- obtained from the Assistant Director, Atmospheric Processes Research vamon,.

DUPLICATE ALSQ

Met O (APR) Turbulence and Diffusion Note No. 240

Large-eddy simulation on a
massively parallel computer

by

A.R. Brown, M.E.B. Gray and M.K. MacVean

274 July 1997

Met O (APR)

(Atmospheric Processes Research)
Meteorological Office

London Road

Bracknell

Berks, RG12 257Z

Note

This paper has not been published. Permission to quote from it should be

gical Office, London Road, Bra

ORGS UKMO T

:..f L, i.’»

AL RN b

B __NATIONAL = | DUPLICATE ALSO

AT ADAL O
F‘.'E.... EURULOUGIUVAL |

LIBRARY | Met O (APR) TDN-240
B Large-eddy simulation on a massively parallel computer
A.R. Brown, M.E.B. Gray and M.K. MacVean |
Contents
! 1 Introduction 1
— 2 Domain decomposition 2
3 Subroutine NNSTEPS in Version 2.0 5
B S Seeflon k- TREREREEGS .. & e e R e e S e 5
3.2 Section B — Calculation of source terms and stepping 5
£ 3.3 Section C - Calculation of means and CFL criteria 6
S8 Setion D~ Prasmae soIVer . - o0 R A R e o 6
- 35 Burtion B - Pesbiire stepPINg . . i G e e b e e 6
' 36 SectionF ~-Miscellaneous inLe i sad s 6
il 4 Pressure Solver : 7
: 1 Doitiontal Foupinr TERMMIOEIN .. © v o .o i it A e e 7
b 431 Elliptic Equation Souree Terms o0 o i salaiiiiie, 8
3 4.1.2 Divergence Error Calculation ol lits e 8
—“: 5 Input and Output 10
Bl Poalllo dIntoning. . . . & . i v i s e e A kR 10
/2] B2 Namelist reads : SUBROUTINE BEGIN i v vuni o visnvig 10
: 5.3 Creation of a restart dump : SUBROUTINEDUMP 10
= 5.4 Reading of a restart dump : SUBROUTINE RETRIEVE 11
! 55 Dikeosatio dwpp : SUBROUTINEDIAGo oo hey 11
A 551 New Diagnostic Parameters+« 4 v ev s iiins s as 11
LU o e R S S e e e s 11
55 6 Scalability and efficient use of the code 13
! ;
7 Testing of the code i 14
—? A Appendices 16
—l A.1 Parametersin themodel R R e 16

A.2 Namelistsin themodelovnnnn.

Large-eddy simulation on a massively parallel computer

A.R. Brown, M.E.B. Gray and M.K. MacVean

27d July 1997

Abstract

The ways in which the large-eddy model has been changed in order to run on the massively
parallel T3E supercomputer are detailed. This is not intended to be a complete documen-
tation of the model and should be used in conjunction with TDN 213. However, because of
a considerable number of changes since that document was written, updated lists of model
parameters and namelist variables are also given.

1 Introduction

The present Met O(APR) large-eddy model was originally coded by S.H.Derbyshire for the
CRAY-YMP, based on the IBM code of P.J.Mason. The code has evolved over the years, with
added functionality, and maintenance simplified through use of the Cray Update facility. A
relatively steady state was reached with Version 1.4, for which documentation is available (TDN
213; Derbyshire et al., 1994), and various studies using this version of the model have appeared
in the literature. Version 1.5, released in August 1996, was intended to be an interim version
incorporating various updates to Version 1.4 that it was thought helpful to have in the base
code, prior to a major re-write at Version 2.0. This re-write was necessary because of the
decision to purchase a CRAY T3E which, unlike the YMP (and the C90 which followed it), is
a massively parallel, distributed memory machine. A single job can run on a large number of
processing elements (PEs), each of which has direct access to its own memory, but which can
only access the memory of other PEs through explicit calls (‘message passing’). The aim of the
present document is to detail the changes which have been made to the code to enable it to run
efficiently on such a computer. Of necessity, much of the discussion is specific to the large-eddy
model, but it is hoped that some of the more general issues relating to domain decomposition
and the handling of input and output may be relevant to people wishing to port other large
models to massively parallel machines.

The structure of the remainder of this document is as follows. Section (2) describes the way
in which a problem is split across a number of processors, and Section (3) describes how the
model structure achieves this. The pressure solver is probably the single most difficult issue as it
requires Fourier transforms of data which are distributed across different PEs, and it is described
in detail in Section (4). I/O issues are detailed in Section (5), while Section (6) discusses code
efficiency, and Section (7) describes the testing of the new code. Finally, up-to-date lists of
model parameters and namelist variables are given in the appendices.

Details of the GC (Generalized Communication) routines which are used as an interface to the
PVM (Parallel Virtual Machine) message passing system are not given here, but documentation
can be found in Amundsen and Skélin (1996). As currently coded the model cannot be used
with the alternative (slightly faster) SHMEM (Shared Memory) message passing system but
changes to allow its use may be made at some future date. :

2 Domain decomposition

The momentum (u;) and conserved scalar (¢,) equations used by the model are, as given by
Equations (9) and (12) of TDN 213 with the material derivatives expanded using Equation (11),
the following :

Ou; 3] Ou; R 7]
s it (®'/ps) - B +63B" + p;! 332 — 265k Qjur = = s (2'/ps) + i (1)
o)) oh
__q_n A o an et n,i
e u’az,' Ps Oz; (2)

Here 7;; is the subgrid stress tensor and hy,; is the subgrid scalar flux of ¢,. Note that all of the
terms which make up s; on the right-hand side of Equation (1), can be calculated without the
use of information from more than two grid-points away from the point currently being stepped.
The same is true of the terms on the right-hand side of Equation (2). Hence the domain can be
decomposed into a number of sub-domains (with overlapping halos), and the source terms for the
points in each sub-domain can be calculated concurrently by separate processing elements in a
massively-parallel processing (MPP) machine. As the calculation of these source terms typically
accounts for most of the CPU time used by the large-eddy model, this sort of decomposition can
be expected to lead in a significant reduction in the total elapsed time when performing a given
simulation. It may also be possible to perform simulations which were previously impossible due
to memory constraints when running on a single processor.

There are a large number of possible domain decompositions. For example, it would be
possible to attempt a full 3-dimensional decomposition, with each PE responsible for a small
cube of points within the domain. Alternatively, a 2D decomposition might split the domain
in the z— and y—directions, but keep all vertical columns on a single PE. Multiple directional
decompositions have the advantage that, for a given domain size and number of processors,
they lead to fewer internal boundaries than a 1D decomposition. This potentially reduces the
amount of communication between processors which is required. However, the coding is much
more complex, and it was decided to use a 1D decomposition for the large-eddy model. This
was made particularly straightforward by the ‘slice’ structure of the existing model, and, as
discussed in Section (6), the efficient performance obtained appears to justify the decision.

Figure (1) shows the domain decomposition used. Here a run involving IIP slices is split over
4 PEs (NPES=4). Each PE is responsible for IIPEP=IIP /4 slices. In order to step the fields on
each slice, information is required from two slices either side, and so each PE also has a double
halo on each side, reset at the beginning of each time step, to enable it to calculate the source
terms for its slices 1, 2, IIPEP-1 and IIPEP !. This structure means that many of the routines
used in the calculation of the source terms (e.g. SMAG, UVWSRCE, THSOURCE, QSOURCE,
MICROPHYS) are largely unaffected by the domain decomposition, and a user who wishes only
to make minor changes to these routines may be able to do so without a detailed understanding
of the changes required elsewhere in the model to allow running on a massively parallel machine.

Of course, not all of the calculations can be done in parallel. In particular, the solving
of the Poisson-like elliptic equation for p'/p, requires the values of the source terms (s;) from
all points in the domain, and information must be exchanged between PEs through message
passing. However, even here parts of the calculation can be done in parallel (e.g. the tridiagonal
solver which works independently on each column of data) and, once the pressure field has been
calculated, the pressure source terms can be be calculated independently on each PE.

!Calculation of backscatter source terms requires information from three slices cither side and so Sg_igk halos

Single PE run

1012 IIP /4 9¥TIP /4 S*TIP /4 TP
i } } } }
(b)
PEOot;%PErun PE2ofﬁPErun
12 IIPEP e IIPEP
N4 h H h
A
LT\
Z\\
A
LN
Pkt
/N
PE 1 of 4 PE run PE 3 of 4 PE run
12 [IPEP 12 IIPEP 1
it } i : ‘
\
|

Figure 1: Explanation of domain decomposition. (a) Illustration of a single processor run. Slices
1 to IIP are stepped, with the aid of halo slices (shown filled) -1, 0, ITP+1 and ITP +2. Halo slice
-1 is a copy of ITP-1, 0 is IIP, ITP+1 is 1 and ITP+2 is 2 in order to enforce periodicity. (b) The
same run, now performed on 4 PEs. Each PE deals with [IPEP (=IIP/4) slices, with a double
halo at each side. For example, PE 2 steps its slices 1 to IIPEP (slices 2¥IIP /4+1 to 3*IIP /4
of the single processor problem). It obtains its halo slices -1 and 0 by copying slices IIPEP-1
‘and IIPEP from PE 1, and IIPEP+1 and IIPEP+2 by copying slices 1 and 2 from PE

= = b >

(S BRI - - - - - A - - - - - = - - - B - - - - B - = -

a a

o

(oo B oo I o B < I <

Lo I e B> B |

SRR L CODNTTUE 56w S e e sn s o end loop over timesteps

Nul (NN - cekasahaes st e s n o es begin loop over timesteps

CALL SETRAN

CALL SETINDEX
IF(N.EQ.1)CALL SETMOIST
CALL XWRAP

=== DD 2 I=IFIRST, TIPEP: ~F=ear=re begin loop over SLICEs

CALL SETINDEX2
CALL CALCVIS
IF(I.GE.1)THEN
CALL DYNVIS
CALL BCKSCT/BCTSCT/BCQSCT
CALL DIVERR
CALL PSRCE
IF(N.EQ.NN)
IF(I.EQ.1)CALL INDGNEW
CALL RESDGS
CALL SUBDGS
ENDIF
ENDIF
CALL STEPFLDS
CALL REINDEX

2=« BONTTHUE: = rre=tabotewabap—ws~ end loop over SLICEs

CALL CALCBAR
IF(N.EQ.1)CALL CVELGAL2

CALL POISSON

e DOE3IR] TTPEP misessesme=a begin loop over SLICEs

CALL PSTEP
IF(N.EQ.NN)CALL PDGS
CALL SWAPSMTH

B ewn CONTINUE ~----cemsanscancen=a- end loop over SLICEs

IF(N.EQ.NN)THEN
CALL GROUPDGS
CALL TIMSER
ENDIF
IF(N.EQ.1)CALL TESTCFL

CALL AVDG
CALL TESTTIME

 Pigure 2: Subroutine NNSTEPS in

35

-

el]

e |

, P

{ ey

s |

3 Subroutine NNSTEPS in Version 2.0

B Subroutine NNSTEPS is the central subroutine of the model, and an understanding of it is the
key to understanding the way the model works. It has undergone considerable restructuring,
both to allow running on a massively parallel machine, and to remove features no longer required.

£ These include the ‘packed arrays’ (so that the main model fields are now stepped directly), and
the expanded arrays previously set up in SET2D (superfluous on a scalar machine). A desirable
side-effect of the changes is that they have made the code generally more straightforward and

- easier to understand.

Figure (2) shows the structure of subroutine NNSTEPS. The letters at the left edge of
the diagram show how the routine can be split into six main sections, A-F. The purpose and
structure of each of these is now discussed in turn.

i 3.1 Section A — Initialization

SETRAN Set up random numbers for backscatter (called if IBSCATP.EQ.1).
3 SETINDEX Set up pointers for the NVISP slices of viscosities and the NDISP slices
‘ of dissipations (as before). The main fields are now accessed directly
(see SETINDEX2 in Section B).

5t SETMOIST Recalculate QSAT and various other related quantities using current
mean states rather than reference states (called if IQLCALCP.EQ.1).
XWRAP Wrapping in the x-direction. Halo slices I=—1,0,ITPEP+1 and IIPEP+2

= (and —2 and ITPEP+2 if using backscatter) are updated on each
PE. This involves message passing (subroutines WRAPSEND and
WRAPRECV) unless NPES=1 (in which case it can be done directly).

3.2 Section B — Calculation of source terms and stepping

SETINDEX2 Set up pointers for main fields. Note that the main fields are now used
directly, rather than by copying slices from ‘packed storage’ as was done

el previously.
CALCVIS Calculate viscosities (on slice I+1 without backscatter; on I+2 with
backscatter.
£ DYNVIS Calculate source terms (except pressure and backscatter).
BCKSCT Calculate backscatter source terms.
BCTSCT
£ BCQSCT
DIVERR Calculate divergence error of main fields and place in pressure source
(P).
%] PSRCE Calculate divergence of source of terms, and add it to pressure source.

Previously called from DYNVIS but moved to be after calculation of
backscatter source terms.

-: INDGNEW Calculation of diagnostics (non-pressure) for N.EQ.NN. Results are held
: RESDGS on each PE in DGNEW and represent averages over the part of the
£ SUBDGS domain on that PE in each case.

STEPFLDS

Previously called WRTFLDS but renamed as main fields are now
stepped directly, rather than writing ‘packed fields’. This means that no
slice can be stepped until it is no longer required on the present timestep
— accordingly NSLP=3 slices of source terms are stored, and slice I-2
is stepped for I=3 to IIPEP, with IIPEP—-1 and IIPEP additionally
stepped for I=IIPEP. The Galilean transformation is also added back
on to horizontal velocity fields. CVELGAL is still called for N.EQ.1
but its calculation of new Galilean transformation and CFL criteria can
only be partially completed at this point — information is required from
all PEs to complete the calculation, and this is done in CVELGAL?2 in
Section C (outside the main loop over I). Similarly, calculation of BARS
is deferred until CALCBAR in Section C.

REINDEX

Reset (shuffle) the pointers for the slices of viscosity and dissipation.

3.3 Section C — Calculation of means and CFL criteria

CALCBAR

Calculate mean fields. The results should always be reproducible for
a fixed number of PEs, but identical results across a variable number
of PEs can only be obtained by using IREPBARP=1 (slight overhead).
The mean fields are not strictly required every step unless the damping
layer is used, but at present are calculated anyway for convenience

CVELGAL2

Complete calculation of new Galilean transformation and CFL criteria
(started in CVELGAL which is called from STEPFLDS in Section B).

3.4 Section D — Pressure solver

POISSON

Complete pressure source calculation. CALL FFANAL to perform 2D-
Fourier transform, use tridiagonal solver and then call FFSYNTH to

perform inverse 2D-Fourier transform. More details can be found in
Section (4).

3.5 Section E — Pressure stepping

PSTEP

Subtracts new Galilean transformation and performs pressure stepping.
Also sets level 1 velocities.

PDGS

Calculates diagnostics involving pressure (averages across each PE at
this stage).

SWAPSMTH

Swaps and time-smooths main fields and BARS.

3.6 Section F — Miscellaneous

GROUPDGS

Completes calculation of diagnostics by combining DGNEWs from all
PEs. Also calculates those TKE budget diagnostics which could not
be calculated until various domain-averaged quantities were available.

Results will be reproducible for a fixed number of processors, but will
depend on NPES.

TIMSER Calculate time series.
TESTCFL Calculate new timestep.

4 Pressure Solver

The calculation of the pressure term, [3%‘(;)’ /ps)], in equation (1) requires the solution of a
Poisson-like elliptic equation. This is solved using a Fourier-transform in the horizontal and a
tridiagonal matrix solver in the vertical. The horizontal Fourier transformations, the calculation
of the elliptic equation source terms and the maximum divergence error calculation are all
affected by the move to a MPP machine.

4.1 Horizontal Fourier Transform

Horizontal data is partitioned between the PEs, but all the data is required to perform a 2-D
fast Fourier transform (FFT). Machine specific utility routines for 2-D FFTs exist on the T3E.
These perform a single FFT in one direction, rearrange the data so that the z- and y-directions
are swapped, perform the second FFT operation, and return the data to its original position.
Because the pressure solver requires two 2-D FFTs (converting the real data to wavespace
and then back again) the shifting of data back to the original position is a redundant time-
consuming overhead. The preferred approach is to perform the 2-D FFT explicitly by use of
single FFTs (which are not necessarily machine specific) and message passing using only one
data rearrangement per transformation.

As the single FFTs only require data in one direction, the decomposition of the domain into
I slices makes the y-direction FFT trivial. To perform the z-direction FFT the data must be
rearranged so that the domain can be decomposed into J slices, as illustrated in Figure (3). Not
only does data need to be transferred between PEs but, in order to ensure faster floating point
arithmetic and FFTs, the order of the pressure array must be changed. Pressure (and pressure
source) is held in an array P(J,K,I). This is transposed to an array PT(I,K,J) for the z-direction
FFT and tridiagonal calculation. This transposition is performed by decomposing each PE’s P
array into NPES sections in the y-direction and transposing each section to PT in turn, using
the new subroutine TRANSPOSE. The data is transferred as illustrated in Figure (3c). The
algorithm loops over NPES and is shown below. If the PE number matches the loop counter
(NP) then that PE receives data messages, else the PE sends messages to the PE identified by
NP. A separate loop controls the receipt of messages. The entire procedure is reversed for the
inverse FFTs after completion of the tridiagonal solver. This message sending algorithm scales
as NPES(NPES-1) and hence becomes a proportionately larger overhead as NPES increases.

DO NP=0,NPES-1
IF (MYPE.NE.NP) THEN

c --------------------------------------
C Send packets to all other processors
Crmmm e e e —————————— -

JSTART=NP*JJPEP

CALL TRANSPOSE(....)

CALL GC_RSEND(....)

ELSE
Crmmmmmm e e ————

C Do local transposition :

JSTART=MYPE*JJPEP
CALL TRANSPOSE(....)

5
L

! transfer data to PT

ENDIF 1
ENDDO !
c ___
C Receive packets from the other processors |
o o o o e e e e
DO NP=0,NPES-1
IF (MYPE.NE.NP) THEN B
CALL GC_RRECV(....)
! transfer data to PT —
\
ENDIF 5
ENDDO §
When the model is used in 2-D (y-z) mode on a single PE neither message passing nor [
transposing are required. However, because the tridiagonal algorithm is set up for using PT
the pressure source data must be transferred from P to PT. PT is dimensioned with intelligent
parameter statements so that it is PT(IIP,KKP,JJPEP) in 3-D and PT(JJP,KKP,1) in 2-D. :

4.1.1 Elliptic Equation Source Terms -

The source term for the elliptic equation contains

0 (0u)
a1 (55) S
Because the domain is decomposed in the z-direction this requires message passing for the IIPEP =
slice of the source term. Rather than passing the du/dt data between PEs, part of the §/0z

term is calculated on the adjacent PE and stored in the P halo. This is then transferred to the
appropriate PE at the beginning of POISSON to complete the pressure source calculation. i

The order of the calculation in PSRCE is changed slightly to mimic this separate summation
so as to ensure bit reproducibility between identical runs with different NPES:

! Bracketing and order of calculation
P(J,K,I) = (P(J,K,I) + ! ensures reproducibility between
CX*SU(J,K) + ! runs with different NPES —
CY*(SV(J,K)-SV(J-1,K))+ 1
4. %(TZC2(K)*SW(J,K)-TZC1(K)*SW(J ,K-1)))
- (CX*SUM1(J,K)) -

[S S

4.1.2 Divergence Error Calculation

| In order to output the maximum divergence error in the model the local maximum divergence A
error on each PE needs to be calculated. The global max-min routines do not output upon

T (a)
1
| 0 1 2 3
Y.
X —
(b)
| 3
! 2
£
| 1
e
{ t 0
— Y
| X o
o (c)
| I | |
e 0-—>3|1—’3l2—>3|

0 - 2 1 el 8 srewi R

which PE the extreme occurs. This has to be determined by comparing the global maximum
divergence error, DIVMAX, with the local maximum divergence error, RLOCDIVMAX. If they
are equal and non-zero on a PE it is reasonable to assume that that PE contains the maximum
value. The coordinates can then be passed to PE 0 and written to standard output. In version
2.0 this procedure is carried out in subroutine POISSON; in versions 1.4 and 1.5 this took place
in DIVERR.

5 Input and Output

As data on an MPP machine is distributed across a number of processors, input and output
presents new difficulties. Various possible ways of dealing with the problem are suggested below,
as this may be helpful to users who need to add additional input and output. More specifics
on the strategy used in the standard input-output routines (BEGIN, DUMP, RETRIEVE and
DIAG) are then given.

5.1 Possible strategies

¢ One PE does all input and output, with message passing to and from other PEs where
necessary. This should be possible in all cases, although the coding may be complex, and
the maximum amount of data that can be transferred in one message may be limited by
the amount of workspace available on the PE responsible for input and output.

¢ Each PE opens, reads from, and writes to, a separate file. This may be the easiest approach
for some applications, although the changes in the number of files and the amount of data
in each file as NPES changes may be problematical.

¢ Each PE opens the same file (simultaneously). All can then read from that file although it
is important to note that each PE has a separate file pointer, so that all will start reading
at the start of the file, irrespective of what has been read by the others. Attempting to
write to such a file from multiple PEs would lead to overwriting. This can be avoided by
opening the file with ‘position=append’, writing to it and closing it, on each PE in turn.

5.2 Namelist reads : SUBROUTINE BEGIN

The values of the namelist variables need to be known, and will be identical, on all PEs. Accord-
ingly, all PEs open file ‘nmldata’ simultaneously, and all read from it. Note that this approach
only works reading from an explicitly opened file, and cannot be used reading from unit 6 (stdin)
which was done in previous versions of the model)

5.3 Creation of a restart dump : SUBROUTINE DUMP

Subroutine DUMP is structured so that the restart dump created has a structure which is
independent of NPES ~ this allows a run to be continued with a different number of PEs if so
desired. Quantities which are identical on all PEs (e.g. run parameters, mean fields) need only
be dumped once, and this is done by PE 0. Each processor in turn then opens the dump file
(with ‘position=append’ as described above) and dumps its sections of the distributed fields
(U,V,W,TH,Q and PUDDLE).

e

—J

)

i)

5.4 Reading of a restart dump : SUBROUTINE RETRIEVE

Subroutine RETRIEVE is rather more complicated than DUMP, as for reading, there is no
analogue of the method whereby data could be dumped to the same file by different PEs simply
by repeatedly closing and re-opening the file. Accordingly message passing is used.

All PEs open the dump file and read the quantities which are required by them all (e.g. run
parameters, mean fields). The last processor (NPES-1) then reads the part of the distributed
fields required by PE 0, and sends that data to PE 0. It repeats this process for each PE in
turn, until it reads its own part of the distributed fields, at which point the retrieve operation
is complete.

5.5 Diagnostics dump : SUBROUTINE DIAG

Subroutine DIAG has undergone major changes in the rewrite to version 2.0. Part of this is due
to the MPP aspects, but mostly it is a desire to tidy up the routine and produce a diagnostics
file which is compatible with the PV-Wave based graphics package DaViE. This requires the
output of a character header to the diagnostics file (or to a separate file which can later be
appended to the main diagnostics file). Here, only details relevant to MPP machines and new
diagnostic control parameters will be discussed.

5.5.1 New Diagnostic Parameters

The diagnostic namelist variables IDGxx have been adjusted to accommodate the increased
flexibility of output that DaViE permits. Fields can be output as instantaneous 1-D averages
(IDGxx=1), an array of 2-D slices (IDGxx=2), or as a complete 3-D field (IDGxx=3). If
IDGxx=2 or 3 the 1-D averages will also be output. It is not possible to output both 2-D slices
and a complete 3-D array for the same field. 2-D slices are defined using NITEST,NJTEST
and NKTEST (the number of y-z, z-z and z-y slices respectively) and XTEST, YTEST and
ZTEST (arrays of the position of the required slices in metres, assuming that the centre of the
horizontal domain has values of z and y of zero). A full list of arrays of the IDGxx variables is
given in Appendix A.2.

In addition, model parameters, the z, y and z grids and density are automatically output in
each diagnostic dump.

5.5.2 MPP Aspects

One of the requirements in producing a diagnostics file is that the reading of the dataset should
be independent of NPES. In addition, fields should be in normal Cartesian order, i.e. (z,y,2)
as opposed to the way in which fields are stored in the model - (J,K,I). To avoid excessive
demands on memory larger fields have to be written out piecemeal rather than in entirety. This
requires a greater manipulation of data and, because this is repeated for each field, leads to a
modularization of DIAG. The new structure of DIAG is shown in Figure (4). Message passing
algorithms are contained in routines WRTXZ, WRTYZ and WRTXY whilst the actual writing
to file is carried out in WRTFB.

WRTFB

All writing is carried out through PE 0. Because the number of calls to WRTFB will depend
upon the messages passed, and hence the number of processors, to maintain NPES independence

WOUT1D

D 1 o WRTXZ \

i IDG= 2 |—— | WOUT2D \ WRTFB

“ 3 \ WRTYZ -
WOUT3D | —— |WRTXY

Figure 4: Schematic diagram of the new modular structure of subroutine DIAG.

a new record must not be started each time WRTFB is called, as occurred in previous versions
of the LEM. WRTFB has been rewritten so that it need not start a new record on each call
but can complete a previously partially filled record. (The routine was originally written by
J.M. Hobson for the Blasius flow over hills code).

Because the data is “squashed” from REAL*8 to REAL*4 for output, if there is an odd
number of data items a gap will appear in final data string. Although this is unimportant ifa
new record is to be started, it will lead to a corruption of the data if partially filled records are
completed. To ensure that all fields have an even number of data points they are written out
over IIDGP as opposed to IIP, where IIDGP=(IIP/2)*2 and, hence, is always even.

WRTYZ

The writing of y-z cross-sections is relatively trivial. Because the I slice is contained in entirety
on a processor, all that is required is to identify the PE upon which the slice in question resides,
transfer it to PE 0, and then write to file.

WRTXZ

For an z-z cross-section the data is distributed across all PEs. Each PE sends its subset of the
relevant slice to PE 0 where it is assembled in a temporary array. Care is taken not to include
the internal halos. Once the temporary array is complete it can be written out in the normal

way.

N B

WRTXY

WRTXY involves the most complicated message passing and is used for both horizontal slices and
writing out complete 3-D fields. The data needs to be reordered as (z,y,z) and this is achieved
by passing data in packets of size IIPEP by JJPEP from each PE in turn. A temporary array of
dimensions (IIP,JJPEP) is filled on PE 0 which is then written out to the diagnostics file. This
procedure is continued for each subsequent block of JJPEP until the complete horizontal slice
is written. Halos at I=0 and I=IIDGP+1 are written in a similar way to the z-z cross-sections.
In WOUTS3D calls to WRTXY are looped over K=1,KKP to write out the complete 3-D field.

6 Scalability and efficient use of the code

The large-eddy model runs efficiently on the vector C90, typically at around 400 MFlops. On
a single processor of the scalar T3E, the figure is closer to 60 MFlops. It is sometimes possible
to make improvements in scalar performance by making changes to the code so that cache is
used more efficiently, and explicit compiler directives have been placed in some of the more
expensive routines (e.g. ULTFLX, SETFRI) to prevent the compiler unrolling loops in cases
where this has been found to be disadvantageous. However, whilst some further improvements in
scalar performance could undoubtedly be made, it seems unlikely that they would be dramatic,
particularly as the optimum coding for one problem size might not be optimum for a different
problem. Hence the key to obtaining reasonable throughput on the T3E is probably to ensure
that the model scales well. By this it might be meant that the the elapsed time taken to solve
a given problem should be proportional to (1/NPES), or alternatively that a problem of size
proportional to NPES will run in the same time for any value of NPES. In practice neither of
these will be achieved, and the first is a particularly difficult limit to approach. Some reasons
why the model might not scale well are given below:

1. As NPES increases, the amount of time spent communicating between the PEs will in-
crease. Note especially that the number of messages required in the pressure solver in-
creases roughly as the square of NPES.

2. As more PEs are used to solve a fixed problem, the amount of time performing parallel work
decreases. Hence the non-parallel overheads such as communication, input and output,
and duplicate calculations (e.g. calculation of viscosities on halo slices) take an increasing
fraction of the overall time (even before allowing for increasing amount of time performing
these overheads) and the scalability suffers accordingly.

3. If not all the PEs have the same amount of work to perform, then the model can only run
at the speed of the ones which have most work to do. This load imbalancing is unlikely to
be a major problem for the standard large-eddy model as each PE has the same number
of points and the amount of work on each point is the same, although it might become
an issue in a run with complex microphysics in which extra calculations were required in
some parts of the domain. :

In spite of these problems, the scalability of the large-eddy model is encouragingly good for most
practical applications. As an example, Table 1 shows timings for various 50 step runs with one
active Q-field and ULTIMATE advection on scalars (without a dump). Runs A to E used an
increasing number of PEs to solve proportionally larger problems (the largest being far beyond
any that could be run if the dump were carried out). If the model scaled perfectly, the CPU
time would increase linearly with NPES, while the elapsed time would stay constant. This is

Run Size of run NPES IIPEP Elapsed time (s) CPU time (s) Scalability

A 128 x 64 x 61 1 128 354 347 1.00
B 2566 x 128 x 61 4 64 345 1361 1.02
C 512 x 256 x 61 16 32 356 5370 0.99
D 1024 x 512 x 61 64 16 388 23889 0.93
E 2048 x 1024 x 61 256 8 477 118900 0.75

Table 1: 50 step timing tests with the size of the problem proportional to NPES.

Run Size of run ~ NPES IIPEP Elapsed time (s) CPU time (s) Scalability

B4 256 x 128 x 61 4 64 345 1361 1.00
B8 256 x 128 x 61 8 32 187 1356 0.92
B16 256 x 128 x 61 16 16 95 1398 0.91
B32 256 x 128 x 61 32 8 61 1566 0.70
B64 256 x 128 x 61 64 4 40 2266 0.54
B128 256 x 128 x 61 128 2 57 5000 0.19

Table 2: 50 step timing tests with the size of the problem constant.

approximately true for cases A, B and C, but the scalability (defined as the ratio of the elapsed
time for the 1 PE run to the elapsed time using NPES) starts to fall off for cases D and E.
However, even in case E the scalability remains above 0.7 and it can be concluded that the
model scales well, as long as the amount of work to be performed on each PE is kept constant.

Of course, the more important type of scalability may be that of running a fixed problem on
a variable number of PEs. Table 2 shows some timings from running Case B on an increasing
number of PEs and the scalability figures are based on elapsed time relative to that taken with
4 PEs. In this case perfect scaling would be indicated by the CPU time being independent of
NPES, while the elapsed time would be proportional to (1/NPES). The amount of parallel work
on each PE decreases as NPES increases and ITPEP decreases (point (2) above), and so the
scalability falls off more quickly with NPES than in Table 1. However, the use of the computer
remains reasonably efficient with NPES equal to 16 or even 32, and these values are probably
reasonable choices when performing a run of this sort of size, as long as IIPEP does not fall
below about 6. Note the extreme case of B128 which uses twice as many PEs as B64, but
actually takes more elapsed time — not an efficient use of the computer!

7 'Testing of the code

The code changes from Version 1.5 were made in a sequential fashion, with over 25 intermediate
versions of the model. This meant that the changes introduced at any one time usually affected
only relatively small sections of the code which made testing relatively straightforward.

The final code has been tested to show that is has the following properties:

e For a run on a fixed number of PEs, the code gives reproducible answers. This might not
be the case if message passing were used directly (e.g. as additions in a global sum might
be performed in a different order) but is emured by handlmg commumcatmn through the

i @Girouﬂnea (Amundsen and Sk&)m ""1996) S o o

e For runs in which the BARS are purely diagnostic, identical answers are obtained for any

value of NPES (including one). If the BARS are used (e.g. a damping layer is used) then

= this is still the case as long as IREPBARP is set to 1. This independence of the results to

NPES is non-trivial to obtain, and sometimes requires careful structuring of the code to

ensure that the order of arithmetic operations in identical for any NPES. However ensuring

i) that this property is maintained when making changes to the code has proved valuable in
checking the logic and debugging.

e A run may be continued from a restart dump on any number of NPES, independent of the
; value previously used.

i)

A Appendices

J

sy

A.1 Parameters in the model

There follows a list of the parameters in the model. Many have deliberately not been given

default values in order to force the user to decide on the most appropriate values for their run.
Note that all parameters with no default value must be set (even if the value chosen is irrelevant), A
otherwise the model will fail to compile. ’

PARAMETER DEFAULT MEANING I
IIP ?? Number of points in z-direction. ~
JIP 77 Number of points in y-direction. ‘
KKP ?? Number of points in z-direction.

NPES ?? Number of processors. Must be a factor of both IIP and JJP.)

IBSCATP 27 =1 for backscatter (3-D runs only).
=0 for no backscatter.

NQSCTP 77 Number of Q-fields to be backscattered (if IBSCATP=1).

NBEGSCATP ?? Timestep to begin backscatter (if IBSCATP=1).

ITVDUVWP 7?7 =1 for TVD advection of momentum.
=0 for centred advection of momentum. 8

ITVDSCALP 7?7 =1 for TVD advection of scalars.
=0 for centred advection of scalars. 5%

IFORSCALP 77 =1 for forward stepping of scalars.
=0 for centred stepping of scalars.

IFORUVWP ?? =1 for forward stepping of momentum. S
=0 for centred stepping of momentum.

IBAROCLP ?? =1 gives specified geostrophic shear and consistent advection of large-
scale temperature gradient. s
=0 for no geostrophic shear.

IUSETHP ?? =1 to use TH variable.
=0 to not use TH variable. 2%

IPASTHP 7? =1 to use passive TH variable (if [USETHP=1). This is also the
required setting if IUSETHP=0.
=0 to use active TH variable (if IUSETHP=1). ~

IUSEQP 7 =1 to use Q variable.
=0 to not use Q variable.

IPASQP 7 =1 to use passive Q variable (if IUSEQP=1). This is also the required —
setting if IUSEQP=0.
=0 to use active Q variable (if [USEQP=1).

NQP 4 Number of Q variables (if IUSEQP=1). Must be set to 1 if—
IUSEQP=0. \

IANELP 77 =1 to use anelastic equations.
=0 to use Boussinesq equations. ™

IDAMPP 7 =1 to use damping layer.
=0 to not use damping layer.

INOVISP ??

=1 to get inviscid solution. ™
=0 otherwise. ‘

IGALOFFP i =1 to switch off Galilean transformation.
=0 to use Galilean transformation

INOSURFP ?? =1 to switch off surface fluxes.
=0 otherwise.

ISCBCP 7 =1 to use fixed flux surface boundary condition for scalars.
=2 to use fixed value surface boundary condition for scalars.

ISATSURFP 7 =1 to use saturation value of Q at the surface, rather than any value
entered through namelist (only relevant for ISCBCP=2).
=0 otherwise.

IADJANELP ?? =1,2,3,4 for various options for setting up anelastic profiles. Irrele-
vant for IANELP=0.

ITSERP ?? =1 to use time series.
=0 to not use time series.

NTIMP 7 Number of bins in each time series (relevant only for ITSERP=1).

NSERP 7? Number of time series (relevant only for ITSERP=1).

ISPECP 7 =1 to calculate spectra.
=0 to not calculate spectra.

NSPECP ?? Number of levels at which 1-D spectra in the y—direction of U, V, W
and TH are to be calculated (relevant only for ISPECP=1).

MOISTRIP 77 =1,2 for two different moist Richardson number schemes. Irrelevant
if IPASQP=1.

IRAINP 153 =1,2 to use two different rain schemes.
=0 to not use rain.

NMETEORP 7?7 Number of hydrometeors (Q-fields with fall velocity). Irrelevant if
IRAINP=0.

IREPBARP 7 =1 to get identical BARS irrespective of NPES.
=0 for calculation of BARS to be sensitive (at truncation error level)
to NPES.

ITWOFILEP ?7? =1 to use two dump files, writing to them alternately.
=0 to use one dump file.

IQLCALCP 54 —1 to calculate liquid water by performing Taylor expansion about
mean temperature.
=0 to calculate liquid water by performing Taylor expansion about
reference temperature.

IFBCHGP 7 =1 to get time-varying surface fluxes (with ISCBCP=1).
=0 for constant surface fluxes.

NDGSP 10 Maximum number of time-averaged diagnostics.

NAPARMSP 1024 Length of APARMS array (used in DIAG).

MAXDGP 300 Maximum length of DGCNT common block.

MAXQSP 10 Maximum length of QCNT common block.

LOOKP 80 Number of values in look-up table for surface boundary condition in
unstable conditions (for ISCBCP=1).

SMALLP 1.E-14 A small number.

RLARGEP 1.E37 A large number.

NTIMPDGP 100 Maximum number of diagnostics printing times.

NTIMRDGP 100 Maximum number of diagnostics resetting times.

NTIMDUMP 100 Maximum number of diagnostics dmp@es.

- NTMHALTP 10 Maximum number of run halting times.

NTIMHFP 20 Maximum number of specified surface flux times (for I-BCHGP=1
with ISCBCP=1).

JMINP 1 Minimum index value in loops over J (no advantage in setting to 0 ™
on scalar machine).

JMAXP JJP Minimum index value in loops over J (no advantage in setting to

JIP+1 on scalar machine).

—

Additionally various other parameters are calculated automatically from those listed in the

table.

PARAMETER MEANING

I3DP =1 for 3-D run; =0 2-D or 1-D.

IIPEP Number of slices per PE (=IIP /NPES).

JIJPEP =JJP/NPES. Used in pressure solver.

IIDGP =(ITP/2)*2. Used in DIAG in setting length of ‘squashed’ arrays.

IDIMMINP Minimum I value in dimensioning of main field arrays. =—1 3-D, no
backscatter; =—2 3-D, backscatter; =1 2-D or 1-D.

IDIMMAXP Maximum I value in dimensioning of main field arrays. =IIPEP+2
3-D, no backscatter; =IIPEP+3 3-D, backscatter; =1 2-D or 1-D.

IMINP =0. Used in pressure solver.

IMAXP =IIP+1 3-D; =JJP+1 2-D. Used in pressure solver.

IPMINP Minimum I value in dimensioning of pressure array. =0 3-D; =1 2-D
or 1-D.

IPMAXP Maximum I value in dimensioning of pressure array. =IIPEP +1
3-D; =1 2-D or 1-D.

NSP Number of slices of source terms held.

NVISP Number of slices of viscosities held.

NDISP Number of slices of dissipations held.

IFIRSTP Starting value in first loop over I in NNSTEPS.

LENP Length of a slice of a main field.

IBSCATTP —=IBSCATP*IUSETHP. Used in dimensioning various arrays to save
space if IUSETHP=0.

IBSCATQP =IBSCATP*IUSEQP. Used in dimensioning various arrays to save
space if [IUSEQP=0.

NFLDSCTP Number of fields scattered. Used in setting up random numbers.

IMICROP —0 if IRAINP=0; =1 otherwise. Used in dimensioning of PUDDLE,
and as switch for dumping and retrieving of this array.

NMETP —NMETEORP if IMICROP=1; =1 otherwise. Used in dimensioning
of PUDDLE.

NTMP —NTIMP if ITSERP=1; =0 otherwise. Used in dimensioning time-
series array to save space if ITSERP=0.

NSPP —NSERP if ITSERP=1; =0 otherwise. Used in dimensioning time-
series array to save space if ITSERP=0.

INDTVDSP =1 if ITVDSCALP=1; =0 otherwise. Used in dimensioning various
arrays to save space if ITVDSCALP=0.

INDTVDMP —1 if ITVDUVWP=1; =0 otherwise. Used in dimensioning various

arrays to save space if [ITVDUVWP=0.

18

e

LWTVDP Length of work space required for TVD routines.

DY LWPP Length of work space required for pressure solver.
IWHWRKP Pointer for whether LWPP is greater than LWTVDP.
LENWRKP Length of work space array. Set to the larger of NWTVDP and

B LWPP, although a user may set it to a larger value if any of their
updates require more work space.

A.2 Namelists in the model

There are a number of model variables which can be set, after compilation, through the namelists
given below. Again, not all have default values, although, unlike the parameters, some may be
left unset if not relevant (see below). All dimensional quantities are in S.I. units.

] NAMELIST CNTRL
VARIABLE DEFAULT MEANING

2 ISTART 7 =1 if a set-up run; =0 otherwise.
NN 7 Number of steps between diagnostic evaluations.
NNDIAG ?? Number of diagnostic evaluations between dumps.
NNDUMP 7 Number of dumps for this run.

Note that the total number of steps in a run is thus NN*NNDIAG*NNDUMP (plus an additional
— NN in a set-up run due to additional calls to NNSTEPS from START).

3 NAMELIST TIMENML
VARIABLE DEFAULT MEANING
NTMPDG 0 Number of diagnostic printing times to be used.
£ TIMPDG(NTIMPDGP) 7 Array of times at which to print the diagnostics. NTM-
PDG values must be set.
NTMRDG 0 Number of diagnostic resetting times to be used.
] TIMRDG(NTIMRDGP) 77 Array of times at which to reset the diagnostics. NTM-
RDG values must be set.
NTMDUM 0 Number of field dumping times to be used.
5 TIMDUMP(NTIMDUMP) ?? Array of times to dump fields to disk. NTMDUM values
must be set.
NTMHALT 1 Number of halting times.
= TIMHALT(NTMHALTP) 77 Array of times to stop job. NTMHALT values must be

set. Unlike the other time arrays, the model will stop if
any of the values is exceeded, so there is little point in |
= using NTMHALT greater than 1.

ITIMPDG 0 Flag for printing diagnostics.
ITIMRDG 0 Flag for resetting diagnostics.
7 ITIMDUM 0 Flag for dumping fields.
! ITIMHALT 0 Flag for stopping job.
NSTEPMAX 50 Maximum number of timesteps in this job.
§o IPRTDG 1 Controls the diagnostic output (see below).
NTMHF 0 Number of specified surface flux times.

20

TIMHF(NTIMHFP) ?? Array of times for time-varying surface fluxes. NTMHF [
values must be set. ‘
FSHFLX SEN(NTIMHFP) ?? Array of values of surface sensible heat flux. NTMHF
values must be set. B
FSHFLX _LAT ?? Array of values of surface latent heat flux. NTMHF
(NTIMHFP,NQP) values must be set for each Q-field.
Diagnostic output is controlled by IPRTDG as follows: 0 for output only at times given by
TIMPDG and TIMRDG, 1 for output after every job, 2 for output at set times (possibly many m
times within one job) to a single file, 3 for output at set times (possibly many times in one job) ‘
to separate files.
NAMELIST JOBINFO
VARIABLE DEFAULT MEANING =
FILEA 7 Character string containing name of first dump file.
FILEB 7? Character string containing name of second dump file.
FILEZ 7 Character string containing name of file containing ™
pointer to dump file.
MSGFILE 77 Character string containing name of message file.
USERID ?? Character string used in naming diagnostic file.)
NAMELIST INPUT -
VARIABLE DEFAULT MEANING
NRUN 77 Run number.
NDATE 0 A number (eq. the date) to help identify the run.)
TIME 0 Integration time.
Z0 " Surface roughness length for momentum.
Z0TH 7 Surface roughness length for scalars (TH and all Q-fields). —
PSF 100000 Surface pressure.
PSFR 100000 Surface reference pressure.
SHFLX_SEN 7? Surface flux of pc,8 (only needs to be set for ISCBCP=1). —
SHFLX LAT(NQP) 7 Surface flux of pL,Q (only needs to be set for
ISCBCP=1).
THSURF 7 Surface value of potential temperature (only needs to be —
set for ISCBCP=2).
QSURF 7 Surface value of first Q field (only needs to be set for
ISCBCP=2). =
RHOBOUS ” Density for Boussinesq run (only needs to be set for
IANELP=0).
NAMELIST GRID
VARIABLE DEFAULT MEANING -
NSMTH 10 Number of 1-2-1 smoothings of grid heights.
HGD(20) ik Array of heights for setting vertical grid. At least 1 value
must be set. @
KGD(20) 77 Corresponding array of K values for setting vertical grid.
Z7ZTOP 77 Height of domain top.
ﬂ

NAMELIST THPROF

ZNREF _READ(9) 7 Array of heights for setting reference TH profile (6,)
in anelastic run. At least one value must be set if
IANELP=1.

THREF READ(9) 7" Corresponding array of values for setting reference TH
profile (6,).

THREF0 (£ Reference TH (6p) for Boussinesq run. Must be set if
IANELP=0.

ZNINIT _READ(9) 77 Array of heights which may be used in START for setting
initial TH profile. At least one value must be set if used.

THINIT _READ(9) 77 Corresponding array of values for setting initial TH
profile.

NAMELIST SUBMODEL

VARIABLE DEFAULT MEANING

SUBB 7 Subgrid model constant b.

SUBC ” Subgrid model constant c.

SUBG 7 Subgrid model constant g.

SUBH " Subgrid model constant A.

SUBP 1.0 Subgrid model constant r; N.B. a value of 1 is currently
hard-wired into the model and is used irrespective of the
setting of this namelist variable.

SUBQ 1.0 Subgrid model constant 7; N.B. a value of 1 is currently
hard-wired into the model and is used irrespective of the
setting of this namelist variable.

SUBR 4.0 Subgrid model constant r; N.B. a value of 4 is currently
hard-wired into the model and is used irrespective of the
setting of this namelist variable.

ATH2 N 7 Subgrid model heat flux correlation coefficient.

A2 N ?? Subgrid model stress-energy ratio.

PR N 7 Subgrid model Prandtl number.

RIC ” Subgrid model critical Richardson number.

RMLMAX ?? Subgrid model basic length scale Ag.

SCT 0.0 Backscatter coefficient for momentum.

SCTT 0.0 Backscatter coefficient for TH.

SCTQ(NQSCTP) 0.0 Backscatter coefficient for Q.

NAMELIST DIAGNOST

VARIABLE DEFAULT MEANING

NITEST 0 Number of slices in J-K plane to be output.

XTEST(IIP) 0.0 Values of z at which to take slices (0 in centre of domain).

NJTEST 0 Number of slices in I-K plane to be output.

YTEST(JIP) 0.0 Values of y at which to take slices (0 in centre of domain).

NKTEST 0 Number of slices in I-J plane to be output.

ZTEST(KKP) 0.0 Values of z at which to take slices.

IDGU 1 Switch for U output.

IDGV 1 Switch for V output.

IDGW 0 Switch for W output.

21

IDGTH 1 Switch for TH output. i1

IDGTL 1 Switch for TL output. *

IDGCL 0 Switch for cloud output.

IDGPV 0 Switch for potential vorticity output. u

IDGP 1 Switch for P output. ‘

IDGPD(NMETP) 0 Switch for PUDDLE output.

IDGQ(NQP) 1 Switch for Q output. Tl

IDGAV 1 Switch for time-averaged diagnostics output.

NSPLEVS 0 Number of levels at which 1-D spectra of U, V, W and
TH are required]

ZSP(KKP) 0.0 Heights at which to calculate spectra.

IDGSP 1 Switch for spectra output.

The switches, IDGU etc, work in the following manner. 0 gives no output; 1 gives mean
profiles; 2 gives 2D slices and mean profiles; 3 gives 3D fields and mean profiles. Some options
may not be applicable for some fields (e.g. time-averaged diagnostics are 1D profiles and so
cannot be dumped as 2D or 3D fields).

NAMELIST DYNAMICS

VARIABLE DEFAULT MEANING

FCORIOL 0.0001 The Coriolis parameter e

UGOo g z-component of the geostrophic wind at the surface.

VGO ?? y-component of the geostrophic wind at the surface.

DUGDZ 7 The rate of change of of the z-component of the _
geostrophic wind components with height. Need be set
only if IBAROCLP=1.

DVGDZ ” The rate of change of of the y-component of the _
geostrophic wind components with height. Need be set
only if IBAROCLP=1.

NAMELIST NUMERICS

VARIABLE DEFAULT MEANING 2

DTM Ui Timestep.

TSMTH 0.01 Time-smoothing factor.

DXX 7 Horizontal grid spacing in z-direction (constant). Not_
required for 1D or 2D runs.

DYY 7 Horizontal grid spacing in y-direction (constant). Not
required for 2D runs. i

RINCMAX 0.05 Incremental factor for increasing timestep.

DTMMAX 1000.0 Maximum value for the timestep.

DTMMIN 0.01 Minimum value for the timestep. ik

CVISMAX 0.2 Maximum viscous CFL number.

CVELMAX 0.2 Maximum advective CFL number.

TOL 0.1 Tolerance for CFL numbers e

NAMELIST PHYSICS

VARIABLE DEFAULT MEANING

VK 0.4 von Karman constant.

ALPHAH 1.0 Monin-Obukhov aj coefficient.

BETAM 4.8 Monin-Obukhov f3,, coefficient.

GAMMAM 19.3 Monin-Obukhov 7,, coefficient.

BETAH 7.8 "~ Monin-Obukhov S}, coefficient.

GAMMAH 12.0 Monin-Obukhov 7, coefficient.

DFBMAX 0.0001 Maximum change in buoyancy flux between iterations in
CHGBUOY.

CQ(NQP) 77 Array of coefficients for ‘Q’-field contributions to buoy-
ancy. The model overwrites the first element with
CQ(1)=R, — 1. Values must be set if NQP> 2.

NAMELIST DAMPNML

VARIABLE DEFAULT MEANING

DMPTIM ?? 1/Tdmp, Where Tgmp is the damping layer time scale.

ZDMP ?? zp, the height of the bottom of the damping layer.

HDMP ?? Hp, the damping layer height scale.

With the exceptions of CNTRL, TIMENML and JOBINFO, all of the above namelists are
only read in a set-up job (ISTART=1). One other namelist, OVRIDEI, allows some of the
namelist variables to be changed after the set-up.

References

Amundsen, J. and Skalin, R. (1996): GC User’s Guide, Release 1.0.4, SINTEF Applied Mathe-

matics.

Derbyshire, $.H., Brown, A.R., and Lock, A.P. (1994): The Meteorological Office Large-Eddy

Simulation Model.

Met O (APR) Turbulence and Diffusion Note No. 213.

