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Abstract

Semigeostrophic theory and its contact structure and other formal properties are first of all
reviewed in the simplest nontrivial context, f-plane shallow-water dynamics in R* = {z,y}. A
number of these properties are remarkably simple and elegant, and mathematically important.
We ask which of them might generalize to more accurate Hamiltonian models of balanced
vortex motion. Many of the properties are intimately associated with the special canonical
coordinates (X, Y') discovered by Hoskins (1975). The Jacobian 9(X, Y)/d(z, y) of these
coordinates with respect to the physical space coordinates (z, y) is equal to the absolute
vorticity measured in units of the Coriolis parameter f; and Hoskins’ transformation (z, y)
(X, Y) is, in a natural sense, part of an explicitly invertible contact transformation. The
invertibility is associated with a symmetric generating function. Unlike the flow in physical
space {z,y}, the flow in the space {X,Y} is solenoidal, and its streamfunction ®(X,Y,t)
is obtainable by solving an elliptic Monge-Ampére equation expressing ‘potential vorticity
invertibility’. There are also certain Legendre duality and convexity properties, which make
the model well-behaved, both mathematically and numerically, even when phenomena like
frontal discontinuities occur.

No such canonical coordinates were known in simple analytical form for any other balanced
model until the recent — and to fluid dynamicists very surprising — discovery of complea-
valued canonical coordinates (X, Y) in a certain class of Hamiltonian balanced models, some
of which are more accurate than semigeostrophic theory (McIntyre & Roulstone 1996). The
general way in which these models and their canonical coordinates are systematically derived
by constraining an unbalanced ‘parent dynamics’ (hence ‘splitting’ the parent velocity field
into two or more different fields) is discussed, following the method of Salmon (1988a). The
coordinates (X, Y') are such that 8(X, Y)/8(z, y) is still real, and still equal to the abso-
lute vorticity in units of f. The models include Salmon’s L; dynamics and a new family of
‘v/3 models’ that are formally the most accurate possible of this class. In what follows we
pursue the question thus raised: do these new models, or any subset or superset of them,
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share significant properties with semigeostrophic theory beyond the underlying Hamiltonian
dynamical structure and the special canonical coordinates (X, Y) and their association with
vorticity? The answer seems to be yes to the extent that the flow in (complex!) (X,Y) space
is solenoidal — so that a complex streamfunction ®(X,Y,t) must exist — and that ellip-
tic Monge-Ampere equations expressing potential vorticity invertibility occur in all the new
models, as well as in semigeostrophic theory. Otherwise, the answer is no. For instance the
transformation (z, y) — (X, Y) is no longer part of a contact transformation.

However, the ‘conjugate’ transformation (z, y) — (X, Y), where Y is the complex con-
jugate of Y, is, by contrast, part of an explicitly invertible contact transformation with a
symmetric generating function and a new transformed potential &(X,Y,t). This fact, discov-
ered by Roubtsov & Roulstone (2001), implies connections with hyper-Kahler geometry. The
pair of transformations — taking (z, y) into (X, Y) and relating to vorticity, potential vortic-
ity and elliptic Monge-Ampére equations, on the one hand, and taking (z, y) into (X, Y) and
relating to contact structure on the other — reveals that the structure underlying the whole
picture is that of a hyper-Kahler space or manifold, which in turn is part of a twistor space.
The implications of this remain to be explored.

1 Prelude

This article describes an unfinished journey and its main landmarks so far, along with elementary
tutorial material to review and prepare the background. The journey takes us through territory that
has long been familiar and elementary to geometers but may well seem strange to meteorologists
and fluid dynamicists. We think that this justifies the tutorial emphasis.

Ever since the seminal work of Eliassen (1948, 1962), Hoskins & Bretherton (1972), and Hoskins
(1975), semigeostrophic theory has had a special place in dynamical meteorology despite its limited
accuracy. The reason is that semigeostrophic theory has certain useful and elegant mathemati-
cal properties, in particular Hamiltonian structure, Legendre duality, contact structure, and the
convexity of certain potential functions (Chynoweth & Sewell 1989, 1991; Roulstone & Norbury
1994; Roulstone & Sewell 1997). These permit both robust numerical integration — even in cases
where frontal discontinuities form — together with a rather complete knowledge of mathematical
properties such as existence and uniqueness of solutions (Cullen & Purser 1984, Purser & Cullen
1987, Cullen et al. 1991).

Semigeostrophic theory also permits the evolution to be described in a particularly simple and
elegant way (Section 4 below) in terms of potential vorticity (PV) advection and PV inversion
(e.g. Hoskins et al. 1985). The PV is the materially conserved scalar quantity associated with
the so-called particle-relabelling symmetry. Inversion means deducing the mass and velocity fields
from the PV; in semigeostrophic theory this requires the solution of a Monge-Ampére equation.
The simplicity and elegance is associated with the Legendre and contact structure, manifesting
itself through a certain transformation to canonical coordinates originally discovered by Hoskins
(1975). This transformation has turned out to be useful, also, in the practical data assimilation
procedures used in numerical weather prediction (Desroziers & Lafore 1993).

Semigeostrophic theory is one example a so-called ‘balanced model’, meaning a model con-
structed so as to eliminate the fast ‘inertia-gravity’ waves or oscillations that can occur in numerical
weather prediction or other ‘primitive-equation’ models. Such waves can be generated spuriously
by, for instance, errors in data assimilation and model initialization, or by the so-called ‘para-
metrizations’ of subgrid-scale processes such as cumulonimbus convection. However, the limited
accuracy of semigeostrophic theory— formally correct only to leading order in the Rossby num-
ber ¢, referred to here as ‘geostrophic accuracy’ — limits its practical applicability to the problems
of weather forecasting and data assimilation. The Rossby number ¢, which semigeostrophic theory
requires to be small, will be referred to repeatedly in this article and for convenience will be defined
simply as

e = sup|¢/f], (1)

the supremum, in magnitude, of the ratio of vorticity ¢ relative to the Earth and the absolute
vorticity f due to the Earth’s rotation. Here vertical components are understood; f vanishes at
the equator and is often called the Coriolis parameter.

The limited accuracy of semigeostrophic theory raises the question of how to construct more
accurate balanced models that share at least some of the same useful and elegant mathematical
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properties. Work at the Newton Institute Programme has led for the first time to the construction
of what appears to be a class of such models, and to progress toward understanding their properties,
though we are still far from a full understanding. A novel and mathematically interesting feature —
very surprising to fluid dynamicists — is that complez canonical coordinates arise in a natural and
seemingly inevitable way (McIntyre & Roulstone 1996, hereafter ‘MR96’), generalizing Hoskins’
real canonical coordinates. The requirement for greater accuracy leads inexorably, it seems, to the
complex values. These in turn suggest a role for what is called Kdhler structure or Kahler geometry
(Roubstov & Roulstone 1997, 2001), a complex counterpart of the symplectic geometry that arises
in all Hamiltonian dynamical models (e.g. McDuff & Salamon 1998).

Several lines of research have contributed to these developments. The key points are, first,
that one may systematically construct Hamiltonian balanced models from their corresponding
unbalanced ‘parent’ models, such as primitive-equation models, by applying balance conditions
in the form of workless ‘momentum-configuration constraints’ that restrict the evolution to a
submanifold M€ of the parent phase space, through a method pioneered in this field by Salmon
(1988a); second, an explicit recognition that the application of such constraints always ‘splits’
the velocity field into at least two separate velocity fields, one of them related to particle motion
and the other, or others, to canonical momenta and to conserved quantities like energy, PV, and
Kelvin circulation (Allen & Holm 1996, MR96); and third, the discovery of the complex canonical
coordinates already mentioned (MR96). Semigeostrophic theory turns out to be a case of a ‘two-
way’ or ‘double’ split: there are three velocity fields, the first related to particle motion, the second
to kinetic energy, and the third to PV. Two of these three velocity fields (in fact the first and second,
Section 5 below) are interrelated by a certain explicitly-invertible contact transformation, itself
containing Hoskins’ transformation to canonical coordinates and thereby connecting the model’s
vorticity and potential vorticity with the first of the three velocity fields as well as with the
third. This set of interconnections seems to be part of what permits the remarkable analytical
simplifications characteristic of semigeostrophic theory, the most basic of which are reviewed in
Sections 4-5 below.

The plan of the article is as follows. Sections 2-4 review the standard semigeostrophic theory
and its transformation properties, including the Legendre transformation involved, in the simplest
‘f-plane’ case with constant Coriolis parameter. Section 5 shows how these same transformation
properties also reflect contact structure, a fact first pointed out by Blumen (1981), along with
an associated symplectic structure that is quite distinct from that associated with the parent
dynamics. Section 6, moving beyond semigeostrophic theory, shows how Salmon’s method can
be used to construct Hamiltonian balanced models whose accuracy is limited, in principle, only
by the limitations of the concept of balance itself. Those ultimate limitations are associated with
the phenomenon of spontaneous-adjustment emission or ‘Lighthill radiation’ of inertia—gravity
waves by unsteady vortical motions. Section 7 reviews Salmon’s method in detail in the simplest
possible context of a toy particle-dynamics model, showing how velocity-splitting arises. Section 8
carries out the extension to shallow-water dynamics. Sections 9-10 present the complex-valued
canonical coordinates, generalizing Hoskins’ canonical coordinates and the associated Jacobian
vorticity formulae to a far wider class of Hamiltonian balanced models, and showing that this
class includes models with variable Coriolis parameter f. Section 11 points out, following recent
work of Wunderer (2001), that mathematically well-behaved generalizations of semigeostrophic
theory will almost certainly share with semigeostrophic theory the property of double splitting.
Sections 12-14 show how Kihler geometry comes into view, along with a so-called hyper-Kahler
and hence quaternionic structure. Section 15, the Postlude, briefly describes the generalization to
fully stratified systems and then takes a broader view of our journey and how far it has progressed,
looking toward interesting parts of the research horizon.

2 Shallow water theory

Throughout this article — except in the Postlude, Section 15 — we use the so-called shallow-water
equations, also called by meteorologists the ‘shallow-water primitive equations’, as the parent dy-
namics from which Hamiltonian balanced models are to be constructed. These equations represent
the simplest dynamical system for which the foregoing ideas are nontrivial, a single layer of in-
compressible fluid of unit mass density with a free top surface under gravity. The layer depth A is



taken to be uniform in the absence of motion relative to a rotating frame of reference, the case of
‘no bottom topography’. We shall need both the Lagrangian and the Eulerian descriptions of the
fluid motion. In the Lagrangian description a typical particle, more precisely, fluid column, has
Cartesian horizontal coordinates x = x(a, ), or

o= a(ayb;t); y = y(a,b,1), (2)

expressed as functions of the particle labels a = (a,b) € R? and the time ¢ € R'. For convenience
we label each particle by its position at a reference time ¢ = 0, in other words define the functions
in (2) to have the property x(a,tf) =a at t=0.

Incompressibility requires the layer depth h, when expressed as a function h(a,t) to satisfy

h(a,t) = h(a,b,t) = 3(z,y) }_l ho 3)
: b d(a,b) :

with the Jacobian of the mapping (2) appearing on the right. Consistently with the above, we

have taken h(a,0) = hg = constant. The mass element is

dm = hoda = hdx. (4)
We assume that the mapping (2) is invertible, taking a <> x; thus the inverse
e alawd)y k=blzand)., (5)
when inserted into (3), expresses h(a,t) as another function

d(a,b)

hx,t) = o t) = 52 o, ©

bringing in the Eulerian description. Here, for economy of notation, the same symbol & is being

used as shorthand for the two different functions h(x,t) and h(a,t), emphasizing that, for given

t, they have the same value for the same fluid particle. Thus h(x,t) is shorthand for what could

have been written using a different symbol h as h(x,t) = h(a(x,1), t) if we were using a different,

‘fixed-slot’ convention emphasizing the functional dependences as such. Here, however, the idea is

that the single symbol A(-) is used to represent a single geometrical entity, the mass configuration,

in one way or another — a geometrical entity basic to describing the Hamiltonian structure, and
every other aspect of the fluid dynamics.

Another important quantity is the shallow-water PV defined in the rotating frame by

Q= % < I+ 3_y — a_:l:) 3

(7)

This is h~! times the vertical component of absolute vorticity, the Coriolis parameter f being
the contribution to that vorticity from the Earth’s rotation, as mentioned earlier. Rossby (1936,
eq.(75)) showed that @ is an exact material invariant for frictionless shallow-water systems. The
dots signify the material derivative or rate of change following the particle, i.e. partial differentiation
of x(a, ) with respect to t with a held constant. In (7), # and g are each being regarded as functions
of (x,t) obtained by inserting (5) into the material derivatives z(a,t) and y(a,t). We take f =
constant except in Section 10; this is the simplest, so-called ‘ f-plane’, case.
The Eulerian counterpart of (3) is
dh oh  d(he) Ad(hy)

5{+V-(hx)=a-+—'éz—+a—y=0, (8)

and the horizontal momentum equations are
ayan@hiton sl was
z+g—az—yf—0, y+9—ay+xf—0’ ()

where g is the ‘gravity acceleration’, representing the combined effect of gravitational and centrifu-
gal accelerations and here taken constant. If we take the Lagrangian view, these equations can



be regarded as governing the time-evolution of the functions (2), obtaining h(x,t) from (5) and
(6) hence 8h/dz and dh/dy, and hence the time evolution from (9). Throughout this article we
assume an unbounded physical domain P = R? with boundary conditions of sufficient evanescence
at infinity; MR96 discusses boundary conditions for finite domains, which are nontrivial; see also
Kushner et al. (1998). The shallow-water equations support unbalanced motion in the form of
inertia—gravity waves; it is a straightforward exercise to verify this by linearizing about a state of
relative rest with h as well as f constant and looking for solutions « exp(ikz + ily — iot) where
k, |, and o are real constants, giving a solution if the Poincaré dispersion relation

a® = f2 + gh(k® +12) (10)

is satisfied.

3 Semigeostrophic theory

Semigeostrophic theory results from making the so-called geostrophic momentum approximation
in equations (9) (Eliassen 1948, 1962). One replaces (&, ) in those equations by the material
derivative (u€, ) of a vector whose components are

G g oh G_ g0oh
P 0 i 11
sl 7 euinon 11 o
or in physical (Euclidean) vector notation
u® = (%% = Lz xwa, (12)

f

where Z is a unit vertical vector and the cross denotes the vector product. This is called the
‘geostrophic velocity’ relative to the rotating frame. It is useful because under the conditions of
interest in practical meteorology or oceanography it is often fairly close to the particle velocity
(z, 9) in a large-scale, coarse-grain view of the atmosphere or ocean, the main exceptions being
near the cores of strong atmospheric cyclones. The resulting equations are

oh oh
.G WAL S0 el O Ty e
u +gax yf =0; ) +gay+xf 0, (13)

which can again be regarded as soluble in principle for #(a, b, t) and y(a, b, t), as before, though the
use of (2)—(6) becomes still more intricate than for (9). This system (with its evanescent boundary
conditions) has the conserved energy

HE = v+/ LuC)2 dm (14)
D
where D is the physical domain and dm the mass element (4), and where
V:/-;-gh dm (15)
D

the potential energy of the mass configuration. Here H® and V are scalar-valued functionals of the
mass configuration alone. The system also has the material invariant

G G (e
c 1 [ dv du 19(u®,v™) (16)

Bi=sl toor el

which is the shallow-water counterpart of Hoskins’ (1975) PV. (There is a rationale for the notation,
to emerge in a moment.) We shall assume that Qg is positive everywhere.

From a fluid-dynamical viewpoint, (16) is peculiarly different from (7), because of the Jacobian
term. Its origin, which is now understood, will be discussed in Section 6 below; but for later
reference we may note one interesting fact about (16), implicit in the results of Salmon (1988a)



and first pointed out explicitly by Roulstone & Sewell (1996), namely that the right-hand side of
(16) is the result of replacing (z, y) in (7) not by (12) but by the velocity field u§ defined by

uf = (u§, v§) = u€ - 1z x fu® . Vul. (17)

That is, S .
g 1 st ol i
The equivalence of (18) to (16) can be verified in a few lines of manipulation.

We also note for later reference that (12) and (17) each define a velocity field whenever a
mass configuration h(z, y) is given. That is what is meant, in general, by a balance condition or
‘workless momentum-configuration constraint’. The superscript C stands for ‘constraint’, implying
restriction to a submanifold of phase space. For reasons to be explained at the end of Section 6,
the constraint defined by u§, i.e. by the expression on the right of (17), will be referred to as the
symplectic constraint for semigeostrophic theory, or ‘Salmon’s constraint’.

The balance conditions (12) and (17) both have the ‘near-local’ property that the velocity at
a point (z, y) in the physical domain D depends on the local value of h and its gradient only,
and not on h values at other points in the domain. This contrasts with the highly accurate,
but more complicated, balance conditions used in recent studies testing the limits of accuracy of
non-Hamiltonian balanced models based on PV inversion (Norton 1988, McIntyre & Norton 2000,
hereafter ‘MN’, McIntyre 2001, Mohebalhojeh & Dritschel 2001). Such highly accurate balance
conditions, defined for instance by equations (3.6a—1) or (5.4a-b) of MN0O, are necessarily nonlocal.
That is, the velocity at each point of the physical domain is a functional of h(-), the entire mass
distribution. The dependence on h values at distant points of the domain evanesces exponentially,
in typical cases, over distances of order

Lr = (gho)?/f , (19)

a lengthscale of the problem usually called the Rossby length, Rossby radius, or Rossby radius of
deformation.

There is one more peculiarity to be noted for later reference. Under ‘the conditions of interest
in practical meteorology or oceanography’ the Rossby number ¢ can often be considered small.
Then the last term on the right of (17) is O(e) relative to the first. The last term would look
like a small correction to make the balance condition more accurate except that it has the wrong
sign (minus not plus) and the wrong numerical coefficient ( -;— not 1). We return to this point in
Sections 8ff., where we introduce the ‘/3 model’. That model, so-called for reasons to emerge in
Section 9, via (130), is based on a variant of (17) that has the right coefficient in the correction
term, i.e., has ug replaced by

“33 = % e% Fu® ™ (20)

The rotational part of this velocity field is asymptotically correct. In other words, the corresponding
vorticity is correctly balanced to two orders in ¢ (e.g. Snyder et al. 1991, Craig 1993). This can be
verified by standard scaling arguments applied to the divergence equation of the parent dynamics,
i.e. to the divergence of (9). It is not yet known precisely what impact this has on overall accuracy,
i.e., what in practical terms the overall accuracy of the /3 model might be. But it seems likely
that the accuracy will be much better than that of semigeostrophic theory, especially since the
remaining, divergeat part of the velocity field is O(€) smaller than the relative vorticity. Let us
return, however, to semigeostrophic theory in order to review some of its remarkable transformation
properties.

4 Transformations of the semigeostrophic equations

Hoskins (1975) discovered that (13) is simplified, very remarkably indeed, by the following trans-
formation of coordinates: 94 94

X=z+a_x$ Y=y+%1 (21)
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where for convenience we have written

#(z,y,t) = f%—h(z, Y1), (22)

with physical dimensions of length squared, cf. Lg®. Because of (11), which now reads

G ¢ (i ¢

——'a—y‘, v——a—x, (23)

u

the transformation (21) is often called the geostrophic momentum transformation; and (X,Y’) are
often called geostrophic coordinates because, when f is constant,

X=u®, Y=0°, (24)

from (13) and (23). When h(z, y,t), equivalently ¢(z, y, ), is regarded as a known smooth function
of z and y with ¢ fixed — i.e., when we take a snapshot view of the evolving system, assumed
well-behaved — then (21) specifies a transformation of the form

X=Xty t), YEWe Yyt (t fixed) (25)

which, at each {, is assumed to have an inverse

I:JI(X,Y,t), yzy(XaY)t) ) (26)
requiring that
a(X,Y)
a(x, y) # 01 oo (27)

everywhere or almost everywhere (Sewell, this volume). To get the maximum simplification we
can further transform in various ways. For instance, in place of h(z,y,t) or ¢(z,y,t) we can use
the potential

P(:z:,y,t) o qS(:c,y, t) b %(1'2 il y2) 3 (28)
or its Legendre dual
R(X,Y,t) =Xz +Yy—P. (29)
The transformation
{z,y, P} = {X,Y, R} (30)
is a Legendre transformation because, from (21) and (28),
apP aP
=—, Y=—.
X 92 3y (31)

Its inverse is (29) together with
0 o

TEax Ry 2
Defining (cf. (28))
®(X,Y,t) = —R(X,Y,t) + {(X?+Y?), (33)
we see first from (21), (32) and (33) that
a® 09 0% 04
6X_3:c_X—x and 6—Y—ay—Y—y, (34)
second from (28), (29) and (33) that
e=¢+3;(X-2)+3(Y -y, (35)
and finally from (23), (24) and (34) that
; v . 0P
XL g e (36)




Recall that the dots signify the material derivative; notice furthermore that ®(X,Y,1) is a field to
be solved for, not a prescribed function or functional. After multiplication by f (which is constant),
& is a streamfunction or quasi-Hamiltonian for the particle motion viewed in (X, Y') space and not,
of course, the dynamical Hamiltonian in the infinite-dimensional phase space of the problem — an
entirely different mathematical object to be discussed in Section 8, and in this case given by (14),
a prescribed functional of the mass configuration. We may refer to (36) as the ‘streamfunction
property’ of semigeostrophic theory.

Semigeostrophic evolution can now be described in a remarkably simple way, in terms of PV
advection and inversion (e.g. Hoskins et al. 1985). Note first that the semigeostrophic PV (16) can
be written in the Jacobian form discovered by Hoskins (1975),

C_LB(X,Y)
s TR

This can be verified by substituting (21) and (23) into (37) to recover (16). We take Q§ > 0,
consistently with (27). From (31) and (37), Q§ may also be written in the form noted by Cullen
& Purser (1984), in terms of the Hessian determinant of P with respect to (z,y):

(37)

op op
o _ 9| 022 0zdy
dydz  9y?
We have o
=L . =4 = L2 2
Qs = 76 0oy f¢heSSzy(P) = f¢hess,;y{¢+ L=*+4%)}. (39)

Because of the Legendre duality and the properties of Jacobians, we can equally well substitute
(32) into the reciprocal of (37); thus
1 _ feo=y _ fé

fes ﬁ SR 2 2
bt un el X Y o

noting (33). Equivalently, from (34) and (35),

1 2 2
— = i P — _;. _(.9_?_ 1 Qﬁg
Qs g 0X Yy
Note further that the quantity in square brackets in (41), being equal to ¢ by (34) and (35), is a
positive quantity, given that h is positive everywhere.
If the PV field QS > 0 is prescribed as a function of X and Y, then (41) is an elliptic Monge-

Ampere equation for ® in (X,Y) space, as is, also, (39) for ¢ in (2, y) space. For both can be seen
by inspection to be special cases of the general 2-dimensional Monge-Ampére equation

hessxy (® — 2(X2+Y?) . (41)

A+Bp+2CT+ Ds+ E(ps — %) =0 (42)
where in (z, y) space we define p,q, p,s, T by

¢ o ¢ 8% 09

Fawe 1oy o Y g

(43)

and where A, B,C, D, E are given functions of (z,y,$,p,¢). In (X,Y) space we replace z,y and
¢ by X,Y and ®. Ellipticity holds if BD — C? — AE > 0 (e.g. Lychagin et al. 1993). For (39),
after multiplying by ¢7' f¢, we have A =1 — g~ f¢ Qg, B=D=1,C =0,and E = 1, whence
BD—-C?*—AE=1-1+g"1f¢ QS > 0, by hypothesis, and similarly for (41). Hence both are
elliptic.

Once @ is obtained, (36) gives the particle velocities in (X,Y) space — that is, it gives the
velocities of the images, in (X, Y) space, of the material particle positions in (z,y) space. We can

.
7
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now exploit the material conservation of QS. Continuing to regard QS as a function of X and Y,
we can, heuristically speaking, timestep either

013y 1By d Nogiip o 10 St o iy Yo
(E”‘ﬁ“ W)QS = L (at+"ax+yay> (Qg)“o (44)

in order to advect QS or 1/QS. We can then invert by solving (41) for ®, then use (36) to obtain
the advection velocity, then re-advect, and so on. At any time ¢, the mass configuration and
locations of the material particles in physical space can be obtained from (34).

Thus equations (36), (41) and (44), with (34), express in a remarkably simple way the standard
idea of evolving the balanced motion by PV advection and PV inversion. Moreover, they do so in
a form that can be shown to be mathematically well-behaved using the theory of Monge-Ampére
equations (Cullen & Douglas 1998; see also Cullen in Volume 1 and Douglas in Volume 1), and
generalizable to cases of non-smooth ¢ or ® that can model atmospheric fronts (Chynoweth &
Sewell 1989, 1991; see also Sewell in this volume). Note that the assumption that the PV is
positive, Q5 > 0 (with h > 0, ¢ > 0), corresponds to convexity of the graphs of P(z,y) and
R(X,Y).

The Legendre structure associated with the intermediate sets of variables {z,y, P} and { X, Y, R}
and expressed by (29)-(32) is special to, and an essential part of, semigeostrophic theory as the
term is used here. Salmon and others have, however, used the term ‘semigeostrophic theory’ in a
wider sense, to include a class of Hamiltonian balanced models of comparable accuracy in Rossby
number ¢ but whose members may lack the Legendre structure. Purser (this volume) points out
that these other models may permit the emergence of certain topological defects that can give
trouble when the models are discretized for numerical integration. Conversely, he shows that the
exact Legendre structure expressed by (29)-(32) makes semigeostrophic theory, as the term is used
here, immune from such trouble. Sewell (this volume) reminds us that the Legendre structure also
allows semigeostrophic theory to tolerate isolated zeros or infinities in the Jacobian (27).

5 Contact structure of semigeostrophic theory

The transformation that so remarkably simplifies (13) into (36), (41) and (44) belongs to the general
class called contact transformations or contactomorphisms (see e.g. Carathéodory 1982; Sewell, this
volume), related in turn to what are called canonical transformations or symplectomorphisms. For
an authoritative overview of these topics and of the associated ideas of contact and symplectic
structure, and of the interesting state of research on them today, the reader may consult the
monograph by McDuff & Salamon (1998), hereafter ‘MS98’.

Because we are interested in generalizations to models of higher accuracy than semigeostrophic
theory, we digress briefly, in this section, to recall the modern definitions of contact structure and
contact transformation, noting also the distinction between contact and canonical transformation
(e.g. Sewell & Roulstone 1993, 1994). The occurrence of contact structure in semigeostrophic theory
was first noted by Blumen (1981), and was used by Purser (1993) to generalize semigeostrophic
theory to hemispherical geometry.

The clearest way to describe what is involved is to use the language of the exterior calculus.
In brief — for more detail see e.g. Misner et al. (1973) or Schutz (1980) — the exterior calcu-
lus applies in a flat or curved space (manifold) of arbitrary dimension, possibly infinite, and has
the same information content as what used to be called the calculus of antisymmetric covariant
tensors and their contractions with contravariant vectors (now called simply vectors). All the in-
formation is metric-independent: no Christoffel symbols appear, and any coordinates x can be
used, orthogonal or non-orthogonal. The exterior calculus has a beautiful geometric interpretation
in terms of metric-independent properties such as tangency and intersection. An ezterior deriva-
tive operator d is defined, which, when applied to a scalar field ¢(x), produces a first-degree
(first-rank) differential form or I-form d¢ having the same information content as the gradient
V¢ = (0¢/0zy, d¢/dzs,...), a covariant vector. The information content is the same because
d¢ = (0¢/0z,) dzy + (0¢/dz2) dzy + -+ by the chain rule. This expresses the 1-form d¢
in terms of dz;, dz,,..., the basis I-forms associated with the coordinates x. An associative,
distributive, anti-commutative ezterior product or wedge product is defined to have the same infor-
mation content as an antisymmetrized outer or tensor product. For instance the wedge product



of d¢ and d) is defined to be the 2-form dp A dyp = —dyp Adp = d¢® d¢p — dyp @ d¢ (no
factor %) Antisymmetrization is understood whenever d is applied to a differential form, so that,
in particular, dd¢ = 0, generalizing curl grad ¢ = 0 to arbitrary dimensions (Poincaré’s lemma),
and d(¢dy) = d¢ A dy = —dy A d¢. In other words, d corresponds to an antisymmetrized
gradient operator, and d¢ A di to the second-rank covariant tensor V¢ @ Vi) — Vi) @ V. The
same antisymmetry shows up in Jacobian determinants and their minors; for instance, if x is
2-dimensional with x = (z, y), then

Gy & S0¥) g ide (45)

d(z,y)

Consider now the 4-dimensional space R* with coordinates {z,y,p,q}, say, and the 5-dimensional
space R® with coordinates {z,y, ¢, p,q}, say. The latter space when equipped with the 1-form

0=d¢—pdz—gqdy, (46)

called the Cartan 1-form, or standard contact 1-form, is said to have contact structure. The
structure may be visualized as a field of hyperplanes, 4-dimensional hyperplanes in our case. At
each point P of the space R®, the 1-form @ defines an associated hyperplane, spanned by those
vectors that annihilate 6, i.e. produce zero when contracted with 6. The hyperplane can be
(though need not be) thought of as living in the neighbourhood of P. (More precisely, the 1-form
0 lives in the ‘cotangent space’ at P, and the associated hyperplane lives in the ‘tangent space’ at
P; e.g. Schutz pp. 36,53; MS98, p. 106.) The hyperplane changes its orientation, in general, as the
point P moves through the space R®. If we watch, for instance, the intersection of the hyperplane
with the 3-dimensional subspace spanned by {z, ¢, p}, then we see an ordinary plane tilting about
an axis parallel to the p-axis. The plane tilts toward the ¢-axis whenever the point P moves in
any way such that the coordinate p increases, and vice versa. The field of hyperplanes defined by
0 can be shown to be nonintegrable or nondegenerate in the sense that the hyperplanes define no
integral hypersurfaces: if P is imagined to move along some curve whose line elements always lie
in the local hyperplane through P defined by 6, then the set of all such curves emanating from
a given point Pg traces out a quasi-helical structure that cannot be contained within any single
hypersurface through Py.
Now the map
Fe:{z,y, 4,9} = {2, ¥, ¢, P, ¢'} (47)

from R® to R® is called a contact transformation or contactomorphism if it preserves 6 up to a
(nonvanishing) multiplicative factor 3, that is, if

d¢' —p'da’ —¢'dy = B(z,y,4,p,¢)(d¢ —pdz —qdy) . (48)

Similarly, the restriction of F¢ to R* taking {z,y,p,q} — {z',¢/,p',¢'}, is called a canonical
transformation or symplectomorphism if it preserves the 2-form 2 obtained by taking the exterior
derivative of (46):

Q = df = —dpAdz—dgAdy = dzAdp+dyAdg. (49)
That is, {z,y,p,q} — {2',¥/,p',¢'} is called canonical if
dz' Adp' + dy Adq’ = dzAdp + dyAdg. (50)

Clearly (48) implies (50) if and only if # = 1. Thus, loosely speaking, a canonical transformation
is a special case of a contact transformation, both because of the restriction to a smaller space and
because of the restriction to f = 1. We shall see in a moment that each of the three steps in the
sequence of transformations described in Section 4 is a case of (48) with # = 1, and therefore, in
the loose sense just described, is both contact and canonical.

The 2-form Q has a nondegeneracy property corresponding to the nondegeneracy property of
6. Nondegeneracy means that € gives a nonvanishing result when contracted with almost any
pair of nonparallel vectors (in the older terminology, contravariant vectors). It is ‘almost any pair’
rather than ‘any pair’ of nonparallel (nonzero) vectors because there is an infinitesimally small
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set of special pairs of such vectors that do make the contraction vanish, as is clear by continuity
and antisymmetry. Exchanging the two vectors changes the sign of the result, so rotating their
plane must take the result through zero. This is related to the existence of so-called Lagrangian
submanifolds having half the dimensions, in this case 2 dimensions, on which contractions with Q
always vanish (MS98).*  defines what is called a symplectic structure in R*, for which {z, y, p, ¢}
and {z',¢/,p,q'} are sets of canonical coordinates. These are called canonical because of the
simplicity of the 2-forms on the right and left of (50), having only two terms as compared with
the six terms, with variable coefficients, that would result from applying an arbitrary coordinate
transformation. (The reader is warned that, when we specialize to the case of Section 4, the
symplectic structure defined by © will not be the same symplectic structure as that of the parent
Hamiltonian dynamics, not only because of the different dimensionality, R* rather than R, but
also because (p,gq) will be equated to (8¢/dz, d¢/dy) and not to the components of (17), (20),
(23), or any similar expression related to the dynamical canonical momenta.)

When 8 = 1, the classical generating-function formalism is available (e.g. Carathéodory 1982,
Sections 97-109; Sewell & Roulstone 1993; MS98 chapter 9). This guarantees that, for instance, a
transformation defined by a generating function of the form S(z,y, z’, y’), namely the transforma-
tion implicitly defined by

as as as 5 108 ;
b RNl L At | ] T e LA T ey A 51
R ol D e (51)
is canonical, as substitution into (50) will immediately verify. (MS98 call this S(z,y,2’,¥) a
generating function of ‘type S, and discuss related global existence questions of interest in current
research.) Furthermore, if we take

¢'=9¢-5 (52)

then (51) with (52) defines a contact transformation, as can be seen at once by substitution into
(48) with B = 1. The process of appending (52) to (51) while extending R*into R is called ‘lifting’
a canonical transformation into a contact transformation, resulting in the ‘contactification’ of the
symplectic structure defined by Q. (The reader is warned that what is called ‘symplectification’
of a contact structure is not the reverse process; in our case it would give rise to a symplectic
structure in R® rather than R*.)

For present purposes we are especially interested in the case

S(z,yz',y) = -3 -2)* - 1y -v)?, (53)
for which (51) gives
glEadtp, Y =ytg, p=p, el (54)

If we are given a (2-dimensional) hypersurface G within R® defined, at given fixed ¢, by the three
relations

¢ =¢(z,y,t), p=0¢/0z, q=0¢/0y, (55)
and its image G’ defined by (52) with
¢' = ¢'(.’C,, yla t) o p= 6¢’/6x' ) = a¢,/ayl ) (56)

then the particular contact transformation (52)-(54), restricted to the graph of ¢ in the sense
defined by (55), i.e. restricted to the hypersurface G, is just the geostrophic momentum transfor-
mation (21) together with (34) and (35) (Sewell & Roulstone 1994, Theorem 11). Here we indentify
(z',y') with the previous (X,Y), and ¢'(2, 3/, ) with the previous ®(X,Y,t) (the time ¢ still being
held fixed), and (p',¢") with (9¢'/dz', 8¢'/dy'), i.e. with the previous (0®/dX, d®/3Y).
Through (46) and (55), each point on the hypersurface G is thus associated with a 1-form @
defining those hyperplanes tangent to G that are also parallel to the p and ¢ axes. The projection
of this picture into R® = {z,y, ¢} is the surface ¢ = ¢(z,y) together with its tangent planes. A

*More precisely, nondegeneracy can be defined by saying that whenever the direction of one of the vectors is
chosen arbitrarily, then the other vector can always be chosen to give a nonvanishing contraction, i.e. to be transverse
to any Lagrangian submanifold containing the first vector. In our simple case, the Lagrangian submanifolds defined
by € include the 2-dimensional subspaces of R* = {z,y,p,q} spanned by any two nonvanishing vectors of the form
(a,0,¢,0) and (0,b,0,dj. A less trivial example will be encountered in the paragraph below (56).
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contact transformation preserves this geometric structure, i.e., preserves the tangency of 0 to G.
We assume here that the derivatives 8¢/8z and d¢/dy exist, so that the notion of tangency makes
sense. Notice also that the projection of the same picture into R* = {z,y,p, ¢} gives us another
example of a Lagrangian submanifold. Because of the antisymmetry of exterior products and the
symmetry of mixed partials, 8¢/0zdy = 0¢/dydz, the 2-form Q defined by (49) vanishes when
restricted to the graph of ¢.

If we exchange z with p, y with ¢, 2’ with p’ and ¥’ with ¢’ in the contact transformation
(52)-(54), then we obtain another contact transformation with generating function of the form
S=S(p,q,p,4q), i.e., a transformation implicitly defined by

as as P8GiL wilj s 08 o ge (57)

i e

This is readily verified to be just the transformation that takes ¢ into P via (28) when we identify
P with ¢ and (p',¢’) with (9¢'/dz’, 3¢’ /dy'), and take S = —L(p — p')? — 1(g — ¢)*. Similarly,
the transformation that takes — R into ® via (33) is another contact transformation. Geometrically
speaking, one is simply adding a parabola and its sloping tangent planes to the original surface
and its tangent planes, which trivially preserves tangency.

To summarize, then, using the notation of Section 4, the foregoing verifies (a) that the trans-
formation taking

(z, y, ¢, d¢/0z, 3¢ /DY) — (X, Y, ®,09/0X, 0%/3Y) (58)

is a contact transformation, and (b) that the first and third steps in that transformation, respec-
tively
(z, y, ¢, 8¢/0z, 3¢/0y) v (z, y, P, P[0z, OP/dy) (59)

and

(X,Y, —R, —0R/0z, —0R/dy) — (X, Y, ®,09/0X, 09/3Y) , (60)

are also contact transformations. It follows that the intermediate step
(z, y, P, 0P/0z, OP/dy) — (X, Y, —R, —OR/0X, —OR/3Y) (61)

is itself, also, a contact transformation as well as being a Legendre transformation.

The demonstration just given that the transformation between 2,y and X, Y is part of a contact
transformation justifies the assertion in Section 1 that two of the velocity fields involved in semi-
geostrophic theory ‘are interrelated by a certain contact transformation ...’. The two velocity
fields are the particle velocity x = u®, say, and the geostrophic velocity X = u€. This last relation
follows from (21), (23), (34), and (36).

Note also the explicit invertibility of the overall transformation, enhancing the usefulness of
(36). We can transform in the direction

(X,Y, ®, 09/0X,09/3Y) v (z, y, ¢, 0¢/dz, 8¢/dyY)
just as easily in the opposite direction
(z, y, ¢, 0¢/0z, 09 /0y) — (X, Y, ®, 09/IX, 09/3Y),

in part because of the symmetry and simple form of the generating function (53), which in the
current notation, the notation of Section 4, reads

Sz,9,X,Y) = —3(X—2)? - (Y -y)?. (62)

6 Constraints and velocity-splitting

We now look beyond semigeostrophic theory and its Legendre and contact structure toward the
more general, and in some cases more accurate, balanced models referred to in Sections 1,3. These
can be constructed systematically from a given ‘parent dynamics’ that admits unbalanced mo-
tion, such as the shallow-water primitive equations, or the stratified primitive equations used in
numerical weather prediction, by Salmon’s method of applying a balance condition or workless

12

-

7



momentum-—configuration constraint to the flow in the parent phase space (Salmon 1988a, equa-
tion (4.3)). We regard the parent dynamics as ‘exact’ in the sense of setting the standard against
which accuracy will be judged. Therefore, a constraint that is as accurate as possible is one that
interferes with the phase-space flow as little as possible. Because the constraint is a functional rela-
tion tying the velocity field to the mass configuration h(x,t), at any given t, as already illustrated
in (12) and in (17)ff., we write
u = uS(x;h(-)) (63)
to denote the general form of the constraint (suppressing reference to t). Thus the symbol u®
represents both a field, i.e. a function of x, and also a mass-configuration functional. When one or
other aspect needs emphasis we may speak of the ‘u® field’ or ‘u® functional’ respectively. The
dependence on the mass configuration has to be nonlocal, as pointed out above (19), if we want
the greatest possible accuracy.
Now the Hamiltonian balanced model that results from applying the constraint is always in
a certain sense ‘schizophrenic’, in that it naturally and inevitably has not one, but two different
velocity fields. In such a model there is no such thing as ‘the’ velocity field. This has caused
confusion in the past, even though the point is perhaps obvious once recognized. We find it
mnemonically useful to say that applying the constraint ‘splits’ the parent velocity field u into
two different velocity fields. The first of these is u® itself; and u® cannot be ignored because it
enters naturally into the balanced model’s conservation relations, as will become clear shortly. For
instance the formula for the balanced model’s conserved PV has the same appearance as (18), but
is valid for a completely general u® field:

c 1 avc__('_)u_c)
Q “Z(f+a_z 5 (64)

The second velocity field is the particle velocity x = u®, which differs from u€ for the reasons
to be noted next. We denote the difference u® — u® by u® and call it the ‘velocity-split’. It is
a natural generalization of the ‘ageostrophic velocity’ discussed in meteorological textbooks, and
has the useful property of being reference-frame-independent. It is indifferent, in particular, to
whether one uses a rotating frame as hitherto, or an inertial frame, as will be found convenient
below.

The velocity-split u® is generically nonzero because of its relation to a certain mass-configuration
functional R®(x; h(-)) that directly measures the constraint’s interference with the parent phase-
space flow. We may call R the residual, or unbalanced, contribution to the gravitational and
pressure-gradient forces per unit mass. It too is indifferent to the choice of rotation rate for the
frame of reference, and is defined by

RC=F-AC, (65)
where A will be called the absolute ‘constraint acceleration’ and where F is the net gravitational
and pressure-gradient force per unit mass defined by the parent dynamics, for the given mass
configuration. F is equal, by definition, to the absolute material acceleration that would occur if
the constraint were suddenly removed.

The constraint acceleration A€ is defined to be the material rate of change of u® evaluated from
a fictitiously-evolving mass configuration that coincides, at the instant considered, with the given
configuration, but evolves as if all particles moved with velocity u® (viewed in the inertial frame).
Thus R€ would be identically zero if that fiction were fact, i.e., if the constraint did not interfere
with the parent dynamics. The superscript C will be used throughout to indicate a functional
dependence on the mass configuration that is known when the u® functional is given. The field A®
qualifies as having such functional dependence because, as a moment’s reflection makes clear, A®
can be expressed solely in terms of u® and its functional derivative with respect to h(-). This will
be made explicit in (119) below. The functional derivative enters because of the need to represent
the fictitious rate of change of the mass configuration that would occur if particles moved with
velocity u®.

The relation between u® and R will be shown to take the simple generic form

2
> [a50ax) ) dm(e) =BS)  (=1,2), (66)
j=1
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in suffix notation with (z,y) = (21, z2), etc. The kernel QS (x,x’) is known in terms of u® and the
mass configuration, as indicated by the superscript C, and again involves the functional derivative
of u® with respect to h(-). The kernel will be defined in Section 8. The kernel is antisymmetric
in the sense that Q?j(x, b —-Qﬁ(x’,x). We call (66) the ‘splitting equation’. It generalizes the
elliptic partial differential equation found by Salmon (1985) for the ageostrophic velocity field in
the case u® G i.e. in the case of the Hamiltonian balanced model now called L; dynamics.

Salmon’s equation is equivalent to

=

<

(VI-K?)U® = — 2 z x (u€ - Vu©) (67)
under the conditions of Section 2, where US(x) = hu® = h(uf — u®), and K? = K?(x) =
fQC(x)/g with u® replaced by u®. The derivation of (67) from (66) is given in Appendix A. K?
is robustly positive under the conditions of interest in practical meteorology or oceanography, with
¢ small and f dominant in (64); then K? = Lr~*(1 4 O(e)); cf. (19).

Formally speaking, (66) completes the equations determining the time-evolution of the Hamil-
tonian balanced model defined by the u€ functional. Given the mass configuration at some instant,
all quantities with superscript C are known. Provided that (66) can be solved for u®, we then
know u¥ = u® + u® and can advect the mass configuration and time-march the problem. The
mass configuration, described by the single scalar field h(x), provides sufficient initial conditions
because only the first time derivatives x = u® are involved, in place of the second time derivatives
% in (9). We shall note later that the PV can be used in place of the mass field.

But why should R€ be generically nonzero, no matter how cleverly we choose the u® functional?
The reason is the existence of weak but generically nonzero ‘spontaneous-adjustment emission’, or
(generalized) ‘Lighthill radiation’, of inertia—gravity waves by the unsteady vortical fluid motions
described by the parent dynamics (Ford et al. 2000 & refs.). The existence of such wave emission
means that there is no such thing as a constraint of the form u = u®(x; h(-)) that does not interfere
to some extent with the parent phase-space flow. At the very least, applying the constraint must
suppress the spontaneous-adjustment emission. The phase space of the balanced model is just the
constraint manifold, M, i.e. the submanifold of the parent phase space defined by u = u®(x; h(-)).
In this smaller phase space, essentially the parent configuration space, there is no room for degrees
of freedom corresponding to inertia—gravity waves, a fact reflected in the form of (66), which as
already remarked involves only the first time derivatives of x and not the second as in (9).

To put the same point another way — since it has been controversial in the past — the existence
of spontaneous-adjustment emission implies that the parent dynamics can have no invariant ‘slow
manifold’ in the sense originally hypothesized by Leith and Lorenz. For history and further discus-
sion see Ford et al (2000 & refs.). In place of such an invariant manifold there must exist within
the parent phase space a fuzzy ‘slow quasimanifold’, a thin stochastic layer or chaotic layer of the
kind familiar from low-order models of weakly coupled oscillators, such as the separatrix layer of
a weakly perturbed pendulum (cf. Lynch, this volume). (Here the pendulum motion is regarded
as analogous to the balanced vortical fluid motion, and the weak perturbation — due to coupling
with a faster oscillator, for instance — is regarded as analogous to the coupling with inertia—gravity
waves in the fluid system.) So the constraint manifold M€ cannot be an invariant manifold of
the parent dynamics, no matter how u®(x; h(-)) is chosen. Thin though the slow quasimanifold
may be — and the shallow-water experiments of MNOO show that it can be astonishingly thin in
large regions of phase space — it is not infinitesimally thin, and no constraint manifold can ever be
more than an approximation to it. There must be some ultimately irreducible error. The detailed
analysis of Ford et al. (op. cit.) gives some idea of the order of magnitude of this irreducible error
in certain parameter ranges; see also the further discussion in Saujani & Shepherd (2001 & refs.).

The simple form (66) of the splitting equation is a consequence of having just one constraint
manifold M©. We emphasize that semigeostrophic theory has no such simple splitting equation
because, as mentioned earlier, its derivation from the parent primitive equations involves a ‘dou-
ble splitting’ that produces three generically different velocity fields. There are two constraint
manifolds within the parent phase space, O(¢) apart, one defined by the geostrophic constraint
(12) and the other by Salmon’s constraint (17). These define two of the relevant velocity fields
and separately constrain, respectively, the Hamiltonian functional and the symplectic structure.
Salmon’s constraint shows itself in the Jacobian formula (37) for the conserved PV, but not in
the formula 14 for the conserved energy. Appendix B discusses the — not quite trivial — relation
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between material PV conservation in physical space and symplectic-form invariance in phase space,
explaining why it is Salmon’s constraint (17) and not the geostrophic constraint (12) that enters
into the semigeostrophic PV formulae (16) (18), and (37).

The constrained Hamiltonian is just the conserved energy (14), equal to the parent Hamiltonian
evaluated with the geostrophic velocity (12). It is, of course, a mass-configuration functional. It
can also be regarded as a result of applying Salmon’s constraint (17) to a slightly different parent
Hamiltonian in which %]u}z, in the standard parent Hamiltonian

H (h(-),u(-)) = V+/1:)-%|u|2dm with V = /D%gh dm , (68)

is replaced by %I(u — u§ 4 u%)|%. The replacement is permissible because u$ and u® are both

mass-configuration functionals. The third velocity field is of course x, i.e. uf.

1 QS for particle dynamics

To see where the splitting equation’s kernel QS comes from, it is easiest to consider first a simple
textbook particle-dynamics analogue or toy problem. We consider the simplest conceivable such
problem. The parent dynamics is that of a particle of unit mass moving in 2 dimensions under a
potential V(x) in an inertial reference frame, with the classical Hamiltonian function

H(x,u) = Juu; + V(x) (69)

where x = {z;} = (z1, z2) denotes the particle-position coordinates defining the system config-
uration at a given instant (we suppress explicit reference to the time t), and u = {u;} denotes
the corresponding set of canonical momenta. Summation over over repeated indices is understood
from here on. The parent phase space is R* = {2}, 24, u;, u3}. To express the symplectic structure
involved, it is again natural to use the exterior calculus. Here, however, we have Euclidean struc-
ture also, within the subspaces {z1,z2} and {u;, u3}, representing physical distance and velocity;
and in any case we want the notation to stay close to that of fluid-dynamical equations such as
(9). So we compromise by using elementary textbook notation, with occasional reference to the
more elegant exterior-calculus formulae.
The four Hamilton’s equations are

oH : 0H

Pi = — Ui = e
! au.- ! : 8::,-

and an alternative way of expressing the same information is to introduce arbitrary variations
éz;,0u; and to note that the equations are equivalent to

Zi0u; — u;0z; = a—HJ:L',- + a—HJu,- =46H , say. (71)

a:c,' (’)u;

In terms of exterior calculus, the left-hand side of (71) can be recognized as the contraction, or inner
or ‘interior’ product, of a pair of vectors with the 2-form dz;Adu; = dz;Adu; + dzaAduy ex-
pressing the symplectic structure of the parent phase space R*. The vectors are the phase-space flow
vector (X,u) = (&1, %2, %1, u2) and the variation vector (6x,du) = (621,022, duy,dus), expressed
in the canonical coordinates (1,22, u1,u3). Here the symplectic structure is mathematically the
same as that associated with (49) and (50), but physically with quite different associations, being
a property of the parent phase space in the toy problem.

Now (71) has a key advantage for our purpose, namely the simplicity and directness with
which a new Hamiltonian dynamical system can be constructed from (71) by applying a workless
momentum-configuration constraint. There is no need to introduce Lagrange multipliers, nor
integrals with respect to ¢ nor caveats about their end points. To generate a constrained problem
that inherits Hamiltonian structure from the parent dynamics, one need only adhere to the following
basic principle:

(i=1,2), (70)

Apply the same constraint to the variations §x,éu

as is applied to the phase-space flow %, 1.

(72)
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In the fluid problem in a finite domain this principle is crucial, incidentally, to finding boundary
conditions that preserve Hamiltonian structure, as illustrated in MP96.

In the present toy problem, (72) means that if the constraint manifold ME is described by a set
of smooth functions z; = z°(z), u; = u(z), where z = {z;} denotes a smaller set of variables, then
in order to convert (71) into the new, constrained problem, preserving Hamiltonian structure, one
merely substitutes the same functions z£(z), uf(z) into §z;, du; as into #;, 1; and H(x,u) (Salmon
1988a, equation (4.4)). Here z = {z;} will be taken to be 2-dimensional: j = 1, 2. It is necessary to
assume nondegeneracy in the sense that M is not part of any Lagrangian submanifold (Section 5)
of the parent phase space.

First consider the expressions u;#; and —u;éz;. Constraining these expressions produces, re-

spectively,

3 d g
uid; = uf’(z) ax?(z) = —05 (2)%; , %)
say, and
—uibz; = —ul(z)dzC(z) = Gf(z)tszj ; (74)

where both expressions involve the same set of known functions 0;?(2), namely

C
PO iy ) (75)
0z;
Adding the first variation of (73) to d /dt of (74) and noting that two terms +u;é2; cancel on the
left, similarly :taféz'j on the right, we see that the left-hand side of (71) becomes simply

z;0u; — widz; = —i.'<50? + é?ézi (76)
= QS é,-JZJ' , say (77)
where b 600( )
a20; (z) 7z
C(z) = ~—} g
Qi () e e (78)
because Pye 96C
C — —L g .’ = —J i .
601 9e; 62 and 0; Be; Zi (79)

Nondegeneracy says that the constraint functions, z{°(z) and u{(z), are such that the antisymmet-

ric matrix Q,-CJ- is invertible. This is possible because z is even-dimensional. The expression (77) is
the contraction or inner product of the two vectors z and ¢z (in the tangent space at a point of
M) with the 2-form

Q° = 10f dz Adzj (80)

produced by restricting the parent 2-form dz; A du; to the submanifold M. Figure 1 (see end
of article) illustrates this process pictorially, for a special case with x°(z) = z; see the caption for
further explanation.

Herein lies the beauty of using differential forms instead of partial derivatives. Applying the
constraint restricting dz;Adwu; to M not only preserves metric-independent geometric properties
such as tangency and intersection, but is utterly straightforward, because the use of the differential
form dz; A du; introduces no prior prejudices about directions in phase space and therefore no
need to undo such prejudices via Lagrange multipliers.

The 2-form QF is the exterior derivative of the 1-form §€ = 6° d z; (whether or not we add an
extra term of the form d¢€); that is, Q€ = d0°. Note from the antisymmetry of QS and the
symmetry of 8%/0z;0z; that

o5 oe5, | oag
0z 0z dz;

This expresses dQ€ = dd6€ = 0. (In words, 0° is ‘closed’, dQ° = 0, because it is ‘exact’,
Q€ = d6°.) From (71) and (77), then, writing HC(z) = H(x®(z),u®(z)), we have

e (81)

N hidy = 4HS, (82)
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Removing the arbitrary factors dz;, we see that the new problem that results from constraining
(71) is

OHC®
dzjics

Oz a4 = (83)
Nondegeneracy says that the matrix Q,- has an inverse J,J, with Q,J ik = = ik, where § with
suffixes is the Kronecker delta, giving Hamllton s equations for the new, constrained problem in
noncanonical form:

Logeoi oH®¢
2 3z
The matrix QC is called the noncanonical symplectic matriz and J (; the noncanonical cosymplectic

matriz, though the two entities are sometimes conflated. The corresponding Poisson or cosymplec-
tic bracket, {-,-} acting on pairs of scalar-valued functions, is

{4, B@) = 5595 57 (55)

o=

(84)

and satisfies Jacobi’s identity
{{4,B}.C} + {{B,C}h A} + {{C,A},B} = 0 (86)
for all A(z), B(z),C(z), or equivalently

J a'] JC aJkt

6 321

dJG
Coanag i
+ IG5t =0, (87)

which in turn is equivalent to (81) for nonsingular QC and J . (This can be verified by multiplying
(87) by Q,cmﬂfnﬂk then using 9/0z of the relatlon o J % = dir.) Each of the two versions, (83)
with (81) on the one hand, and (84) with (87) on the other, are Hamiltonian systems by standard
definitions (e.g. Salmon 1988b, Shepherd 1990), as expected from the basic principle (72).

Energy conservation for the new, constrained problem follows at once from the antisymmetry

of the symplectic matrix Q . Replacing the variations in (82) by flow rates on ME, we have

dH®
dt

=00 = 0, (88)

by antisymmetry. In the exterior-calculus language, we may use zJ Q€ = dHC in place of (82),
where Q€ is the 2-form (80) and where %|Q° denotes contraction or inner or interior multiplication
(analogous to the ‘scalar’ product of ordinary vector calculus, and also notated ¢(z )QC or 1:Q°).
Thus the derivation of (88) can be rewritten

dHC®
dt
by antisymmetry; note that 2|z |Q° means z] (2]Q°).

Now the constraints of interest in this article are always momentum-configuration constraints,
for which

= inHC = iJzJQC =0 (89)

x%(z) =z (90)
Then dz{ /dz; = é;;, whence (75) gives
05(z) = —uf(z) = —uf(x) (0° = d¢® —uf daj) (91)
so that (76), (77) and (82) become

&j0u; — wjdz; = &;6uS —uSéz; = Qf&idz; = SHC, (92)
where now
uf  Ouf
i Bz Oz 98)




In the exterior-calculus language, the last of (92) reads 6x|%|Q€ = §HC, equivalent to x|Q° =
d H®) by arbitrariness of §x, where now (cf. (80))

0° = 0z da, Nde; (94)
We now have
§H® = §H(x, u®(x)) = 6V +uféu . (95)
Defining
v = x~u(x), (96)

we may now derive the splitting equation for the toy problem. The shortest route uses (92) and

(95):

0 = —#;0uf +4Sdz; + 8V + uféuf (97)
—u§du§ + ufdz; + 6V (98)
= —ujduf + (4 — AT)dz; + 6V + A6z, (99)
for any vector AC. If we now choose
Pl (100)
: dagni
which is the constraint acceleration in the sense of (65)ff., then
ouf ouf ouf
Aoa L Lol IR Chlol T e e g 101
o A’ x" sz uJ a.’IIj uJ a:L‘j ( 0 )
Then (99) becomes simply
Qg-ujs-&c,- = RPéz;, (102)
where
0H ov
C o DAl e e A = e e A 103
RI F At axi 1 axi Vi ( )
giving the splitting equation:
QS-U? = RS ' or equivalently uf = JSRJ(-: ; (104)

In words, the splitting kernel is the symplectic matrix of the constrained problem. The term
—0H [dz; = —0V [0z; in (103) represents, as before, the particle acceleration that would occur
if the constraint were suddenly removed. Notice from (95)ff. that the derivation depended on
the classical form (69) of H(x,u), with u; occurring quadratically, so that the parent canonical
momenta coincide with ordinary momenta. Of course (104) is no more than an alternative way of
expressing Hamilton’s equations (83), (84) for the constrained problem, which can now be rewritten

HC C
QSz, - _a('):c,. or equivalently bR — —JS% :

(105)

again using antisymmetry. (The minus signs arise from contracting on the right, with the sum-
mation over j, instead of on the left as in )'(_IQC = dHC; see MS98 Remark 3.3, p. 84, on sign
conventions.)

We note in passing — though this will not be used in the sequel — that another view of the
problem is, of course, obtainable through traditional Lagrange multipliers. This is related though
not identical to the approach of Allen & Holm (1996).

In our version, the velocity-split u® turns out to be equal to the Lagrange multiplier A of
the momentum-configuration constraint u — u® = 0. Following the traditional recipe, we replace
H(x,u) by H(x,u,A) = H(x,u) + Aj(x)¢;(x,u) where, in our version, ¢; = 0 (j = 1,2) is the
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constraint in standard notation, not to be confused with the geopotential of earlier sections: here,
¢; = u; — uf(x). Then we get six equations

. i v
t""ou‘.) ;A 01:"’

0= (106)

to be solved for the six unknowns z;, #; and A;. This system of six equations is not self-evidently
Hamiltonian, but can readily be shown to be equivalent to (83) and hence Hamiltonian by impli-
cation, in a noncanonical description. For the first of (106) shows at once that

A=x-u®=u’; (107)

and, using (107), the second of (106) can be shown in two or three lines of manipulation to be
equivalent to (83), either directly or by using the facts that {¢;, H} = 0 and {¢;, ¢;} = 0, where
{-, -} is the canonical Poisson or cosymplectic bracket of the parent dynamics,

04 0B _ 9B 9A
6::,— 8u.~ 6::,- 8u,~ :

{A, B} = (108)
In this bracket, as distinct from that of (85), it is crucial to read all the partial differentiations as
being taken in the full parent phase space — the only way they make sense — and not on the con-
straint manifold AMC. This is where the restrictiveness of partial differentiation, as compared with
the freedom allowed by differential forms, makes the technicalities a little more complicated. (The
Lagrange multipliers A; can, however, be held constant during all such differentiations, because
they are always multiplied by ¢; = 0.)

Notice finally that (92) and (102) can easily be generalized to include dissipation or forcing
terms. Such terms can be added on the right of Hamilton’s equations (70) and carried through the
whole analysis. Of course the extra terms might interfere with balance, and the possible accuracy
of the resulting balanced model is a separate question.

8 Extension to shallow-water dynamics

It is straightforward to generalize the foregoing to the shallow-water system described in Section 2.
Instead of the phase space R* = (z1, 22, uy, uy) we have the Cartesian product R*@R*®--- of an
infinite number of such R* one for each value of the fluid-particle label a = (a,b) = (a;,as) € R%
Symbolically, the phase space is R® = {z;(a), z2(a), ui(a), uz(a)}. The constraint manifold
ME defined by a momentum—configuration constraint u = u® has half the dimensions (in the
Lagrangian description), corresponding to R?@ R?®--+ or R® = {z;(a), z5(a)}. Thus the sum-
mation over j = 1,2 in (104) has to be replaced by a similar summation together with integration
over all mass elements dm = hg da = h dx in the physical domain D, whence the form of (66).
In the following, we again suppress explicit reference to the time .

The formula for the kernel Q,CJ (x,x’) in (66) straightforwardly resembles its toy-problem coun-
terpart, the symplectic matrix (93), provided that the Lagrangian description of fluid motion is
used in an inertial frame of reference. This requires us to reinterpret u® as an absolute veloc-
ity, and to use the configuration mapping a <> x to rewrite u®(x;h(+)) in its Lagrangian form
u®(a; x()), again using the shorthand convention introduced in equation (6). The shorthand con-
vention serves to emphasize that u® has the same value for the same fluid particle and the same
mass configuration. Arguments will be shown explicitly, as here, whenever there might be danger
of confusion. Then (93) is replaced by the following expression, for a given pair of fluid particles
or mass elements,

e - Sl Sy o

zj(a’) tzi(a)
with Lagrangian functional derivatives in R® replacing partial derivatives in IR%2. The functional
derivatives (cf. (116) below) refer to the second argument in u®(a; x(-)), holding the first constant,
and describe how u™ for a given fluid particle varies as the mass configuration varies. The antisym-
metry property mentioned below (66) is now evident. Exchanging the two horizontal directions
i, j and the two particles or mass elements reverses the sign of the kernel. Invertibility is now
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a nontrivial issue, though in the special case (67) there is clearly no problem because, in that
‘near-local’ case, the left-hand side becomes a differential operator, indeed nothing but a modified
Helmholtz operator, as shown in Appendix A. So in that case at least, the splitting equation (66) is
robustly and uniquely invertible, given the evanescent boundary conditions. For the most accurate
balance conditions, in which u®(x; A(-)) has nonlocal dependence on the mass configuration, (66)

becomes an integro—differential equation for u®. Even though it is a linear equation, for a given

mass configuration, there are many unanswered mathematical questions.

It is desirable to put (109) into Eulerian form, to make explicit the fact that everything involved
in the dynamics respects the particle-relabelling symmetry, i.e. is invariant to mass-distribution-
conserving (h(x)-conserving) particle rearrangements, isomorphic to particle relabellings (which
permute subsets of the factors of R*@R*®- - - leaving all dynamical quantities unchanged, including
the value of the Hamiltonian). The dynamics can involve only the Eulerian description h(x) of the
mass configuration.

To deal with mass-configuration functionals like u® that are also fields, one must distinguish
between Lagrangian and Eulerian variations. Here the notation " will always mean a Lagrangian
variation, with the implication that a is held constant, as with the configuration-mapping variation
6"x(a) and the functional derivatives in (109). The notation 6¥ will always mean an Eulerian
variation, with x held constant. Variations of scalar-valued mass-configuration functionals, such
as the constrained Hamiltonian functional (cf. 14)

HE (h(})) = V+/%luc|2dm with V = /%gh dm, (110)
D D

will denoted by &, thus §HC, and similarly §H for variations of the parent Hamiltonian functional
H (h(-),u(-)), defined in (68), which takes points in the parent phase space R* into real scalars.

The Eulerian and Lagrangian variations 6°h and 6h, with h(-) regarded as a function of x,
are related to the mapping variations by

8 h(x) = 6%k -Vh + 6%h = —h V- ("), (111)

6Bh(x) = =V - (hé'x), (112)

consistently with the general relation
o = 6'x.V + 6B, (113)

This last is applicable to any function of x . In (111) and (112), the notation §“x is shorthand for
6x(a) re-expressed as a function §“x(x) of x via the mapping a ¢ x. Observe that the notation
6Vx(x) is consistent with (113), because 6¥x is trivially zero. Observe also that §® commutes with
V or 8/8z;, whereas 8% does not.

The toy-problem relation (95) has the counterpart

SHC = 5v+a/ HuCPdm = 5v+/u§5Lu,¢dm, (114)
D D

again integrating over mass elements dm as well as summing the index j from 1 to 2, and using
the fact that the mass element dm has zero Lagrangian variation.

From (111) and (112) it is straightforward to show that the relevant Lagrangian and Eulerian
functional derivatives are related by the appropriate form of the chain rule,

L uf(a; x(-)) oiole duf (x; h(-))
dlz;(a’) h(x) 0z;

; 3 §%uf(x;h(-
5(x—x') + ho-@#&,;)—), (115)

where § with argument (x—x’) denotes the 2-dimensional Dirac delta function. In the first term on
the right, d/0z; connotes that the function argument h(-) is not varied. In the last term, % /§%h
connotes that the Eulerian position argument x is not varied. The second position argument
x', appearing in the denominator, is analogous to the denominator index j in the first term and
also, like the a’ on the left, indicates which dummy variable of integration to use when computing
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variations. Specifically, by the standard definition of a functional derivative we have, for sufficiently
smooth variation fields §“x(a) and 6®h(x),

JLuC(a'x(-))
L..C s fL G § = ) } PR 20N ] /
d“u(a) = §u(a;x()) /1;_—6[‘1‘]'(8.’) d zj(a’) da (116)
and
8%u®(x) = 0®uC(x;h()) = / wJElz( ) dxl (117)

o : p OBh(x)

The definition of R is still R = F — A® but now with parent force per unit mass
lice 0V 0 oV
B0 = "R @) = 0w PRG) iy

and constraint acceleration

Lug aj xi{-
450 = [ usaix() e ex) g

: dlz;(a’)
duf A{h(x)uf (x's h(-))} 6"ul (x; (")) ,
% uf dz; _/D Bjxg SER(x') g g,

using (115) and the boundary condition of evanescence at infinity to rewrite AC in terms of Eulerian
functional derivatives. Because the integral in (116) is over da’, which is hy' times the mass
element, the Lagrangian form of the splitting equation is fQCL Sda = [hs IQCL Sdm = RE.
with R® = F;— AL, corresponding directly to (66). Defining, therefore, (x, x)= 1QSL(a, al),
and again using (115), we arrive at the Eulerian form of the splitting equation:

/Q (x, X )us(x ydm(x') = (¢Cx u®); +/Dw,¢j(x, x')ujs-(x')dm(x') = RE(x), (120)

where 9 & c( h( )) o 0Bu C( h( ))
& I S C 5 300 u" x; . > ¢
wi;(x,x") = —wi(x,x) = 9z, 6Eh(x') i dEh(x) g

(121)

which, it can be noted, is reference-frame-independent because the Eulerian variation 6% of a
constant, solidly-rotating velocity field is trivially zero, and where we have defined

¢ =2hQ°. (122)

This is just the absolute ‘constraint vorticity’, i.e. the curl of the (absolute, inertial-frame) u®
field. It comes from the delta-function term in (115), when substituted into the antisymmetric
expression (109). In addition, we may note the following five points.

1. Despite having used the inertial frame of reference in the above derivation, we now have
t.he problem in a form that is entirely reference-frame-mdependent Not only are RC and
u® frame-independent, but also w(;(x x'), as just noted. The constraint vorticity ¢ is an

absolute vorticity, by definition, because of its relation to the conserved PV, Q€.

2. The dynamical eﬂ'ects of rotation enter solely through t,he u® functional or functionals, for
instance through ¢ and through the way in which the u€ field changes when the mass and
therefore pressure field changes. This is convenient when, for instance, it comes to applying
(120) to variable-Coriolis-parameter models (MR96). The derivation makes no use of the
present assumption that the Coriolis parameter f is constant.

3. Because RC is the residual force per umt mass, the sphttmg equation (120) says that we
may think of u® as a correction to u®. That is, when u® falls short of being as accurate
as the slow quasimanifold permits, we may expect u” = u® + u® to be more accurate, as
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judged against the standard provided by the parent model (cf. MN00). This expectation
has been confirmed for a few specific examples, two of which are noted in Appendix A and
another, at a higher level of approximation, in recent work by Wunderer (2001). If the term
in ¢© were the only term in the middle member of (120), then, with ¢ small so that ¢C is
dominated by f, when written in a rotating frame with Coriolis parameter f, the correction
would be simply a velocity increment whose Coriolis force balances the force increment e
The actual correction also involves mass rearrangement, through the wg- terms.

4. The simple way in which the constrained Hamiltonian functional H®(h(-)) enters the foregoing
derivation is partly due to the use of Lagrangian variations in the kinetic energy term on
the right of (114), the mass element dm having zero Lagrangian variation. The potential
energy term, 8V in (114), with V given by (15), need not be computed here because we need
only the parent force F per unit mass, already known as part of the elementary specification
of the parent dynamics. As a check, though, it is easy to compute F from the last expression
on the right of (118), i.e. from F = —V (6V/é6"h), after rewriting (15) as V = [1gh® dx to
exploit the fact that the area element dx has zero Eulerian variation.

5. PV as well as energy conservation follow by standard arguments (also Appendix B below),
provided that the PV is defined by Q€ and the energy by HC, as in (110), and provided also
that, in the case of energy conservation in bounded domains, information about boundary
conditions, implicit in (72) and (120), is used (MR96). Of course in an unbounded domain
HC is numerically infinite, even though its variations need not be, and so it is natural to go
back to the rotating frame, in which evanescent boundary conditions apply.

9 Canonical coordinates and PV inversion

The Hamiltonian balanced model defined by the u® functional and the associated splitting equa-
tion (120) is in noncanonical form, just as was the related toy problem with its noncanonical sym-
plectic form Q€ = %Qs dz; A dzj; see (104)—(105). If canonical coordinates (X,Y) = (X1, X2)
are found, then QSL(a, a’') in (109) will simplify (cf. minus signs in (105)) to

(—a£w06@5w>:=(flé)5@—ﬂ, (123)

where § with argument (a — a') is again the 2-dimensional Dirac delta function and where rows
and columns correspond to i and j respectively. This can be thought of as a symplectic matrix
in canonical form, with infinite-dimensional identity submatrices. (In the toy problem the delta
functions would be replaced by 1’s.) Then (36) will generalize to

- C - C
SOE e

oLy ! G Tk (424)

cf. Salmon (1985), p. 469, remembering that here we are still in the inertial frame. The functional
derivatives refer to mass-configuration rearrangements as before, X and Y being mass-configuration
functionals as stated explicitly in (133) below.

In the case of singly-split models, there will be a corresponding formal simplification of the
splitting equation. Darboux’s theorem for finite-dimensional phase spaces prompts the speculation
that canonical coordinates may indeed exist for a general class of u® functionals, on the infinite-
dimensional constraint manifold M€ = R?’@R%*®-- -, though not necessarily given by any simple
analytical formula.

However, as was first shown in MR96, analytically simple, explicitly defined canonical coordi-
nates (X,Y) = (X1, X2) do exist for a certain class of u® functionals. That class includes Salmon’s
constraint (17), in which case the canonical coordinates coincide with Hoskins’ geostrophic coordi-
nates. The canonical coodinates exist also in the other cases mentioned in Section 3, which include
Salmon’s L; dynamics by implication, the ‘\/3 model’ first described in MR96 (see below), and
an infinite-dimensional infinity of other Hamiltonian balanced models, to be characterized in two
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lemmas below. In every one of these cases the conserved PV, Q€, is given by a simple Jacobian
formula analogous to that discovered by Hoskins (1975) for semigeostrophic theory:

(125)

That is, the transformation of (16) or (18) into (37) is just one special case among an infinity of
others, all following the same pattern. For comparison with (37), recall that

g
- é(x,t) = Tz’h(x’t) : (126)
An immediate consequence of (125) is that every one of these cases shares with semigeostrophic
s theory the ‘streamfunction property’ expressed by (36). In other words, the flow appears solenoidal
when viewed in (X,Y) space,
ax oy
—t = =0, 127
v ax * oy 4an
where the dots denote material derivatives or rates of change as before. This is because (125)
and the material conservation of Q© imply that the mass element in (X, Y') space is proportional
= to the area element. There must therefore exist a streamfunction f®(X,Y,t) (which is also a

mass-configuration functional) such that the functional derivatives on the right of (124) are equal
to f times the partial derivatives of ®(X,Y,t). That is, X = §HC/sLY = —f0®/9Y and
Y = —6HC/6LX = fo®/0X.

- The Jacobian form of (125) arises in all these cases for a simple reason. It reflects the symplectic
structure inherited from the infinite-dimensional parent phase space through restriction of the
parent symplectic 2-form to the constraint manifold M€ = R2® R?® ---, when x is replaced by
the canonical coordinates X. The remarks at the end of Section 6 are relevant here, as is the further

™ discussion in Appendix B, along with reference to a forthcoming paper by Bridges et al. (2001).
The latter makes use of a multi-symplectic formalism that deals directly with the projection of
the symplectic structure from R?@ R%® ... into each individual R?, thereby avoiding the standard

£ summation over mass elements.

So how are the coordinates X defined? We first state the result for the particular u® functionals
mentioned in Section 3. It will prove convenient to stay in the inertial frame of reference and to

_— rewrite those functionals in their generic form

u® = 2fixx + u® + eix flu® . VuC, (128)

in which, however, u® retains its original meaning, defined by (12), as the geostrophic velocity
relative to a frame rotating with angular velocity (0,0,1f). The constant number o can take
any real value. The cases o = 0, —%, and 1 correspond to (12), (17), and (20), rewritten in the
— inertial frame — respectively representing Salmon’s L; dynamics, semigeostrophic theory, and the
/3 model. For all such u®, MR96 discovered to their great surprise that the simple formula

=
{ X =x+4 V¢ — icix Vo, (129)

s
| generalizing Hoskins’ transformation X = x + V¢, gives canonical coordinates for the balanced

; model provided that

cli= \/(2(1+ 1) s (130)

F at
The derivation is reproduced in Appendix C below. We recall that (128) and (129) need have
no connection with the balance condition or momentum-configuration constraint that is applied
to the Hamiltonian functional. It is enough that (128) is the constraint applied to the parent
™~ symplectic structure. This follows from the remarks near the end of Section 6 and in Appendix B.
A corollary is that semigeostrophic theory is indeed included, as the case o = —3, for which ¢ = 0.

g N
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The /3 model has o = 1, therefore ¢ = /3, hence the name. In all these cases the coordinates
(129) are canonical.

The factor ¢ in (129) is not a misprint, and it does mean /(—1). For all cases of (129)
more accurate than Salmon’s constraint (17), the case @ > —1, the canonical coordinates X are
complex-valued! Greater accuracy requires o > —-;—, hence real ¢. One consequence is that both
the real and the imaginary parts of (127) must vanish. In (127), X and ¥ must of course be read
as holomorphic functions of X and Y, satisfying the appropriate Cauchy—Riemann relations. We
will take ¢ > 0 for definiteness.

It is easy to check by direct substitution that the Jacobian in (125) is real-valued, as it must be.
Also real-valued (Appendix C) is the corresponding infinite-dimensional symplectic 2-form Q€ in
phase space — (125) being essentially its 2-dimensional reflection, or projection on an individual R?
(see also (151) below). Furthermore, as pointed out by Roubtsov & Roulstone (1997), substitution
of (129) into (125), cf. (21) into (37), produces a (real) Monge-Ampére equation that is elliptic, in
circumstances of interest (e small), as noted next. This equation can be solved for ¢ when Q€ is
given. The fact that a Monge-Ampére equation is obtained is evident at once from the general form
of the Monge-Ampeére equation in 2 dimensions — recall (42)-(43) — together with the fact that
(129) involves a linear combination of gradients of ¢ with respect to (z,y). In fact the equation
obtained is (42) with B = D = 1, C = 0, as before, and analogously with the semigeostrophic case
A=1—g"'f¢QS wehave A=1-¢1f6Q°=1—f'hQ°=1— f~1¢C. But E # 1; in fact,
we now have E = 1 — ¢. That is, the Monge-Ampére equation for arbitrary ¢ is

1 + V2 + (1 —c®) hessyy(¢) = ¢°/f. (131)

The ellipticity criterion is 0 < BD — AE =1— (1 — f~1¢°)(1 — ¢?), that is,

CC
(-1 < 2. (132)

f
This is always satisfied in the L;-dynamics case, @ = 0 and ¢ = 1, and is satisfied for positive (©/f
in the semigeostrophic case, a = —% and ¢ = 0, as already noted. In the case of the /3 model,

a = 1 and ¢ = /3, we have ellipticity whenever (/f < 3/2. Thus in all three cases (and
also, in fact, in every intermediate case 0 < ¢ < /3 and beyond) the Monge-Ampere equation is
elliptic over a range of circumstances much wider than the physically relevant range, small € with
e At et O(e). That is, we have ellipticity a fortiori whenever the constraint manifold M€
defined by (128) approximates the actual slow quasimanifold within the parent phase space, which
is possible only when ¢ is small.

The Monge-Ampere equation (131) gives us a second way of timestepping any of the balanced
models in question after solving the splitting equation (120). This second way, which is likely to
be the better-conditioned numerically, is to use the u® field to advect not the mass configuration
h but Q€ instead, then invert the Monge-Ampere equation to obtain ¢ and h. The two ways are
equivalent in the absence of numerical truncation errors, because of the exact material conservation
of Q°, on particles moving with velocity u®. However, under the circumstances of interest, with
¢ small, it is likely that the second way would be less sensitive to truncation error than the first.
For small ¢, the u® functional is such that slight errors in the mass field have large, O(e™') effects
on the velocity field relative to the rotating frame. This is analogous to large, O(¢™") slopes of the
toy problem’s M surface in Figure 1. For given ¢ there will be a tradeoff between such sensitivity
and the resulting ill-conditionedness, on the one hand, and the cost of solving two elliptic problems
instead of one at each timestep, on the other.

10 Generalizations including variable Coriolis parameter

To see the full generality of (125) and its consequences, we now ask what class of general, nonlocal
u® functionals admits canonical coordinates X. Canonical coordinates on the slow manifold M C,
in the most general possible sense, are not only fields but also mass-configuration functionals that
respect the particle-relabelling symmetry, like u®. In our shorthand notation,

X = X(a; x(-)) = X(x; A(-)) - (133)
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On the right, we can still read this as a transformation within D = R? the physical domain,
provided we recognize that there is a different such transformation for each mass configuration
h(:). This of course is already true of (129), because of the near-local dependence on V¢ and
hence on Vh; but now the dependence on h(:) can be fully nonlocal, as it has to be for the greatest
possible accuracy.

The components (z,y) = (21,22) of x in (133) do not, incidentally, need to be components
referred to Cartesian axes. For instance spherical components could be used, as in the theories of
Shutts (1989) and Purser (1993) extending semigeostrophic theory to the sphere. This is because
the mathematical objects involved belong to the exterior calculus and are thus metric-independent.
The connection between Shutts’ equation and the theory of contact transformations was established
by Roulstone & Sewell (1997, Section 7).

The coordinates X are canonical by definition if, for some scalar-valued mass-configuration
functional, say B(x(-)) = B(k(-)),

—f dm ulélz; = %f/ €k Xk6"X; dm+ 6B , (134)
D D

where ¢ is the 2-dimensional alternating tensor (€12 = —€21 = 1, €11 = €22 = 0), and where f can
still be taken to be the Coriolis parameter, in the constant-f cases considered so far, but where,
more generally, 5 L f can be regarded as an arbitrary constant normalization factor introduced to
give X the dimensions of length. The factor 1j' will usually, but need not, be identified with some
typical or average angular velocity of the spinning mass of fluid, as hitherto. (We are still in the
inertial frame of reference.)

The left-hand side of (134) is analogous to the toy-problem expression 019 (x)bz; = —ujc(x)éxj.
That is, the left-hand side of (134) is the shallow-water counterpart of the 1-form 6€ displayed
in (91), after contraction or inner multiplication with the infinite-dimensional vector field §“x(a),
if we omit the contribution corresponding to the arbitrary function ¢€ in (93 Thus, before
contraction, the left hand side of (134) itself would correspond to a 1-form 6%, say, defined
as — fvdm uj L0 z; where d" is the exterior derivative in phase space, again omitting any
contribution analogous to ¢ in (91) — effectively absorbing it into the B term. What is important
here is that the exterior derivative of 8" is nothing but the symplectic 2-form Q°L = fv dm d" z;A

d“u$ whose coefficients are given by (109). This transforms to QCt = % f fde Eik s b,
dLXj = —f[,dm d¥X A dy, as can be seen by taking the exterior derivative of the 1-form

% ffpdmer Xy Y j- The minus sign is related to the presence of the vector product in the first
term on the right of (128).

The desired general characterization of u® functionals now follows, expressed as absolute ve-
locities, i.e. as velocities in the inertial frame:

Lemma 1 (Canonical coordinate lemma) General canonical coordmates X(x; h(-)) are func-
tionally related to absolute (inertial-frame) constraint velocities u® by

5 0X

e = —%faijka_,:
EX.(x': h(- ;
—5% {%fejk/DXk(x'; h('))_““‘—_*‘—d /?E(h(;cl;( ) dm(x’) + ‘;?3—(:((;))')'} (135)

where the mass-configuration functional B may be chosen arbitrarily.

The boldface notation 8/8z; signifies differentiation acting on the ith component of x wherever it
occurs, implicitly or explicitly — in this case the dependence on x associated with the denominators
of the two functional derivatives. By contrast, the operator 3/dz; in the first term acts on the ith
component of the first argument of X;(x; h(-)) only.

The proof of (135) is a straightforward application of the same Eulerian-Lagrangian functional
differentiation machinery as before, especially (112), (113), and (115). Direct substitution shows,
after a few lines of manipulation, that (135) satisfies (134). Arbitrariness of §“x takes us back to
(135).

Our ma.m result (129) now follows after specializing to the case of near-local canonical models.
Both the u® functional and the canonical coordinates X are now taken to have near-local form.
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That is, u® and X are taken to be general pointwise functions of the layer-depth h(x) and a finite
number of its derivatives:

wC(xih()) =Sy, hih g Bgie ) (136)

X(X,h()) = x(zjvh’h,i’h,ijv'“)a (137)

where h; = 0h(x)/dz; etc. For consistency the mass-configuration functional B is taken in the
corresponding form B = [, B dm, where the integrand

B(x,h()) = B(Ij,h,h,,‘, h,,'j,-“) . (138)

When the number of derivatives is arbitrary but finite, these are the most general possible forms
expressing near-local functional dependence. Substitution into (135) gives

Lemma 2 (Canonical coordinate lemma, near-local version) Near-local canonical coordi-

nates X(z;, h,h;, hij,---) are functionally related to absolute (inertial-frame) constraint velocities
u® by
0X;
u? = —%ijka-(,—)z—'?
s b 0X; 8 dX; 8* dX;
i athy B R bl BESE AN h e
Bz, {2f i ["X" oh ~ oz, ("X" T M T ey
g 0 oB a* oB
h—— — h — 139
& (B+ oh  Bz; (hah,j) s 8z;8zy ( 3h,jk) ) } .

for near-local but otherwise arbitrary B(zj, h,h i, h;j,---) .

In particular, by noting that (129) is the simplest choice compatible with the above and compati-
ble also with invariance to coordinate-axis rotations, and by making a correspondingly simple choice
of B and substituting both into (139), then simplifying the resulting expression, which is lengthy
— keeping in mind the distinction between @ and & — we recover (128) and (130). The details
are summarized in Appendix C. We note incidentally that these lemmas answer the old question
of how to find Hamiltonian balanced models with exact canonical coordinates for variable Coriolis
parameter; cf., e.g., §3 of Salmon (1985), and Magnusdottir & Schubert (1990). For instance x in
(129) can be replaced by VII(x) with any function IT(x) that satisfies hess,, (II) = f(x)/f, where
f(x) is the variable Coriolis parameter and f keeps its role as a constant normalizing factor. This
is straightforward to verify from lemma 2 above; details are in MR96 §10.

11 /3 models: quo vadis?

As mentioned below (20) in Section 3, it is the choice @ = 1 in (128), corresponding to ¢ = /3
in (129), that gives the balance condition that is formally the most accurate of that class. This
choice defines the ‘4/3 model’, or rather, as implied by the remarks at the end of Section 6 and in
Appendix B, an infinite family of ‘\/3 models’. Their mathematical properties are largely unknown,
apart from the generic, purely formal properties already mentioned — which they share with semi-
geostrophic theory and L; dynamics, for which a = —%, 0, and ¢ = 0, 1, respectively. These
generic properties are first the existence of complex canonical coordinates X, second the Jacobian
formula (125) for Q°, third the Monge-Ampére equation (131) for ¢ given Q, and fourth the
streamfunction property analogous to (36), arising from the solenoidality property (127).

The same four generic properties will be shared by all Hamiltonian balanced models in which
(128) constrains the symplectic structure, even if not the Hamiltonian. If we constrain only the
symplectic structure by (128), producing a doubly-split model, then we lose the splitting equation
in its simplest form (120). But it is now emerging such loss of formal simplicity might carry with it a
compensating gain in terms of good mathematical behaviour. Recent work by Wunderer (2001) has
shown that in the case of the singly-split \/3 model, with (128) constraining both the Hamiltonian
and the symplectic structure, the splitting equation fails to share with Salmon’s equation for L,
dynamics, (67) above, the property of being robustly invertible.
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All constraints that are near-local produce splitting equations in the form of linear partial
differential equations, because the functional derivatives in (121) then reduce to delta functions
and their derivatives, as illustrated in Appendix A. As shown there, the second derivatives in
Salmon’s equation (67) arise from the first derivatives in the geostrophic constraint (12). Similarly,
the splitting equation for the /3 and other singly-split models arising solely from (128) all involve
third derivatives, whenever a # 0 and ¢ # 1, because of the second derivatives appearing in (128).
When the /3 model was first discovered, we thought that these third derivatives would cancel and
give us another second-order elliptic equation. But Wunderer’s work has shown, on the contrary,
that the sum of the third-derivative terms is nonzero. Therefore the /3 model’s splitting equation
cannot be elliptic. In this context, therefore, the correction term with o = 1 in (128) has given
rise to a singular perturbation, in striking contrast with the benign effect of the same term in the
case of semigeostrophic theory, with a = -—%.

One way to regularize the model without losing Hamiltonian structure might be to add a higher
correction to (128), involving third derivatives. Then the splitting equation would involve fourth
= derivatives and could be elliptic, though formidably complicated. Alternatively, as already hinted,
we could abandon singly-split models. We could construct regularized variants of the /3 model by
keeping (128) for the purpose of constraining the symplectic structure — thus keeping the simple
formula (129) for X — but changing the constraint on the Hamiltonian, i.e. introducing double

_—
splitting. This is another way to produce models sharing with semigeostrophic theory the four
generic properties listed above while attaining greater accuracy than semigeostrophic theory. The
extra freedom gained via double splitting can be used for regularization purposes.

\
| Indeed, it can only be thus that semigeostrophic theory itself avoids the pathology discovered
i by Wunderer. As we have emphasized, despite having a nonzero value of o semigeostrophic
theory is a supremely regular, mathematically well-behaved theory. We have some specific ideas
‘ — that should lead to well-behaved models within the (infinite) family of doubly-split 1/3 models,
‘ but at the time of going to press those ideas remain to be verified in detail.

|

:

- 12 Complex contact structure

What other properties are shared between semigeostrophic theory and the models just considered,
- including the doubly-split variants? For instance, is the transformation (z,y) + (X,Y’) defined by
‘ (129) part of an explicitly invertible contact transformation? The answer, frustratingly, is almost
certainly not. This limits the usefulness of (129), because to make practical use of the canonical
coordinates (X,Y) we need the transformation inverse to (129). The forward transformation (129)
gives X(a) if the Lagrangian mass configuration x(a) is known in the physical, (z, y) domain, hence
h and ¢ known via (3)—(6) and (126). But if we solve the problem in the (X,Y) domain then we
need the inverse transformation to get back to the (z,y) domain. This is an important difference
P vis-a-vis semigeostrophic theory, in which the inverse transformation is given explicitly by (34),
by virtue of the contact structure and its symmetric generating function (62). In the absence of
such structure, and given only X(a), inversion of (129) would be nontrivial, requiring solution of
a nonlinear partial differential equation — nonlinear because of the nonlinearities in (3)—(6) — to
yield a description of the mass configuration in the x domain given its description in the X domain.
It is to this part of the problem, presumably, that the pathology found by Wunderer would migrate
if we were to use (123) to simplify the splitting equation.
™1 However, Roubtsov & Roulstone (2001, hereafter ‘RR01’) point out that the ‘conjugate’ of
the transformation (z,y) + (X,Y), defined as (z,y) + (X,Y) where Y is the complex con-
jugate of Y, is part of an explicitly invertible contact transformation (z, y, ¢, d¢/dz, d¢/dy)
- (X,Y,®, 09/0X, 0®/3Y) continuous with (z, y, ¢, d¢/dz, d¢/dy) — (X, Y, ®, d®/dX, d®/3Y),
the transformation found for semigeostrophic theory and specified by (34) and (35). The generating
function, S say, has an extra term proportional to ic:

- . o =X o) - - )? + (X 2)(Y )
S(z,y, X,Y) = —2 2 :
, (z,y ) g (140)
. This is still symmetric, like (62), with respect to exchanging (z,y) and (X,Y). The new complex
‘ potential, replacing (35), is &
¢ =¢-385. (141)
g
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The rest of the transformation — see also below (148) — is only slightly less simple than (34):

0 _0¢ _(X-z)—ic(¥ -y) . 08 _0¢p _(Y-y)—ic(X—2)

84X ~ oz 14¢? - gy =T gy e 14¢? i
The symmetry and explicit invertibility are now evident, just as before. If we have solved for the
evolution in (X,Y) space and know the function <i>(X, Y), at each time ¢, then we know 0®/9X
and 3®/dY . We can then regard (142) as a pair of linear algebraic equations for z and y. Provided
that the determinant

(142)

-1 ic

. 2
T8 vy ==al o enetingy (143)

which holds in all the cases of interest, ¢ > 0, we can then deduce the physical position z,y
of any particle from its image in (X,Y) space, just as we could from (X,Y) in semigeostrophic
theory. Thus knowledge of X(a) provides us with knowledge of z(a), and therefore of the mass
configuration, in a simple and explicit way. Alternatively, and again as in semigeostrophic theory,
we can stay entirely within the Eulerian description. The formulae (140)—(142) tell us at once that
the new potential <i>(X ,Y) contains, in easily recoverable form and with no question of pathology,
the same information as ¢(z,y) and therefore h(z,y). This makes it plain that the function
®(X,Y) completely specifies the Eulerian mass configuration, i.e. specifies the mass configuration
up to particle relabelling.

It follows that, in principle, the balanced model can be formulated entirely in terms of ‘i>(X ,Y)
and the material derivatives or rates of change of X and Y, just as semigeostrophic theory can
be formulated entirely in terms of its transformed potential function ®(X,Y) and the material
derivatives of Hoskins’ real X and Y. However, the new potential ®(X,Y) cannot be identified
with the complex streamfunction ®(X,Y’) implied by (127), and there is therefore no reason to
expect <i>(X ,Y) to enter into the evolution equations with anything like the simplicity of (36).

13 Kahler and hyper-Kahler structure

The foregoing remarks, together with those of Sections 9-10, present us with an intriguing, tan-
talizing, yet frustrating situation — a kind of parting of the ways forced on us as soon as ¢ > 0,
as is necessary if we are to gain more accuracy. In the more accurate models under consideration,
some of the properties of semigeostrophic theory are echoed in the transformation (z,y) — (X,Y).
Others are echoed in the transformation (z,y) + (X, Y), and the two are different whenever ¢ # 0.

There is a suggestion here that in order to gain deeper insight we must consider both transfor-
mations together, (z,y) — (X,Y) and (z,y) = (X,Y), implying consideration of the subspace of
C* spanned by the four interdependent complex variables X, Y, X, Y. That space {X,Y, X, Y} has
the dimensionality of R*, being the image of the symplectic space or manifold {z, y, p, ¢} discussed
in Section 5, under the linear mapping

X=z4+p+icq, Y=y+qg-—icp
X=z+p-—icq, Y= +q+1cp ' (144)

This mapping corresponds to (129) and its complex conjugate when (p, ¢) replaces (8¢/8z, 8¢ /dy).
It becomes one-to-une as soon as ¢ # 0. As noted by RR01, its Jacobian is simply

X, Y X ¥)

— _40? 145
(z,y,p,q) )
and its inverse
2oAX £ X)) (X ~F) _(Y+Y) (X-X)
e e s Tl e e elindial (428
e L 3] _(X=-X)
= sty y Bt q = e b (147)

In what seems to be a natural way, the space {X,Y, X,Y}, when equipped with nothmg but the
2-forms d X AdY and d X A dY, reflects both of the symplectic structures that have arisen in the
development so far. It does so in a manner to be explained next.
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The first structure is that associated with the symplectic 2-form € of Section 5, and thereby
also with the Cartan 1-form 0 of Section 5 and the contact transformations of semigeostrophic
theory and of (140)-(142). The second is that associated with the symplectic 2-form QL of
Sections 6-10 and Appendices B and C, and thereby also with the 1-form 6 o corresponding to
the left-hand side of (134), inherited from the phase space of the parent dynamics. RR01 point
out that the first symplectic structure defines what is called Kahler structure, when viewed in the
space {X,Y,X,Y}, and that the two symplectic structures together form part of what is called
hyper-Kihler structure in the space {X,Y, X, Y} The hyper-Kahler structure can in turn be
embedded within a 6-dimensional ‘twistor space’. These are well-studied geometric structures (e.g.
MS98; Hitchin 1987; Atiyah & Hitchin 1988 & refs.; Freed 1999, hereafter ‘F99’), which may hold
important clues toward further progress on our journey.

Consider the first of the two symplectic structures. The Q of Section 5 was defined in (z,y, p,q)
space as = dz Adp+ dy A dg, and the corresponding Cartan 1-form in (z,y, ¢, p, q) space as
6 = d¢ — pdz — g dy. When transformed to (X,Y, X,Y) space and multiplied by —¢, the Q of
Section 5 becomes simply

in %(dX/\dY—dX/\d)") = Im(dX A dY), (148)

as is evident by inspection of (144). Alternatively, we may view this result in terms of the con-

tact transformation (140)-(142), with (p,q) replacing (9¢/dz, d¢/dy) and, say, (P, Q) replacing

((9<I>/6X 6<I>/(9Y) We have P = p and Q = g; therefore, from (147), P = — (Y —Y)/2ic and
= (X — X)/2ic. The contact transformation preserves the Cartan 1-form; therefore

0 = d¢—pdz—qdy = d® - PdX -QdY , (149)

the exterior derivative of which is

dX AdP+dY AdQ

= —dX/\d(X——_.—Y) + dY/\d(X X)
2ic 2ic

= —(2ic)"*(dX AdY +dY AdX), (150)

0 — do

Il

equivalent to (148).

The relation (148) exposes an aspect of the Jacobian formula (125) that was previously invisible.
Multiplying the Jacobian 8(X,Y)/d(z,y) by dz A dy (cf. (45)) turns it into the 2-form d X AdY
under discussion,

d(X,Y)

d(z,y)
when X and Y are expressed as functions of z and y as in (129). That is, (151) holds under
restriction to the graph of ¢. When we view things in 4 dimensions — as distinct from 5 di-
mensions as in (55) and (56) — restriction to the graph of ¢ simply means restriction to the
image in (X, Y, X,Y) space of the 2-dimensional surface defined in (z, y, p, q) space by (z,y,p,q) =
(z, y, 0¢(z,y)/0z, d¢(z,y)/0y). For any smooth ¢(z,y), the surface in question is a Lagrangian
submanifold with respect to (2, as was pointed out in the paragraph below (56). That is, Q van-
ishes identically when restricted to the graph of ¢. Consequently, Im(d X A dY) becomes invisible
when we restrict to the graph — d X A dY then being real, like the Jacobian itself — even though
dX A dY is plainly complex-valued at a general point in (X,Y, X,Y) space.

Now the structure or geometry imposed on the space {X, Y, X, Y} by the 2-form (2i)~(d X A
dY —dX AdY), i.e. by Im(dX A dY), is a simple example of what is called Kahler structure or
geometry (e.g. MS98; F99). In general this can be defined using a real-valued ‘Kahler potential’
K(X,Y,X,Y), which in our case will turn out to be related, in a peculiar way, to the complex-
valued potential ®(X, Y) that arose in the contact transformation (140)—(142). By construction,
$(X,Y) is automatically a holomorphic function of each of its arguments when everything is
restricted to the graph of ¢, as pointed out in RR01. The associated Cauchy-Riemann relations
state that

dzAdy = dX AdY (151)

e 0d
b T 0 on the graph of ¢ . (152)
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The reader is warned that, in the literature on Kéahler geometry, Y is notated Y and vice versa.
Specifically, the space {X,Y, X,Y} is said to have Kahler structure when equipped with a
closed Kdhler 2-form wg defined by

wg = 2dIK(X,Y,X,Y), (153)

where 9 and d are exterior derivative operators restricted, respectively, to the subspaces {X, )_’}
and {X,Y}. Thus the first operation @ produces (in our non-standard notation) the 1-form

A oK oK

— 154
oK = % —dX + % bl (154)

with no terms in d X and dY. The second operation & converts this into the 2-form

= o’k a’K ’K
= d dY AdX
oK XX dXAdX+(?X6Y dXANdY + ' —=——= Wox
92K
dY AdY .

e 7% (155)

The first and last terms on the right are each pure imaginary (because of the antisymmetry of wedge
products), as is the sum of the remaining two terms. Hence the Kéhler 2-form wg = 3id 9K is
always real-valued as well as closed. Closedness follows from the relevant Poincaré lemmas 8 9 = 0
and 09 = 0: we have dd 9K = (0 + d)d 0K = 0. The foregoing needs no further qualification
when, as here, the associated ‘complex structure’, i with i = —1, is just the ordinary imaginary
unit.

The simplest standard case (MS98 p. 130) is that in which K(X,Y,X,Y) = XX +YY, pro-
ducing another 2-form 1i(dX A dX + dY A dY), in our non-standard notation. Our 2-form
wg =Im(dX A dY) is obtained by choosing instead

KXY X¥) =« (X X)y-7), (156)

or, equally well, R 0
K(X,Y,X,Y) = - XY — XY, (157)

since the extra terms in (156) are ‘harmless’ insofar as they contribute nothing to (155). Substi-
tuting either of these into (155) and multiplying by -;—i, we get cross-terms only, hence

wg = Im(dX A dY) (158)

as anticipated. (The normalizations used here for wg and for K itself follow MS98, and differ by
constant factors from those used in RR01 and in F99.)

Other cases with less simple K have Kahler 2-forms with variable coefficients describing a
‘curved’ Kahler structure, nontrivially different from, and more restrictive than, ordinary real
symplectic structure, especially in its global aspects (MS98). This may yet prove significant for later
stages on our journey. Here one may speak of ‘curvature’ in more than one sense, in the first place
because the Kéahler 2-form and associated symplectic structure may admit a ‘symplectic connection’
(MS98) defining parallel transport, e.g. of geometric structures like the tubes in Figure 1. Nonzero
curvature means that parallel transport produces different results over different paths. In the
second place, the Kahler 2-form together with the complex structure induces a symmetric bilinear
form and hence a Riemannian or Minkowskian inner product and metric, which may have curvature.
More precisely, when the Kéhler 2-form is contracted with the pair of vectors (§.X,dY,dX,dY)
and (16X, —i8Y',—i6X’',i6Y") (the sign pattern reflecting our non-standard notation), then the
factors 7 convert skew symmetry into symmetry, producing a real-valued symmetric bilinear form
and metric, Riemannian or sign-definite in our case (158) and in the standard case mentioned above
(156). Minkowskian or sign-indefinite cases plainly exist, as exemplified by linear combinations of
the Kéhler potentials and therefore 2-forms already encountered, and also by the case

KX WK, ¥) = XX < ¥V, (159)

This last is the same as the abovementioned standard case apart from the change of sign between
terms, and is therefore Minkowskian since the standard case is Riemannian. Minkowskian cases
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are sometimes called ‘pseudo-Kahler’. In the third place, the complex structure, when generalized
to mean any algebraic object whose square is minus the identity, may itself be a spatially variable
field. This raises questions of ‘compatibility’ of the complex structure with the 2-form and metric
under symplectic parallel transport (e.g. MS98, F99). Such questions do not arise, however, in the
simple ‘flat’ case considered here and in RR01. Indeed this case is the simplest possible example of
what is called ‘special Kahler’ or ‘rigid special Kahler’ structure (F99), in which, more generally,
the symplectic structure may be perfectly flat (with tubes like those in Figure 1 straight, when
viewed in a suitable coordinate system, and with parallel transport globally unique) even when
the metric and complex structures are not flat.

There now arises a conundrum, almost a mathematical pun. F99 shows that every special
Kahler structure, flat or curved, possesses not only its Kahler potential K(X,Y,X,Y) but also
what is called a ‘holomorphic prepotential’, in terms of which K can always be defined. In our
normalization (and non-standard notation) this prepotential is a holomorphic function ¥(X,Y)
such that e

K(X,Y,X,7) = % (a\p g oy OV Q‘ILY> :

X Y X Y
Inspection shows at once that this formula produces the K defined in (157) if we set ¥(X,Y)
—iXY. What is peculiar is that, as shown in RR01, instead of —iXY we may take ¥(X, Y)y =
2¢®(X,Y), where ® is the complex potential defined in (141), and substitute this into the same
formula (160), to produce the K of (156) — which is equivalent to that of (157) as far as (155)
is concerned, and therefore as far as the Kahler structure itself is concerned. This last result
holds only, however, after restriction to the Lagrangian submanifold represented by the graph of
¢. Away from the graph, ® as defined in (141) ceases to be holomorphic.

Still more peculiar is the very fact that one obtains such a result at all, relating (X, Y) to
K(X,Y,X,Y) alone, even on the graph of ¢. This is because ®(X, Y) is a description of the mass
configuration and therefore changes into different functions of X and Y as the dynamical system
evolves. Recall that we have suppressed explicit reference to time ¢ and therefore to the fact that
d is really a function <i>(X, Y,t). So, unlike K and its prepotential ¥, the complex potential ®
is not a static property of the space {X,Y, X,Y} and its underlying structure. It is a function
of the dynamics as well. Since ® is a holomorphic function of (X,¥) on the graph of ¢, one can
imagine using analytic continuation to extend it some distance off the graph. But apart from the
practical certainty that singularities would be encountered not too far away, one would still have
a structure, including the locations of the singularities, that changed from moment to moment as
the mass configuration changed.

Another peculiar fact is that there is actually no holomorphic prepotential at all for the K of
(156). Inspection of (160) shows that if there were such a potential then it would have to conform
to 8¥/0X = i(Y — Y) and 9¥/dY = —i(X — X); but the presence of the other two variables,
X and Y, immediately stops us from constructing any such holomorphic function throughout
£, gp, 4 }-’}.1 We are now close to the frontiers of the territory explored so far; the significance
of the facts just described is far from clear.

Consider now the second of the two symplectic structures recalled at the start of this section.
The Q€Y of Sections 6-8 inherited from the parent phase space manifests itself, as previously
noted, in the real part of the 2-form d X A dY. Because we are now viewing everything in the
finite-dimensional space {X,Y, X, Y}, we again see only a 2-dimensional projection, or reflection,
of the full infinite-dimensional Q" (Bridges et al. 2001). The real part of dX A dY is also a
Kahler 2-form. For if we now take

(160)

KX Y. X.Y) = =il = X)W 2 F), (161)
or, equally well, Sk
K(X. Y, X, ¥) == XY i XY (162)
(again real-valued), then (155) produces
3i00K = Re(dX AdY). (163)

'Specifically, if 8% /8X = i(Y — Y), then ¥ = iX(Y — V) + func(X,Y,Y). If also 8¥/8Y = —i(X — X), then
then ¥ = —i¥ (X — X) + func(X, X,Y). Therefore ¥ = i(XY + X¥ - X¥) + §(X,Y), say. But it is impossible to
choose the function g so as to make 9¥/8X and W /3Y vanish as required by the Cauchy-Riemann relations for
holomorphic ¥(X,Y); cf. (152).
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By taking the sum or difference of the Kahler potentials (157) and (162) we can now see, moreover,
that d X A dY and its complex conjugate d X A dY are themselves Kahler 2-forms.

Transforming Re (d X A dY') back into (z,y, p, q) space, i.e. substituting X = z + p+ icq and
Y =y +q — icp into Re(d X A dY), we obtain a new 2-form

w = Re(dXAdY)
dzAdy+dpAdy+dzAdg+(1-c*)dpAadg, (164)

giving a noncanonical representation of the reflection in {X,Y, X,¥} of the second symplectic
structure. It is noncanonical, when viewed in (z, y, p, ¢) space, because Q°L is noncanonical. This
in turn is a consequence, it will be recalled, of restricting the parent 2-form to M€ by applying
the constraint (128).

To summarize so far, the 2-form d X AdY and its complex conjugate d X AdY reflect both the
symplectic structures of interest. All four 2-forms — that is, dX A dY, dX A dY, and their real
and imaginary parts — are Kéhler 2-forms on the space {X,Y, X,Y}. None of this is surprising,
because the relation between Kahler geometry and symplectic geometry is well known and entirely
straightforward in flat spaces like those dealt with here and in RR01. The transformations of the
various 2-forms between the original space {z,y,p, ¢} and its complex image {X,Y, X,Y} under
(144)—-(147) can now be summarized thus:

dXAdY = w —icQ, dXAdY = w + icQ. (165)

Again recall that this is consistent with (125) because of the vanishing of © on the graph of ¢,
making the contribution icQ invisible on the graph.

What then of hyper-Kéhler structure or geometry? Here there is a hint of something entirely
new. The pair of Kahler 2-forms Re(d X A dY) and Im(dX A dY') together with the Kéhler
2-form -.:;i(dX AdX — dY A dY) generated by (159) together make up what is called a hyper-
Kahler triplet of closed 2-forms, as RR01 point out. These define a hyper-Kdhler geometry in the
space {X,Y, X }7} and are conventionally normalized and notated as follows

wrt F == Re(d X ANdY) ; (166)
wj = 1i(dXAdX+dYAdY), (167)
wg = Im(dXAdY). (168)

(Here, in fact, Y and ¥ now appear in the standard way.) Just as Kéhler geometry is underpinned
by complex structure, hyper-Kahler geometry can be shown to be underpinned by quaternion or
spin-matrix structure. More precisely, a hyper-Kahler triplet of 2-forms is related to a single metric
through a triplet (I, J, K) of complex structures satisfying the rules of quaternion algebra. Those
rules are I? = J? = K* = —1 (stating that I, J, K are indeed complex structures) together with
I=JK=-KJ, J=KI=-IK, and K =1J=-JI. In the present case (I,J, K) can be
taken to be the triplet of 4 x 4 diagonal or antidiagonal matrices I = antidiag(-1, 1,-1, 1), J =
diag(—i, -1, 1, i), K = antidiag(i, —i, —1, i), where ‘antidiag’is to be read from bottom left to top
right. It is easy to check that the quaternion rules are satisfied. Using the shorthand w;(§ X, §X")
to denote the contraction of w; with a pair of vectors (6X,48Y,dX,dY) and (6X',8Y',6X',8Y"),
and defining also

§(6X,6X") = L(6X8X' +6X'6X +8YSY' +6Y'8Y) | (169)

we can easily verify that w;(6X, 6X') = G(6X, I6X") , wy(6X,dX') = g(6X, J&X') and
that wg(6X,8X’) = §(6X, K6X'), where I§X', Jé6X' and K &X' are to be read as
denoting 4-dimensional matrix multiplication. The symmetric, real-valued bilinear form § defines
a inner product that corresponds to a flat Riemannian metric, the single metric associated with
our hyper-Kahler triplet. It follows that, as can also be directly verified, the triplet has the cyclic
property wr(0X, JOX') = wi(6X, 6X'), ws(6X, KéX') = wi(dX, §X'), wx(dX, I16X') =
wy(6X, dX").

‘Hyper—Kihler geometry arises naturally in a given space or manifold whenever, for instance, the space has a

Lagrangian submanifold (half the dimensions) whose cotangent bundle (e.g. Schutz 1980) can be identified with the
original space (twice half the dimensions). F99 gives a clear example.
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Now we have seen from Section 5 onwards that w; and wg are mathematical objects having
clear counterparts in semigeostrophic theory. As the two relations in (165) remind us, w; and wg
transform back to w and —cQ in (z,y,p,q) space. They describe the two symplectic structures
shared by all Hamiltonian balanced models arising from (128) through Salmon’s method, including
semigeostrophic theory. But the remaining member of the triplet, wy, is a new mathematical
object altogether. It was not merely invisible, but actually nonexistent, before ¢ became nonzero.
Substituting (144) into (167), we see that wy transforms back to

wy = c(dpAdy+dzAdg) + 2cdpAdg, (170)

which vanishes identically if ¢ = 0. Again frustratingly, its significance for present purposes has
yet to be understood; but we need to consider the possibility that its emergence is not accidental.
Furthermore, this needs to be investigated alongside the connection to twistor space already men-
tioned. Efforts to follow these clues are underway; the reader is referred to RR01 for some further
discussion.

14 Connections with Monge—Ampere operators

The parallel derivations of (131) and (164) — respectively by substitution of (129) into the Jacobian
d(X,Y)/d(z,y) and by substitution of (144) into the 2-form d X A dY — remind us of the well-
known fact that 2-forms like w; and wy are simply Monge-Ampere operators in disguise (e.g.
Lychagin et al. 1993). In 2 dimensions the general case is
wgen = AdzAdy + BdpAdy + C(dzAdp—dyAdg)
+ DdzAdgq + EdpAdg, (171)

with ellipticity criterion
Wegen A\ Wgen
QAQ

In the recent literature the expression (wgen A wgen)/(2 A Q) is often called the Pfaffian of wgen
(Lychagin et al., op. cit.). Restricting the 2-form wge, to the graph of ¢ produces

wgenz[A+BP+QCT+DC+E(/)§—Tz)]d.'l:/\dy,

= BD — C?* — AE > 0. (172)

as is easy to verify. This expression is just dz A dy times the general Monge-Ampére operator in
(42). As before, p, ¢, 7 are the second partial derivatives of ¢ defined by (43). Notice the minus
sign in the C term of (171), as distinct from the plus in the definition of @ = dz A dp+ dy A dg.
Because €2 vanishes on the graph of ¢, there is some freedom in the arrangement of the C' term.
(S2 vanishes on any graph, i.e. vanishes for any differentiable function ¢(z,y), whether or not it
satisfies the Monge-Ampere equation.) Thus for instance dz A dp in the C term can be replaced
by —dy A dg without changing the term 2C7 in the Monge-Ampére operator itself.

The 2-form w defined in (164), corresponding to wy in the hyper-Kahler triplet, can now be
seen to correspond to the Monge-Ampére operator on the left of (131), with A = 1, and with the
remaining parameters B = D = 1, C = 0, and E = 1 — ¢?, as noted earlier. The new 2-form w
in the hyper-Kahler triplet corresponds to another elliptic Monge—Ampére operator, but not one
that has come to light in any other connection.

It is not yet clear whether, or how, the foregoing will carry over to cases in which we replace A =
1 by the variable coefficient A = 1 — f~!¢€, as suggested by the dynamical problem with general
PV and vorticity fields Q°(z, y), (°(z, y), involving the full Monge-Ampére operator of (131). The
first term dz A dy on the right of (164) is then replaced by (1—f~'¢®)dz A dy. This 2-form is still
closed, despite the variable coefficient, essentially because the coefficient is a function of (z, y) alone
and because dz Adz = dy A dy = 0.8 However, the new coefficient 4 = 1 — f~1¢€ is not sign-
definite; it is a dimensionless measure of minus the relative vorticity, and our Hamiltonian balanced
models, like the real world, can have anticyclones as well as cyclones. In any case there appears
to be no corresponding hyper-Kahler structure, because it is well known (Atiyah & Hitchin, 1988;
G.W. Gibbons, personal communication) that such structures can be curved only in a very special
way, such that the Ricci curvature tensor vanishes even if the Riemann curvature tensor does not.

iFor any function k(z,y) we have dk(z,y)dz Ady = dkAdz A dy = (kzdz + kydy) A dz A dy = 0, where
ke = 0k/0z, ky = 0k/0y.
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15 Postlude

This article has, we hope, gone some way toward answering the questions posed in the title and
in Section 1, even though not as far as we had originally hoped. We feel that it has clarified,
or at least exposed, some of the issues involved — some of the main landmarks in the territory
surveyed. We have been mainly concerned with issues of formalism rather than with genuinely
mathematical questions, though a few of the latter have been raised as well, such as the invertibility
or otherwise of the splitting equation (120) (Wunderer 2001; see also Theiss 1999). This last issue
of invertibility has in turn prompted a new search for regularized, therefore well-behaved, members
of the /3 family of Hamiltonian balanced models. We already know that such well-behaved models
will, like semigeostrophic theory, exhibit double splitting.

Throughout this article, we have confined attention to the shallow-water equations, representing
the simplest fluid-dynamical system in which all the foregoing issues are nontrivial. The extension
to 3-dimensional, fully stratified flow systems is, however, straightforward if we regard such systems
as layerwise-2-dimensional. More precisely, the extension is straightforward if we begin with a
hydrostatic, or so-called primitive-equation parent system, consisting of a stack of shallow-water
layers or the continuum limit thereof, and then apply a momentum-configuration constraint u = "
to each layer. The layers are coupled together via the potential energy V, appropriately generalized.
Then the parent phase space is still an infinite Cartesian product R*®@R*®- - -, particle by particle.
The application of Salmon’s method is straightforwardly as described in Sections 7-8, producing
a quasi-even-dimensional phase space RZ@R?® -, and there is no need to bring in, for instance,
the Dirac theory of constraints. Notice that, in the analogy with the toy problem of Section 7, this
corresponds to taking many particles interacting through some potential V' and each moving in two
space dimensions. It is quite unlike the generalization of the toy problem to three space dimensions,
which is degenerate because Qg- is then 3 x 3 and antisymmetric, and therefore singular.

Specifically, to make the extension to the 3-dimensional, fully stratified fluid case, we may
redefine the notation h(x) in the following way. The stratified system is now regarded as a set
of many interacting 2-dimensional layers in the physical domain D. In the continuum limit of
the layered system, the specific entropy s, or some function of it such as potential temperature,
keeps track of vertical position in D, taking advantage of the stable stratification. Thus s now has
the role of a Lagrangian label that is also a physical, measurable quantity and is not, of course,
subject to the particle-relabelling symmetry; and x is the horizontal projection of position on a
given stratification surface s = constant. The mass element becomes

dm=hodads = h(x,s)dxds, (173)

where a = (a,b), x = (z,y), and where h is now equated to (9z/0s):,, with z denoting geometrical
altitude. Note incidentally that h could be zero at a given horizontal position x and a given value
of s, as can happen for instance when isentropes intersect a horizontal boundary. The use of s to
help identify particles within the physical domain D via (a, s) or (x, s) amounts to using the well
known isentropic or isopycnic vertical ‘coordinate’ (as it is called in the meteorological literature),
or more aptly ‘label’.

Theiss (1999) has taken an alternative approach to the 3-dimensional stratified problem, in
which Salmon’s method is applied directly to the full 3-dimensional nonhydrostatic Euler equations.
The constraint functional must then impose vertical, quasi-hydrostatic balance, as well as horizontal
balance through some horizontally-oriented u = u® as above. Because of the odd number of
physical space dimensions, the configuration space of the constrained problem now has the form
R3*@R3@ -, particle by particle, rather than R2@ R?2®---; and, as Theiss points out, naive
application of a 3-dimensional constraint of the form u = u® (rashly attempted in MR96) produces
asplitting kernel QSL(a, a’) that is degenerate, with a nontrivial null space. This is analogous to the
degeneracy of the 3 x 3 matrix QS- in the 3-dimensional version of the toy problem of Section 7. The
associated Lagrangian functional is singular, suggesting the use of the Dirac theory of constraints,
a systematic method for dealing with singular Lagrangians. Theiss shows in detail how the Dirac
theory can be used to overcome the degeneracy problem and to achieve a fully 3-dimensional yet
nondegenerate reformulation of the splitting equation, for the singly-split models produced by a
general class of constraint functionals.

So where does all this leave us? Both in the shallow-water and, by implication, in the fully
stratified case, a new understanding of the complex-valued canonical coordinates (129) is be-
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ginning to emerge through recognition of the associated abstract mathematical and geometrical
structures. When we go from semigeostrophic theory to the more accurate models considered here,
the transformed streamfunction ®(X,Y) and the transformed complex potential ®(X,Y) become
two separate entities. In semigeostrophic theory the two are indistinguishable: we may character-
ize semigeostrophic theory as the unique case in which ®(X,Y) and ®(X,Y) merge into a single
function, and the Jacobian (145) collapses to zero. Conversely, the functions ® and ® become
distinct as soon as the parameter ¢ > 0. And making ¢ > 0 is inescapable, with ¢ = /3 as
the optimum, if accuracy is to be improved, within the category of near-local balanced models
defined by (128). These are the next steps beyond semigeostrophic theory. In dealing with the
space {X,Y, X,Y} we encounter an overarching hyper-Kahler geometry. This is itself part of what
is called twistor geometry, as studied in a well-known research programme initiated by Penrose
(e.g. Atiyah & Hitchin 1988 & refs.). Efforts to exploit these facts are underway.

The importance of understanding the associated abstract structures as they apply in the cases
of interest here will, in the end, turn on whether the search for regularized, doubly-split 1/3 models
is successful and on how accurate such models prove to be, and on whether they possess tractable
streamfunctions ®(X,Y’) defined in a sufficiently simple way. One obstacle to progress is the fact
that although, in general, ®(X,Y) is simple to define explicitly, ®(X,Y) is not.

There are, of course, many steps still further beyond semigeostrophic theory, into the wider
territory of fully nonlocal balance conditions defined by fully nonlocal functionals uc(x;h(-)),
where h(-) symbolically represents the mass configuration in a shallow-water or in a fully-stratified
model, in the manner sketched above. Some incursions into that territory have already been
made by Allen & Holm (1996), to two orders in €, which implies nonlocality in the irrotational
part of the u® field even though not in ¢ and the rotational part. Further on still, hierarchies
of u® functionals are known that respect more and more accurately the delicacy and subtlety
of real vortical motion. They are defined by rather complicated sets of equations (e.g. MNOO,
Mohebalhojeh & Dritschel 2001, McIntyre 2001). The considerations of Sections 6ff. show that
Salmon’s method can, in principle, be used to convert any of these extremely accurate, nonlocal
u® functionals into Hamiltonian balanced models, though the purely formal obstacles — even with
computer-aided symbolic manipulation — are extremely daunting and to our knowledge have never
been tackled.

Still less is anything known about the mathematical properties of these accurate u® function-
als, though numerical experimentation has clearly shown that some of them are well behaved, and
astonishingly accurate, over a vast parameter range including unbounded ranges of ¢ values (for
instance at the equator of a hemispherical model, where ¢ = co). It seems likely that nonlocality
in u® may be another way of preventing the kind of pathology encountered by Wunderer (op. cit.).
Accurate u® functionals can of course be used to construct non-Hamiltonian as well as Hamilto-
nian balanced models, as in fact was done in the work of MNOO and Mohebalhojeh & Dritschel
just cited. Again, little is known about the mathematical structure of such non-Hamiltonian bal-
anced models, which, for reasons connected with Lighthill radiation, may ultimately turn out to
be the most accurate possible balanced models. This remains very much a question for the future.
One recent surprise, stimulated by work begun at the Newton Institute Programme, has been the
recognition that, beyond a certain accuracy (two orders in €), non-Hamiltonian balanced mod-
els share with Hamiltonian balanced models the phenomenon of velocity splitting (McIntyre and
Mohebalhojeh 2001). It is possible that the most powerful approach, in the end, will involve not
only considerations of Hamiltonian and associated geometric structures, but also considerations of
exceedingly small departures therefrom.
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Appendix A: Derivation of equation (67)

In this Appendix we again use the inertial reference frame, except that the symbol u® still denotes
the geostrophic velocity relative to a frame rotating with angular velocity (0,0, %f), as it did in
(12) and (128).

Before deriving (67), we consider first what the splitting equation (120) tells us when u® is
taken as solid rotation, the case known as Salmon’s Ly dynamics. Although Lo dynamics does
not yet give a balanced model capable of dynamical evolution, it does illustrate the tendency of
u” = u® 4 u® to be an improved approximation to the balanced motion in comparison with u€.

For Lo dynamics we simply take
c

u’ = %fﬁ XX, (Al)
describing solid rotation. Then the constraint vorticity becomes simply the Coriolis parameter of
that solid rotation, (° = f = constant. The right-hand side of (121) vanishes, because the u€ of
(A.1) does not depend on the mass configuration, so that the w,-cj terms in the splitting equation
(120) vanish. The residual unbalanced force R per unit mass becomes simply the contribution
to the horizontal pressure-gradient force per unit mass that is not balanced by the centrifugal
acceleration of the solid rotation. Thus (120) becomes simply the geostrophic relation, u® = u®,
with u€ the relative geostrophic velocity given in terms of the mass configuration by (12), wherein
h = ho + h*"® — A%l with h** defined as the actual surface elevation, and AS™if a5 the
paraboloidal surface elevation for the solid rotation (A.1). The evolution described by (66) or
(120) is now trivial in the sense that particles follow geostrophic streamlines, within an Eulerian
mass configuration h(x) that does not change with time when viewed in the rotating frame. This
is because, as is easily checked from (12), V- (hu®) = 0 so that the Eulerian mass-conservation
equation (8) implies dh/dt = 0.
For L; dynamics we take, iteratively,

U =R A u (A.2)

G

The constraint vorticity ¢ in (120) now becomes the geostrophic absolute vorticity f+2z -V x u®.
The corresponding materially conserved PV,

Q° =h"¢%, (A.3)

is assumed to be positive everywhere. Also (for arbitrary bottom topography)
V= [ (ghete— o) am= [ (gh*n- jon) ax, (A4)
implying that
sV = /D (gh 8®h*™ + gh*™6Eh — gh 6Bh) dx = /D gh®™§%h dx (A.5)

(because with any fixed topography Eulerian variation is simplest, §¥A*** = §Fh), whence, by
(112) and (118),

8V = g/ olx(x) - Vh*®* dm ; = F = —gVh** . (A.6)
D

Note incidentally — with an eye to Remarks 4 and 5 of Section 8 — how the inertial-frame
description is related to the standard description relative to a rotating frame of reference. There,
the Hamiltonian functional is usually defined to contain only the relative kinetic energy and to
contain only the part of the potential energy associated with gh, not gh*" (e.g. Salmon 1983).
Here we have instead the absolute kinetic energy and the actual gravitational potential. It is
straightforward to check that the two are equivalent, provided that one remembers that as well as
using absolute (inertial-frame) u® values in H, one must also use absolute u® values in place of x
in the fluid counterpart of —x|Q° 4 dH® = 0, and allow for any work done by moving boundaries.
Cancellations then lead to the standard rotating-frame description.
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We now use the restriction to constant g and f and to zero topography (bottom boundary
parallel to h°™0). A short calculation from (119) and (A.6) gives

RC=F - AC = —u®.VuC. (A.7)
There is no mass-rearrangement term in this case, because now hVh = %V(hz), implying
V-u® =0 = V- (hu), (A.8)

annihilating the relative part of the last term in (119). If particles were to move with absolute
velocity u®, i.e. with relative velocity u®, then dh/dt evaluated in the rotating frame would be
exactly zero. So in this example there is no contribution to RC from the functional dependence
of u® and hence u® on the mass configuration, h(x). The reference to rotating frame is only for
computational convenience and can now be dispensed with.

It remains to evaluate wg The Eulerian functional derivatives of u® and u® are equal because

of the reference-frame indifference of §¥. In the present case we therefore have

8Pul(x;h(:)) _ $uf(x;h() g @ p
T T T PR e (A.9)
where ;i is defined as before by €13 = —€2;1 = 1, €11 = €22 = 0. Thus, from (121), for any x

interior to the physical domain D,
/w,-cj(x, x')u3 (x') dm(x')
D

=£/ {E' 5 — Ejk 5 }J(x—x’)] uS(x') h(x') dx’
Edwiks - 0z)Pg) < 10zs00, g

2
= g?/p [6,']' ————az?ax;‘ d(x — x’)] uJS.(xI) h(xl) dxt = %Eijszjs - (A.10)
k

where as before US(x) = h(x)u®(x). To verify this, replace uJS- in the second line by ugdp- =
—USEpqEqj then use €ixeq; = 8ig0k; —bijdkq, then integrate by parts twice. Rewriting the (¢© xu);

term in (120) as —e,-jQCUjS, we see that (120) now reduces to
(¥ K (x))UE = —52 x (u€ - vu®), (A.11)

for any x within the domain D, which is just (67).

Under the parameter conditions favouring balance, V* and K 2 reinforce, and we can usually
assume that K? is not negligible against V2. Then the typical order of magnitude of u® is given
immediately by comparing the right-hand side of the above equation with the second term K 2ys
on the left. After cancellation of factors f/g this shows at once that u® will be one power smaller

in Rossby number ¢ than the relative constraint velocity, u®®" say, = u® in this case.

Appendix B: Symplectic-form invariance and PV conserva-
tion

At the end of Section 6 we used the fact that double splitting does not affect material PV conser-
vation. This is because of the well-known fact that PV conservation can be regarded as a corollary
of the symplectic structure and the particle-relabelling symmetry, a case of Noether’s Second The-
orem (e.g. Salmon 1988b, Section 4). The result holds for any Hamiltonian flow, explaining the
indifference to the choice of parent Hamiltonian functional.

However, the symplectic structure per se is seldom called to mind in this context, any more
than a fish would think of mentioning the existence of water; but in the spirit of this volume we
thought it would be interesting take a geometric viewpoint in which (material) PV conservation,
in a Hamiltonian balanced model constructed by Salmon’s method, is regarded as a corollary of
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the invariance of the symplectic 2-form Q°Y = fde dlz; A dLu,C inherited from the parent

dynamics, where d" is again the exterior derivative in phase space. We thought it would be
especially interesting since, contrary to folklore, the argument needs to make use of a nontrivial
gambit in order to go directly from symplectic-form invariance to PV conservation. So far we
have been unable to find this argument and gambit anywhere in the literature, though a different,
elegant route to essentially the same result — a variation on the theme of Noether’s theorem, using
a multi-symplectic formalism to delete the summation over mass elements and project from phase
space R® = R*@ R*® ... into R* — is taken in the forthcoming paper by Bridges et al. (2001).

The argument presented here (and more sketchily in MR96) applies to the parent dynamics
just as well as to as to any balanced model derived from the parent dynamics by Salmon’s method.
This is because the argument deals with an Eulerian mass configuration h that is not varied and
with an Eulerian velocity field, u in the case of the parent dynamics and u® in the case of the
balanced model, that is not varied either. That is, the variations required by the argument are
such that 6®h = 0 and, consistently, §%u = 0 or §%u® = 0 as appropriate, leading respectively to
material conservation of Q or Q€.

The main steps in the balanced-model version of the argument are (a) that any flow advecting
a geometric structure in phase space conserves intersection properties; (b) that any such flow
therefore conserves the value, Q say, of the symplectic 2-form QCY contracted with any pair of
variations, i.e. pair of tangent vectors d“x(a), §“x’(a), when both the vectors and the 2-form are
advected by the phase-space flow (recall caption to Figure 1: the ‘number of tubes threading A’ is
conserved); (c) that if the flow, x(a) say, is Hamiltonian (for any Hamiltonian functional pprhitrasy)
then QC itself is invariant (its Lie derivative vanishes, x](dQ°") + d(x]Q°") = d(x]Q°") =
d (dHaitrary) — () so that QU itself can be considered not to be advected, and can be considered
to remain equal to the prescribed Q€Y of the balanced model, the corresponding Q still being a
constant of the motion provided that §“x(a) and §"x'(a) are still advected; and (d) that when
6"x(a) and stx! (a), which describe material displacement fields in the physical domain D, are
chosen such that all Eulerian variations ¥ vanish in (113) and (115) — a choice made possible by
the existence of the particle-relabelling symmetry — then Q becomes a weighted physical-domain
integral of Q°, namely Q = [, dm {6"z(a)é"y/(a) — 6"y(a)é"2'(a))}hQ° coming from the first
term on the right of (115) when substituted into (109), with Q defined by (64). All this applies
just as well to the parent dynamics if we delete the superscript C from u® and Q€ in the above
and in (64), (109) and (115), continuing to take ¥ = 0 in the last term of (115).

The final step (e), which uses the nontrivial gambit mentioned earlier, is to show that the
constancy of Q implies the material conservation of Q€ or Q. This depends on two things, first
that there is enough arbitrariness in the choice of the displacement fields §“x(a) and §x'(a) to
allow deletion of the summation [,dm over mass elements, and second that the weighting factor

multiplying Q° or Q in the integral is a function of mass alone and is therefore materially conserved,
i.e. is invariant for each mass element. The remaining factor, Q€ or @, must then be materially
conserved also.

Both things can be seen to follow when we confine attention to displacement fields §"x(a) and
6Ux'(a) in the form of rigid rotations of a small disk or ring of particles embedded within D, with all
the remaining particles left undisplaced. It is simplest to take a small circular ring, call it R, and to
take §“x(a) and §“x'(a) to be rotations of the same ring R through different angles. The diameter
of R is taken to be much smaller than all spatial scales of the fluid motion; then rigid rotation
through any angle leaves the Eulerian mass configuration h undisturbed, as required by the condi-
tion 6%h = 0, since h can now be regarded as locally constant to sufficient accuracy. It is essential
— and this is the nontrivial gambit — to make the two angular displacements finitely different, so
that for each mass element, i.e. each a, € R the sine of the angle between the two displacement
vectors §“x(a) and §“x'(a) is nonzero, equivalently 8"z (a)d"y/ (a) — 6“y(a)é“2'(a) # 0. The gam-
bit is permissible — we can treat these displacement fields as if they were infinitesimal despite the
finite angular displacements — because the parent symplectic structure is flat and homogeneous
and because duf / dzj or du;/dz; can, like h, be taken to be constant over R to sufficient accuracy.
Even though the gradients of the mapping a + x are not, by contrast, approximately constant
over R, they are irrelevant and never appear in the argument. In the stratified case R must, of
course, lie in a single stratification surface, so as not to violate the particle-relabelling symmetry.

Finally, the fact that é“x(a) and 6“x'(a) are advected implies that the weighting factor
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h{d"z(a)d"y (a) — d"y(a)d"z'(a)} is materially conserved, being h times the area of an advected
parallelogram, and the material conservation of Q€ or Q follows.

It might be thought that one could find two truly infinitesimal displacement fields §"x(a) and
§Ux'(a) that would serve equally well, for instance by taking distinct but overlapping rings R and
R'. However, there are then two contributions to Q, from the two overlap locations, which cancel
to give Q = 0 to leading order. It can be shown that all pairs of infinitesimal displacement fields
8 x(a) and §"x’'(a) give rise to essentially similar cancellations; this may be why related results in
the literature (e.g. Friedman & Schutz 1978; Arnol’d & Khesin 1998) seem to give results about
PV increments or gradients and not about the PV itself.

In the alternative route taken by Bridges et al. (2001) already mentioned, it is interesting
that the multi-symplectic formalism avoids using the particle-relabelling symmetry until after an
identity describing the general (nonmaterial) conservation of ‘PV-substance’ is obtained (Haynes
& Mclntyre 1990). The particle-relabelling symmetry is used only in order to deduce material
conservation from general conservation.

Appendix C: The transformation (129)

We start from (139), which is the general near-local formula relating u® to the canonical coor-
dinates X. In our f-plane, no-topography model, physical acceptability requires invariance to
coordinate-axis rotations. The simplest acceptable choices of X(x, h(-)) = X(zj,h,h i, hij,---)
and B(x,h(-)) = B(zj, h,h i, hij,---) therefore take the following form:

Ay =z +aah + iCeij 7 ah B = ibh , (C.1)
dz; Oz;
where - . 2
&:F, bI}:C, E:FC (C.?)

The first of (C.1) is (129) rewritten in suffix notation. Inserting B from (C.1) into the last line
of (139) and X; from (C.1) into the right-hand factors of the first two lines gives (with the B
contribution first)

—1— ——2—3!1—(2-’1— Xk | dij + g + iCe; ap
~Uh Fh 2 Sl Honin
92 i 53
= m(th (aéjq—i-zcejpépq))] ) (C.3)

Using the identity €;x€;pdpq = dkq in (C.3) yields, after some cancellation between terms,

1
—_— 2,3,4
/—M\
e ib Oh
Uy = —2———— Zeu X,

1
f fai

6,7,8 9
ARIRTE c tarry e axs
ol ot R S Sl e LT R e
s e Ty
10 11,12 13,14,15
i, X, i 0h 0Xy i 0h 0Xi
OziOzy 2 Oz; Oz 2 Oxy Ox;

(C.4)
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The terms are numbered for subsequent reference. Substituting for the remaining X factors with
(C.1) now gives

1 2 3 4 5 6
A L e VRPN P F 4l ﬂhﬁ_v2h+26 i
PRI ey S AtENT JRM G TG SRt S 2% bz,
¥ 8 9 10 il o

@ oh 0°h  ica oh 0°h  ia oh G Bl il

Oh _O%h _itadh O%h _icadh o, i@, O o

t 3 b, Omidzs 2 Oz, 02,0z, 2 Oa; 0 Bl s Dy
12 13 14 15
Y e A o o B 7 s N
ica dh Oh G2y, ic Oh ) ici Oh  3’h g dh 8%h (C5)
i oz; 2 3 2 Oz 0z;0z i 14 Oz Oz;0z; ° g

writing V? for 8 /8z;8z;. Because b/f = &, term 1 cancels with terms 4, 11 and 13. Furthermore,
terms 5 and 10, 9 and 12, and 8 and 14 all cancel in pairs. This eliminates all the terms proportional
to i¢, and leaves us (after renaming dummy indices) with

i 0 B e
fu —2€ikTk — Ak +

;9?1: 2 61,‘—6—1?;612,'01:;‘ 2
where, on the right, the surviving terms are 2, 3 and 6, and 7 and 15 respectively. This real-valued
result is equivalent to (128), with (130) and (C.2).

A useful check on the foregoing calculation, including the multiple cancellations in (C.5), is
to substitute the first of (C.1) directly into the infinite-dimensional 2-form Q° describing the
symplectic structure on MC, Q°L = Jpdm dlz; A dUuf = 3ffpdm € d'“x, AdhX; =
—[pdm d"X A dY, ie.

dh dh Oh . Oh
_QCL—f/ dm d (zl+aa +zcax—2)/\d (:82+aa o ic—é;;) ) (C.7)

(C.6)

where fD ...dm represents summation over mass elements in the 2-dimensional, Euclidean, phys-

ical domain D or its Lagrangian label space, whereas d" is the exterior derivative in the infinite-
dimensional phase space. The expression -;— ffpdm €k d“x A dY X is the exterior derivative of
the infinite-dimensional 1-form 6°“ corresponding to (134). This 2-form (C.7) is real-valued, for
complex X, accounting for the real values of (125) and (C.6). The terms proportional to i¢ add
to zero. To see this, note that those terms are

L L 3h> i L((’)h) ((?h)
ch/dm[ d”z; A d (le — ad e Ad o

Oh 2 gk h
r (Y ndte s (Y (2)]. o

The second and fourth terms vanish by the skew-symmetry of the wedge product, leaving

ch/dmd( )Ade.zch/dm[ax sz,-+dE(g:)]/\sz., (C.9)

where the last step uses d¥ = d“x.V + d¥, for consistency with ( 1133 since the exterior deriva-
tives d%, d® can be thought of as placeholders for variations 6%, §¥, with antisymmetrization
understood. as when going from (80) to (77). The second-derivative term vanishes, again by
the skew-symmetry of the wedge product. Therefore we are left with d® (Oh/dz;) A d"z;. For
consistency with (112),

0
R L ) Fh
d™h = 9z; (hid"n;)., (C.10)
Taking d/0z; of this, noting that d® commutes with 8/0:::;; so we have
oh
E T

ch/ dm d (3 ) Ad"z; = wf/ dm 33:, (h szJ-) AdVz; . (C.11)
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Integration by parts, with dm = h dx, now gives

iéf/vdx[g‘g; (hsz,-)] A [% (hdl‘x.-)] i) (C.12)

For bounded domains, it turns out that the boundary conditions implicit in (72) and (120) make
the boundary terms vanish, and the above still holds. Thus the infinite-dimensional 2-form
QcL = —fvdm dVX A d"Y is real-valued — re-checking, incidentally, the real-valuedness of
its ‘reflection’, the 2-dimensional Jacobian in (125), whose value on a single fluid particle amounts
to the projection, or reflection, of Q€ into a single one of the IR? subspaces within the phase space
R® =R2®R?®--- of the balanced model.
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Figure 1: Partial visualization (seen in three out of four phase-space dimensions) of a constraint
manifold M€ and its intersection with the parent symplectic structure, for the simplest possible
case, the toy problem of Section 7, a single particle in a 2-dimensional configuration space {z,y} =

{31,22}.

In this illustration, the momentum-configuration constraint defining MC has the special form
T uf = constant, u; = ug = function of z; alone, giving nondegenerate (invertible) Qg- provided
that du$ /dz; # 0, i.e. M nowhere ‘horizontal’ in the figure. Only part of the parent symplectic
structure is visible. That structure (corresponding to the 2-form dz;Adu;+dz2A du;) consists of
two sets of infinitesimal oriented hypertubes (e.g. Misner et al. 1973, Schutz 1980), ‘tubes’ for short,
the first set (not shown) intersecting only the zyu; plane and the second (shown schematically as
the ‘horizontal’ tubes) intersecting only the z,u; plane. ‘Oriented’ means that the sign of the
circulation around each tube is defined, positive being anticlockwise in the case shown, i.e. such
that a right-handed screw would move in the positive z; direction. Only a few members of the
second set of parent tubes are shown, as if they had finite cross-sections. A continuum limit
needs to be understood. Because (zj, 2, u;, uz) are global canonical (Darboux) coordinates, the
two sets of parent tubes fill phase space homogeneously. The tubes’ infinitesimal cross-sectional
shapes are irrelevant: instead of squares they could be parallelograms, hexagons or any other area-
measurable shape. They are significant only as regards the signed total ‘number of tubes’ threading
any specified small parallelogram A (not shown) that is arbitrarily oriented in the 4-dimensional
phase space, the sign being positive if the tubes’ orientation agrees with that of A. This signed
total, in the continuum limit with A becoming infinitesimal, is proportional to the contraction or
interior product of the 2-form with the pair of vectors defining A. Because metric concepts like
‘angle’ and ‘orthogonality’ are not used, the relevant intersection properties are inherited when
the constraint is applied in accordance with (72), as here, with A lying in ME (corresponding to
the 2-form %QS dz; A dz; when x is used, as here, to track position on MC). Nondegeneracy

(invertibility of QS) says, in this illustration, that when A lies in M© the signed total number

of parent tubes threading A does not vanish — true here, as the figure is drawn, because, with
u$ = constant, the first set of parent tubes does not intersect M at all, while the second set
does. We would have a degenerate case if, for instance, ug were left as it is but u? changed from a
constant to a function defined by the indefinite integral uf = J(0u§ /dz1)d x4, in which case the
two sets of parent tubes would give mutually cancelling contributions for any A lying in ME. Then
M would be a Lagrangian submanifold of {z,, z2,u;,u2}. When this picture is extended to the
infinite-dimensional fluid cases of interest, under parameter conditions favouring near-geostrophic
balance, M will be, heuristically speaking, ‘steeper’ than the figure suggests: particles need not
move far to upset near-geostrophic balance when Rossby numbers ¢ are small.
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