©. A more Lagrangian
approach, and the one which ié followed, is to uniformly partition tﬁe M
and © fields and then to calculate the area of fluid appropriate to each -
pair (Mi, €i). This can be done since dynamical stability requires M and ©
to be monoéone in x and z respectively.

Thus consider a vertical cross—section through the atmosphere
described in the usual sense by the coordinates (x,z). Let € be a convex
region within this cross-section which includes the topography. T is a
cross—section through the topography in the same plane as Q€ such that

af c n‘.c : : :
aT will be approximated to be a.rectangle of area equal to the mountain
cross—section for ease of computation. It will be seen that only the
volume of the mountain is important if it is treated as porous.

Let the region in (x,z) space over which the problem is considered be

Q= 0c \\' aT (see figure 1)




For each €1, there exists some

G = (M(x), 6(x))

i

Define I {Y\y = (M(x), 6(5)) for some Een.)

Since @M » 0 and 90 2> O, define G™1: I - 0
ox oz

The piecewise consgtant discretisation of I takes place as follows.
Uniformly partition I' into N rectangular segments, g;j say, ascribing to

each element the (M,8) value of its centroid. Map gj into © and calculate

A = J JG‘l(gi) dxdz

This defines a set ( <ﬁi,ei,hi>| i=1,..,N ) as required by the algorithm.
See figure 1.

(BT) describes a case study of cyclogenesis in the lee of the Alps in
April 1973. An active depression moved eastwards from the British Isles to
the Baltic with a trailing cold front moving across the Alps ahead of a
cold northwesterly airstream (see figures 2, 3). Cyclogenesis occurs at
the front as it crosses the Alps, eventually developing into a cutoff mid
tropospheric depression. :

Vertical cross sections perpendicular to the front are produced using
data interpolated from nearby upper air stations (figure 4, 5). These show
potential temperature and the normal wind component in knots. The absolute
momentum field is easily derived using the expression

M=v + fx,

where v is the normal wind component in ms—l and f is the Coriolis

parameter (taken as 10~%s—1l),




 was then partitioned by inspection into N elements (24} i=1,..,N}), of
uniform intervals in (M,0) except at the boundaries where some
representative value was chosen. Similarly in the neigbourhood of the
tropopause very little change in the fields takes place and thus a coarser
subdivision is used.
3. FIRST GUESS PROCEDURE

Given {<Mj,fi.Aj>| i=1,..,N}, we require a sét ssi\i=l,..,N} such
that if ~

d(x,2z) = max { xMj + 205 + 85 } ; (1)
1<j<N

then ¢(x,2) = x Mj + 205 + 8j <=> (X,2) €0Qj

In order to construct the correct convex shell (1), the iteration
requires a first guess sufficiently close to the solution. Due to the more
general nature of the data, the analytié first guess described in (C) is no
longer useful.

A multigrid procedure is used based upon successive refinement of the
(4,6) grid.
r is initially divided into two segments

g1 = {(M,0) el |Mc M)

g2 = {( (M,0) e’ |[M2M' )
for some central M'.
These correspond'to two "macro eléments“

2113 =61 (gy1) =UQ0;
Mj <M*

M2 =61 (gi2) =U04
Mj 2 M'



The values of momentum and temperature for thg two macro—elements are
obtained by area-averaging the gradients of the basic elements contained
within them. This two element problem over © can then be -trivially solved
using a simple iteration to obtain a difference in 8 between the two
elenments.

g1l and giz are then subdivided:

g21 = { (M,0) e¢gy1 | @ < ©' )
g22 = ( (M,0) eg11 | © 2 ©' )
/923 = ( (M,@) e¢g12 | © < ©' )
g24 = { (M,0) eq12 | @ 2 €' )

for some central 6°'.

Defining 125 = G-1 (gzi) for i=1,2,3,4 one obtains two more two
element problems. These are solved over 33 and fl32 respectively. This
recursive procedure continues until no ﬁore subdivision is possible. The
resulting set { sjli=1,..,N ) will not be an exact solution to the problem
as the boundaries between the macro elements are not modified after the
'next subdivision problem is solved. However the result should be close
enough to the final solution to act as a first guess for an iteration based
upon a linearization of the problem which will be described later.

4, GEOMETRIC CONSTRUCTION

Given the set { sj¥ | i=1,..,N} and (<M;j,®j,Aj>: i=1,..N}, the convex

shell

-

¢o¥X(x,z) = max (xMj + z.05 + 8iY)
1€i<N

ig constructed as described in (C). For ease of computation this procedure
acts on a rectangular domain and so we first consider the shell over the

whole of 0, that is ignoring the mountain. Certain fluid elements will




now lie wholly or partly in 0T, Consider such an element, 1§, where
QT n Qjf o.
In the case where no topography is present, the area of an element

03ir, is calculated on the rth construction:

Ai = J Jnridxdz

and then Ssir : 1l <1< Nf is adjusted such that Ai¥ -~ Rj as r increases.

In the topography case we redefine

X = = 7
A] J Iﬂir dxdz J JnjrnnT dxdz

and iterate over these areas.

It is this method which regards the mountain as porous. Standard
theory shows (Cullen and Purser 1984) that the uniqueness of the solution
breaks down if the domain is non-—-convex és here in the presence of a
mountain. In order to make the solution unique, extra conditions are
required. The simplest of these is to allow motion "through" the mountain.
This means that fluid cannot be trapped by orography which is the situation
that gives‘multiple solutions.

In a two'dimensional model of flow across a mountain range, this
approximation has some justification. Standard two dimensional mountain
models act as a complete block to the flow for some vertical barrier of
height roughly equal to the mean orographic height. This does not
realistically permit flow through valleys or round the mountain range as
happens in practice. However blockng of flow is still an important
mechanism and is completely igﬁored if the mountain is treated as porous.

The most realistic represntation would be a combination of the two

.



extremes. The mountain would be solid up to a height representative of the

altitude of the valleys and porous above, representing the mass
congervation but not the blocking effects of individual peaks.
Work is in progress to model a solid mountain range, and this will be |
described at a later date.
5. ITERATIVE SCHEME
After the rth iteration of the shell, assume the areas obtained are
not correct to within sufficient accuracy, ie.
Given ¢, there exists i € 1,..,N such that |AjiX ~.Ai|$e, then one must
correct the set (si¥] i=l,..,N} such that Aj¥ - Aj for all i.

For ease of notation, define the following:

AY = (AyY, Ag¥, .. , ARY)
A = (Ay, Az, .. ., BN)

r = Y r c
s (s1¥Y, 82X, .. , ®N)
s = (S1, 82, .+ + BN)

Then for g¥ sufficiently close to 8

AX — A = ((9Ri/ds3)) (8¥ - 8) (2)
Initially the segmenets are adjusted until all elements are represented in
Q, ie Ajr # 0 for any i=1,..,N. When this is the case, the linearized
equation (2) is used to define gr*l. This is done as follows: When
constructing an element, Qj say, the length 1jj of an edge with any
neighbour Q3 is easily found. In order to obtain dAj/dsj we also require
the distance &j3j which the edge QinQj moves perpendicular to itself when sj
is incremented by Asj =ay.

Define a vector r in the (x,z) plane, perpendicular to QinQj (see

figure 6a). The gradient of NinQj is given by:

2% ig oo (ML = M) - (see C)
ax |Qinny (6L ~ &)




1et£=ej—ej.l_g+i
| Mj - Mj

If r = x, |x| defines a component in the direction of x, then let

o0; = tan o

or
2y = tanp .
or
From figure 6b: tan « = Asi + a
8ij :
| . tan B = a
Sij

tanax - tang .

Let AAj = 13i3.8ij

803 = 205 dx . 203 = dz
or ax dr oz dr

since Mj = 39j and €j = 3¢ji (see C)
ax oz

Therefore tan « = Mj (Mj — Mi) + 03 (& — ©4)
(M3 ~ Mj) .|ri

[ 18

and similarly tan B = M (Mj ~ Mi) + 65 (04 — ©4)
(Mi - Mj5). (x|

The approximation is made

DY e ST
asj As

Ay = = [ 9y . ci
98 i=j osj ‘ %

and for elements with no common boundary e e
e B e 6 S ) e




From (2), sr+l is given by
Ar - A = (( Ai/asj)) (s¥ - srtl)

je, §r+1 = _s_r — ((9Risagiy)y-1 (ér - &Y

which is solved using a Numerical Algorithms Group routine. The iteration

/
is repeated until for some predefined €, || AY - All_ < €.

6. PRIMITIVE EQUATION CORRECTION

. Previously we have used the model to solve the Lagrangian Geostrophic

Momentum Equations without the presence of any forcing:

M =0

Dt

bR =0 .

Dt o K5y
bo =0

Dt

% =M, 290 =6, & = dg + 1/z £x2
ox oz )

where M = v + fx, v is the long front wind component; £ is the Coriolis

parameter, &g is the geopotential and A is the area of a fluid element.

The full Primitive Equations imply (From Hoskins 1975)

|
gies - . 1Y Y]

| u = ‘-;_l._v —2._ + 1 Vv + i (4)

i Ug g 52“9 33 g

[ "

[ vevg+l oug~- 1 .\;g-‘f.lft‘x'g-l?.. - (5%

If Mg = vg + fx then




Let xk represent the position of a fluid particle at some time to + iAt,

then let
AM = -1 (X3 — 4x2 + 4xy — Xo)
f(at)HY2
Then D¥qg E AM
Dt t=to + 3At At

2

Extending this approximation to other time steps, write

Considering theoretical stability requirements, the change in position of a
particle due to its change in momentum AM is approximately f—lAﬁ. The
actual acceleration of a particle gives it a displacement of
AX = X3/2 —4X1/2 + 4x-1/2 - X-3/2 = -f (AL)Y2 AM.
For stability of the method, we require
| £71 AM| < | —f (At)Z AM| ‘
£2 At2 > 1
At > £71 2 3 hours
However the numerical method of solving the problem introduces further
errors, so that a more stringent criterion is needed. The movement of

an element is not inherently well defined due to the variation in shape of

the element. Accordingly one considers the displacement of its centroid.
Given two neighbouring elements Qi, Qj, of momentum values My and Mz,

suppose these are subjected to changes AM», and AMz respectively.

If Mp + MMz < My + AMy |

and M > My

then O3 and 25 will change places. If Ah is some measure of the difference

in widths between the two elements, then the element can move f~1aAM +&h due

to a change of AM in the momentum.




Thus, revising the previous stability criterion,

[£71 AM(1 + Ah ) | < |£(At)Z aM|
Ax

1£2 (AL)Y2] > 1 + Ah/AX

At > £ (L + Ah/ax)l/2
However due to the variability of the element shape, Ah cannot be
predetermined. In practice the stability criterion for the data used was

At > 2f71 = 6 hours

A more physical interpretation of the above is that the primitive
equation solution will contain lee waves. The semi—geostrophic solution
imposes a dynamical stability condition on the geostrophic wind rather than
the actual wind, which is inappropriate if there are waves present.

By calculating the changes in Mg implied by the derived accelerations
Du/Dt on short time scales, we can deduce the changes in the slopes of the
preséure surfaces which would be associated with lee waves. However the
dynamical stability condition on the actual wind must still be satisfied,
so we assume that the only effect of the waves is to change the shape of
interelement boundaries without needing any rearrangement of the elements.
Thus in method (PEI), the gradients of element boundaries are recalculated
using corrected values of momentum. These are overlayed on the
Semi-Geostrophic solutién in order to demonstrate which elements undergo
large accelerations Caus;ng lee-wave activity.

(PEII) operates only on the longer time scales greater than 2f~1. A

six hour timestep is used and the solution is allowed to converge to one

satisfying the convex stability condition,




7. RESULTS

The initial distribution of the thirty six fluid elements derived from
the cross section is shown in figure 7. Results are accurate to within
approx 1.25% of the smallest area. Table 1 shows the initial values of M
and © which remain constant except in the Primitive Equation case where M
is adjusted. As can be seen from the table, except for those elements at
the tropopause, namely 03, Q2 and (3, elements take values of 6 varying
uniformly in the vertical. Therefore all non-vertical lines within Q in
figure 7 can be considered as unsmoothed approximations to isotherms at 10f
intervals. Pigure 8 shows the wind field parallel to the front in ms—L,
This was derived by calculéting, for each element i, with céntroid ®xi

vi = Mj — £.xj5

The contour map is a bicubic spline over the resulting irregular grid
of thirty-six points. .Comparisons of this field with the initial velocity
field from which the data is derived should be made Qith caution due to the
differences in the derivation of data and results. The rgstriction from
the velocity and temperature fields to piecewise constant data was ad hoc
and somewhat qualitative. The prolongation was interpolation over a sparse
mesh.

7.1 Seni Geostrophic Model

Figures 9(a and b) and 10(a and b) show the results from the
Semi—Geostrophic scheme after six and twelve.hours regpectively. No large
effects of the topography on the flow are demonstrated since the mountain :
does not block flow through it. Bowever a local steepening of the frontal
sprface can be recognised. Over the first six hours (figure 7 and 9(a)).,
the region of fluid represented by Q3p descends as' it moves past the

mountain. Meanwhile Qg rises, not because it cannot flow through the



topography but beausge it cannot remain within it. If the mountain formed a

so0lid barrier, Q3g would have been forced to rise instead of accelerating
through the obstruction. The process continues bewteen six and twelve
hours as flzg rises while fipg descends behind the mountain.

Figures 8, 9b and 10b similarly show little change throughout the
twelve hours. A slight reduction in v behind the Alps is noticeable which
could be interpreted as a tendency towards a cyclonic circulation. However
the effect is too small to draw any conclusions.

7.2 Primitive Equation Correction

Figures 11 and 12 show the results afte; six and twelve hours from
PEI. Downstream of the mountain, acceleration of the fluid has caused
large adjustments of absolute momentum, demonstrated by the changes in
element boundaries. The acceleration is primarily caused when an element,
or part of an element, moveslinstantaneously from one side of the mountain
to the other. This has some physical validity as sudden adjustments of
this type take place in reality, causing very strong winds through mountain
valleys. :

PEII (figures 1l3(a&b) and l4(a&b)) show results similar to those of
the Semi-Geostrophic solution. However differences are apparent
downstream, and immediately surrounding the mountain where acceleration
terms are important. A-comparison of figure 14(b) with figure 10(b) shows
stronger horizontal gradients in the velocity field behind the mountain,
implying a greater tendéncy towards a downwind circulation. .

8. CONCLUSION

The Geometric Method provides a useful method of studying flows such

as the one considered above.




The results demonstrate the steepening of the frontal surface as it

_ Crosses the topography. However features in figure 5 such as the retarding
of the subsiduary jet and the lower level cold front have not been produced
by the model. The conclusion is that while the mass conservation effect of
the mountain is important, the blocking effect and, in this case, the three
dimensionality of the flow are more so. Therefore incorporating solid
topography into the Geometric Method should produce useful results.

Further improvements can be made in the numerical method. A more
qualitative derivation of piecewise constant data would improve accuracy
and enable better prolongation back to the original fields. Refining the
mesﬁ by taking smaller elements would also improve representation.

However, elements should not be on scales smaller than those for which
Semi—-Geostrophic theory is valid in the neighbourhood of the mountain.
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Figure 2: 2 April 1973, 12 GMT. Mean sea level pressure. (After BT).
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Figure 32  3-Apxil 1973 00 GMT Mean sea level pressure (After BT).
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Figure 4: Cross section along the line }\—B of figqure 2; 2 April 1973, 12
GMT. Full lines: isentropes; dashed lines: normal wind component in
knots. (After BT).
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Figure $: Cross section along the line C-D of figure 3; 3 April 1973, 00
GMT. (See also fig 4). ;
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Figure 7: 1Initial distribution of fluid elements. 2 Apr11‘1973, 12 GMT.







Figure 10(a): Semi-Geostrophic solution. Element distribution 3 April 00
GMT. ;- ’
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Figure 11. PEI. Element distribution. 2 April 18 GMT Dotted lines:
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Figure 14(a) PEIX. Element 'distribution. 3 April 00 GMT.
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Figure 14(b) PEII Normal wind component 3 April 00 GMT. See Table 2 for
contour values. :




