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IMPLICIT FINITE DIFFERENCE METHODS
FOR COMPUTING DISCONTINUOUS ATMOSPHERIC FLOWS

M.J.P.Cullen
Meteorological Office,
Bracknell, Berks., UK.

1. Introduction
An important mathematical model for representing discontinuous

atmospheric flow is given by first calculating an equilibrium velocity field
from the requirement that the horizontal pressure gradient and frictional
forces balance the Coriolis acceleration due to the Earth's rotation, and that
the vertical pressure gradient is hydrostatic. In the absence of friction this
requires the horizontal velocity to be geostrophic. The momentum in the
equation of motion is then approximated by its equilibrium value, but the
trajectory is not approximated. In the absence of friction this leads to the
well-known geostrophic momentum approximation, Hoskins (1982), Salmon (1985).

Cullen and Purser (1984) showed that the frictionless equations possess
generalised solutions which may contain discontinuities.. A number of
subsequent studies, e.g. Cullen et al. (1987), have shown that these solutions
are useful simplified models of & number of atmospheric flows of direct
relevance to weather forecasting, such as the deflection of the flow round
large mountain barriers and the intensification of depressions due to
convective mass transfer. In these cases the equations can be solved exactly
for piecewise constant data by using a Lagrangian method.

In this paper we include the friction. A finite difference method is
used to solve the equations, which still admit discontinuous solutions. The
method has to be at least partly implicit, since the trajectory is determined
implicitly. A predictor-corrector method is used. The velocity field from the
previous timestep is used as a first guess, and the evolution equations
solved. The residual in the balance of forces, which should be zero, is
calculated and used to generate a correction to the velocity field. The

structure of the method is similar to that of the pressure correction method

for the incompressible Navier-Stokes equations.
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2. Model problem

The equations are for flow in a two-dimensional atmospheric cross-
section. The coordinates are x and ¢ where ¢ is pressure divided by surface
pressure. The upper and lower boundaries are therefore o= 0,1. The balance
of forces in the x direction is given by:

0¢/dx + C.oxBon/dx - fv = F, (1
where ¢ is the geopotential, C. the specific heat of air at constant
pressure, x=R/C. where R is the gas constant, n=(p./p,)” where p, is the
surface pressure and p, a reference pressure, f is the Coriolis parameter
and F,, the frictional force. There is assumed to be no pressure gradient in
the y direction, so that the balance in that direction is trivial. The
hydrostatic relation is

d¢/d0 = -RT/o 2)
where T is the temperature. The evolution equations for the y momentum and
potential temperature 8=T/(noc*) are

Dv/Dt - fu = F_ 3)

De/Dt = H 4)
where F_ is the frictional force in the y direction and H is the heat source.
The continuity equation is

Op./0t + D (p,ud/dx + b(p_.t;)/bo =0 (5)
c.r is the vertical velocity.

In the case without friction, the generalised solutions are constructed
at each time as an incompressible rearrangement of 6 and (v+fx) . There is a
unique rearrangement which satisfies (1) and (2) and the dynamical stability
condition

® (v+fx)/0x) (06/b0) - @6/dx)dVv/do) 2 O 6
When forcing terms such as H in (4) are included, the solution evolves in
time as a sequence of rearrangements. If the rearrangements are smooth, they
can be represented as advection by a smooth velocity field (u.‘o). In general
the rearrangement will not be smooth and may, for instance, require fluid to
detach from the boundary. In the presence of friction, the structure of the
solution is more complicated and the problem must be solved as an initial
value problem. If the term H in (4) implies heating from below, the condition
(6) will be weaskened and considerable vertical rearrangement of the fluid
will occur. If the vertical stability is completely destroyed by the heating,
convective overturning will result. This cannot be represented as advection
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by a smooth velocity field and requires separate numerical treatment.

The frictional forces and heat fluxes are calculated as functions of the
local Richardson number using the turbulence model employed in the UK.
operational weather forecasting models. In the problem illustrated here the
cross-section is half land and half sea. The land is assumed to be rougher
than the sea, and is heated and cooled on a diurnal cycle. The sea
temperature is assumed constant. A sea breeze circulation is set up. During
the day the hydrostatic pressure difference between land and sea implied by
the heating is partly balanced by friction and there is only limited
penetration of the sea-breeze inland. During the evening the air becomes
more stable, the friction is reduced, and the sea-breeze accelerates. Later in
the night the land becomes colder than the sea and a shallow land breeze
develops.

3. Numerical method

A finite difference method is used. The variables are stored on a
staggered grid, with u and v held at the same points, and 6 and ;J held
together at points staggered apart in both x and o. c; is held at the upper
and lower boundaries, where it is set to zero. p, is held instead of 6 at the
lower boundary points. The scheme 1is described in more detail in
Cullen(1987).

A predictor-corrector method is used. In the predictor step the variables
v,8 and p. are stepped forward in time using equations (3) to (5) and the
current values of the mass-weighted velocity field (p‘u.p*é). An implicit
single step method is wused, with slight backward weighting (0.55). The
heating and friction increments are then added, these are also calculated
using an implicit method. The fields must then be adjusted to ensure
satisfaction of (6). It has not yet been found practicable to use a two-
dimensional adjustment, and therefore successive sweeps of the data are made
in the x and o directions to ensure that 26/d0<0 and ®(v+fx)/dx>0. These
adjustments cover the cases where there is convective overturning not
representable by a finite difference approximation to equations (3) to (5).

The correction step updates the mass-weighted velocity fields by
calculating a streamfunction correction Ay and a vertical mean momentum
correction ATJ. with l.J.=p,:u_. The correction equations are derived by using (3)
to (5) to convert the velocity corrections into corrections to v, ® and Px»
and then substituting into (1) and (2) to remove the residuals. This gives
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XB_pe~ 188U = £2py"" (BU-Boy + CuAU-8.y)5 = R )
DML =
-xC.0% ' n8.. (8,05.y) + f28(pa™'8ay) * 8,Cs5BU-8,¥); = R ®)

In these equations, the suffix # denotes lower boundary values and & a
finite difference in the direction specified. The friction term F_, at level i
ijc calculated in terms of values of u at model levels as the sum Cy,u,, the
details are given in Bell and Dickinson (1987). In deriving these equations,
not all the terms in (3) to (5) were used. The selection was done to make
(7) and (8) as elliptic as possible, and in particular to ensure that the
one-dimensional conditions 8/0<0 and >(v+fx)/ox>0 are sufficient for
ellipticity. This procedure is found to be needed to ensure stability where
the solutions are discontinuous, and is analogous to the under-relaxation
often used in the pressure correction method.

This scheme was used to integrate the equations on a 50x12 grid, with
unequal vertical spacing giving higher resoclution near the lower boundary.
The horizontal grid-length was 4km and the timestep 1 hour. The correction
step was performed three times for each predictor step, this was found to
give adequate accuracy. The results are compared with a Lagrangian method
developed by Chynoweth (1987) in which all effects can be included except
the F_ term. By calculating this term a posteriori the accuracy of the finite
difference calculation can be assessed. They are also compared with an
explicit model where the Du/Dt term is included on the laft hand side of (1).
Thic allows non-equilibrium wave motions to develop, and illustrates the

difficulty of computing real motions which are close to non-smooth

equilibrium states.

4. Results
The diagrams on the next page show:
A: Lagrangian solution after 12 hours. The elements were originally

in a regular rectangular array.

B: Finite difference © distribution at the same time.
C: Finite difference u field.
D: The u field from the explicit model.

Both the Lagrangian and finite difference solutions show the low level
sea-breeze circulation with a deeper and weaker return flow above. The air
originally at the coast has moved 35km inland in the Lagrangian solution,
element 96 has, however, moved 70km at the surface leading to the formation
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of a sharp front. In the finite difference solution the greatest lateral
displacement is about 40km at this stage, though after 18 hours, when the
friction is weaker, it reaches about 80km. The velocity field shown in C
indicates strong surface convergence near the coast, consistent with the
strong front formed in the Lagrangian model. The temperature contrast shown
in B is weaker because of the effect of the heating.

The solution of the apparently more general explicit equations is shown
in D. The sea-breeze circulation is much stronger and sets up & wave train
in the vertical. In this model the air tends to overshoot its equilibrium
position and oscillate about it. These oscillations are of a lsrge horizontal
scale and a small vertical scale. They can be damped by increasing the
vertical diffusion, but this also tends to destroy the details of the main
circulation. In reality small scale turbulent entrainment helps to damp such
oscillations though some wave motions are excited. The wave response cannot
be treated correctly within the context of an operational forecast model and
the implicit computation of the equilibrium velocity field presented here
provides a way of avoiding the problem.
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