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ABSTRACT

For circumstances under which it is practical to provide good resolution of a
viscous boundary layer everywhere, a simple method for including no-slip, irregular

boundaries into a Cartesian numerical model is presented. The method is a

.- -

simplificagion of existing methods for dealing with irregular boundaries and is

shown to the effective when the resolution requirements ‘are satisfied.




Te Introduction

Recent interest in geophysical flows over topography has helped to stimulate
research into numerical models of fluid flow over an irrégular boundary. Tne
importance of the general problem is obvious, since:the geometry of the boundaries
15 one of the major determining factors in’the flow field. In the atmospheric context,
one feature worthnoting is that the height of most topography is not very much
larger than the boundary layer depth. So for atmospheric flows, the boundary layer
will often play a crucial role in the dynamics.

The numerical problems involved in modelling irregular boundaries are serious,
and a number of méthods'have been used to deal with them. The most obvious difficulty
is that the boundaries do not generally coincide with coordinate surfaces in any
convenient coordinate system. .One method of removing this problem is to transform
to a new coordinate systemwhioch does contain the boundary as a coordinate surface.
Gal-Chen and Somerville ZTH. 357 Thompson et al foi;7 describe the transformation of
éﬁe Navier-Stokes equations into a general non-orthogonal coordinate system, and a
nurerical method of solving the equations. Other methods which zllow an arbitrary
disposition of grid-points, eg. the ICED-ALE method described by Hirt, Amsden, and
Cook 4?5/ and Pracht tﬁ;/ y or finite-element techniques, can accomodate an irregular
boundary without difficulty. In all thesé methods the equations become very complicated,
especially in three dimensions, and the elliptic equation determining the pressure
for an incompressible fluid is difficult to solve. As a result these models have
slow execution speeds, which strietly limits the useful calculations that can be
made.

To circumvent the problem of execution speed, some workers have attempted to
include irregular boundaries in a Cartesian framework either by ensuring the boundary
passes through grid-points, or by using Taylor series to extrapolz:ie to the boundary.
The first method is very crude, and only allows step-like boundaries, or straight
r;mps. whilst the second approach can lead to instability and loss of accuracy near
t?e boundary, see Roache ZEV. For an incompressible fluid, both methods reqguire the
solution of an elliptic equation for the pressure in an irregular domain. This

usually necessitates the use of a point-relaxation Iiterative scheme, which is

comparatively slow.




In this paper we describe a simple method of including topography in a Cartesian
model of boundary layer flows, without changing the basic code. The‘
method . is developed by considering the topography as a region of arbitrarily high
viscosity and density. The artifice of high viscosity and density is adopted to
facilitate a simple analysis of how the equations can be solved in the entire
rectangular domain. The method is an approximation to the Taylor series methods
mentioned above Zfﬁ*’ 5,6 _;7. Viscous stresses only are made continuous across
the boundary between the fluid and the topography. In order that these are the most
important forces at the surface, a viscous boundary layer needs to be adequately
resolved. The other terms in the equations are effectively evaluated with the step-
like topography mentioned above. This limits the scales of topography which can be
accurately dealt with to features not much larger than the boundary layer. For
{opography very much deeper than the boundary layer, methods such as the non-

orthogonal coordinate system,ICED-ALE,or finite-element methods are necessary,

-

k]
especially since a lot of their complications are removed if the flow is effectively

inviscid. Within the above limitation on the height of the irregularities, the

method to be described gives a very efficient model of boundary layer flow over

topography.

Details of the method are pfesented in the next section, followed by some results
of integrations with various scales of topography in a rotating fluid. Although the
model described here is two-dimensional, the metlicd is just as easily incorporated

into an existing three-dimensional model.

2% Numerical method and model

a. Basis of method

I'ne basic system, illustrated in figure 1, is a no-slip, horizontal lower
boundary, with a high viscosity fluid occupying the region below some specified
surface S, and a lowviscoeity fluid above. The viscosity is a fixed function of

space, and is not transported by the fluid. Obviously, inthe limit as the viscosity below
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the surface, \)s => 00 | with the fluid viscosity \)o fixed, the flow beneath the
the surface will vanish, and the no-slip condition at the surface of the topography
will be satisfied.

If the viscosities in a finite-difference model were set to either Vv, or Vg
depending on whether the grid-point was above or below S, then this would result in
a step-like approximation to the surface. To improve on this, we need to consider
which terms are important at the surface. Since we wish to achieve a no-slip condition
on 8, viscous stresses must dominate, therefore we enforce continuity of the viscous
stresses Q V %{‘; o é%“\) across 8. Note that the numerical model must resolve the
boundary layer on § sufficiently accurately for the viscous terms to be dominant on
the lowest grid-points above S. '

We assume the density ? is constant in what follows, and make vﬁ\({:_ continuous

. ¥
across § by defining an interpolated viscosity on grid-points where a velocity

: gradient is calculated using velocities from both sides of the surface. The situation
"3 for the vertical gradient of the horizontal component of velocity, WL , is shown in
figure 2. The grid-points at which W is stored are denoted by crosses, and viscosities
are required at intermediate points. A is the grid-length, which spans S, and n,
is the height of the surface above the lower grid-point, P. Suppose UQ is the stored
component at the upper grid-point Q, and similarly uP ¢ Then we can determine the
velocity at the point R on the surface, (L R by equating the atres&ea above and below
S. Thus
| v (Ug- Up) = > (Ug-up)

A n n (2.1)

gvovs (ug-Up)
The model calculates the contributionl\ 2 Vivr (U~ up) *
D ;

Solving for Ug gives the contribution tc the stress as

thus

Vs = _VoVs O
. v, M + v (A-7) (2.2)

This procedure is equally applicable to horizontal derivatives, and results in a

. Tield of viscosity values which preserves viscous stresses across the surface.



Now it can be seen that the limit as Vs -> O can be defined

using relation (2.2), This gives interpolated values of viscosity as

Vint = —Jii—éL— (2.3)
A =i
Furthermore, since the solution for the flow beneath S is known in the limit
Vs —> 0 g o umyvew = 0, if is not necessary to use a numerical
scheme capable of dealing with very large viscosities, and the velocities below
S can be held fixed at these values for all time,

Provided a thermal boundary layer is also resolved, we can make conductive
heat fluxes across the surface continuous in a precisely analagous maﬁner. The
conductivity of the hill may be taken as infinite if the hill is intended .
to be isothermal, and in this case the temperature is set equal to the chosen

value at points beneath S, Arbitrary temperature profiles can be specified, but

different temperatures ' need to be set depending on whether the grid-point value

is being used to calculate a vertical or horizontal gradient.

To show that equation (2.3) is exactly the result which wovrld he =:tzined by

making a second order estimate of the second derivative =t the point Q,we write &

Ta}lor expansion around Q as follows:
' U= + b§_‘£l it
: 9 d2 Q a 22lg

. ~(b-1) %y (b-m)> YU
o= the n);zler = =]

Eliminating %%J | from the above equations, a little algebra gives
2y
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In the method described here the stress divergence %& (9 Egé')
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at the point Q is
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- Thus when va is given by equation (2.3) and Up = O this estimate is exactly X

the Taylor series estimate. (We are grateful to a reference for the above proo‘f‘.) ><

This then is the essence of the method, =Before describing.thée details of:
its incorporatipn into a particular finite-difference model we will discuss the
magnitude of the truncation errors inourred near the surface.

Since our method requires the boundary layer thickness, S, to be well
resolved we consider a height  above the surface where Z<<8 . The magnitude

of the horizontal velocity component at 2 will be u~Ugz + where Uo is

the free stream velocity. We only consider the horizontal momentuﬁ equations
here, since errors in the vertical eguation will be of the same order if the
slope of the hili is 0(1). 1In the case of very gentle topography, vertical
accelerations are negligible, and the dominant error in the vertical velocity
= arises through the continuity equation.
Using the velocity scale U to estimate the terms in the horizontal
momentum equation, (2.4 below) we obtain:

& a
pressure and non-linear terms ~ e 2

£5l




Coriolis terms s '5 qu/S
Viscous terms NV up/)\ g

where L is the horizontal length scale and A\ is the vertical scale of variation
bf the viscous stress near the surface. )\ is obtained from a balance of terms in
the momentum equation. The viscous term is dominant at the surface; whether it is
balance by the inertial. or Coriolis terms depends on the Rossby number R =u°/:§'L
For R< | , it follows that A= S. and for R > | ,>\°(v°L8/Uo)}§ is smaller
than $ ie. for short length scales, an inner sublayer develops (cf triple-deck
scale, Stewartson ﬁ/).

At the surface our method calculates the viscéus term to second order accuracy,
but takes no account of the actual prosition of the surface in the calculation of the
dnertiel and Ooriolis terms. Thus the latter terms have a zero order relative
error. However since these terms tend to zero at the surface, the errors are small
y:’Zn relation to the viscous scale.DoquS. For R > | , the error in the inertial term
relative to the viscous scale is O( Aa/)\o') » and that in the Coriolis term is
O(.Q. (-&)a) . For RC [, the Qorioclis term im always larger than the inertial
term, and the error relatlve to the viscous scale is OC A/S) Thus the non-linear
terms are effectlvely represented with second-order accuracy, but the Coriolis term has
introduced first o"de" errors which are only important for H < l .

A similar analysis can be carried out for the buoyancy terms, assuming that these
terms have a magnitude determined by the height of the topography, h, and the basic
density gradient. This assumptlon should be valid when Ueo /N h>l, where N is the Brunt-
Vaisala frequency [§ lio] (see § 3hand h is height of the topography. It

32
follows that the ratio of resultant horizontal accel;eferations to .the viscous stress gradien
AhAS N3 S
W - This is a second order error, and the extra length scale provided by th
stratification is not restrictive for geophysical parameters. When (J /Nh('- the buoyancy

perturbations, and hence the errors,are smaller than the above estlmates.

» ke - i .
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3 F:mally, although our method has no integrsl mass flux errors, there are local errors
in mass fluxes near the surface. Consider the horizontal flux across the interval PQ of
figure 2. The horizontal velocity at Q will be™(A-n), where o  is the

velocity gradient at the surface. Thus the flux is ol (Q— 1‘1)1
A




third order terms. Since our method approximates the

viscous terms to second order, the velocity at Q will be correct to second order

in (A-TL) . Thus the implied flux across PQ is % b (b~ TL) , giving a maximum
error of/‘g'i Aa « These efrors are worse than the O(b?> errors in flux

estimates away from the boundary and imply a first order transport scross the surface.
However, in practice the factor of g ( a factor of %'is essentially due to the
accuracy of the viscous terms) means that unless the interior resolution is very

fine these errors are not significantly larger than the.second-order interior errors.

b. Numerical model

The method outlined above has been incorporated into a two-dimensional
Cartesian model of an incompressible, Boussinesq fluid. The equafionsof motion

to be solved are

~'§¥%+U§.‘i+w}%ﬂ? :-}SP;L-O-'S'V'&&(&\’%C)‘l'%i(v%*\’%) (2.4)
%lé +Uhg\i *W%:“%SO—SU+§;(V%¥)+§—Z(\"%%) (2.5)
%v%‘uu%%&w v{ :—%%~ ‘j§£ +§-Y(\’B§+V¥z)+§—z(lv %‘g) (2.6)

3eeye g = 3(439) « (< Re) e

U AW s O (2.8)
L o

where the coordinate axes and velocity components are as shown in.figure AL
is the Coriolis parameter, g is the acceleration due to gravity, § the mean
density, Q the perturbation density, ¥ the kinematic viscosity, and K the

thermal @iffusivity. The only term involving a derivative with respect to Yy is

d.Po/G13 , which is =a constant and generates the basic geostrophic flow threcugh

the domain of integration.
Variables are stored on the standard staggered grid, eg Williams ZB), sketched
'in figure 3. The grid is uniform in tne x-direction, and is stretched in the

z-direction to resolve the boundary layer. LeapIrog time-differencing is used,

4

ané all spatial derivatives are centred, so the tinite-dirierencing is second-order
well-knom

accurate in space and time. Owing to thelynconditional instability of the viscous

~-10-




-an explicit

terms with A leapfrog formulation, a du Fort-Frankel scheme is used for the
viscous terms, i.e. the value at the grid-point under consideration is
feplaced by the average of the values at the advanced and the previous time-
levels.
The inertial terms are calculated using the "absolutely conserving® scheme
of Piacsek and Williams f[Zf'. This scheme conserves the total kinetic energy,
apart from errors in the divergence, As we shall see below, the Poisson equation
for pressure is solved by a direct method, and apart from machine truncation, the
only errors in the divergence are due to the fact that the du Fort~Frankel terms
need to be approximated in deriving the pressure. However, these errors are small
provided the temporal evolution is on a timescale much longer than the timestep,
and vanish in the steady ;tate.
Periodic boundary conditions were specified in the x=-direction, while at
the lower boundary, z = O, we specify u = v = w = O and at the top of the model,
z = H, there is a stress=free, rigid 1lid, i.e. SU Ny =w=0,
A2 d2 :
The boundary conditions on the elliptic equation for pressure are particularly
simple in the Cartesian model, in contrast to the non-orthogonal coordinate model,
The préssure equ#tioﬁ is obtained by taking the finite-difference equivalent 5f

the divergence of the momentum equations,.

If we write the mcmentum equations (2.4) and (2.6) as

Do N (2.9) X

—_— Fa

T

where g':"(u,W) ) V 5(%" ’B\—:) and tl: = (Ty, Tl) represent all

terms other than the pressure gradient, then

o
Nop = V.1 (2.10)
Equation (2.9) represents the equation for pressure in the finite-difference

model, provided‘y' denotes a finite-difference operator, and then the right hand side

is required at all interior grid-points.

-1%




The derivation of the Poisson equation (2.10) beneath S requires further
discussion. In the limit D, »oc0 y¥ 2 O below S and provided we let the density
§ ¥ o0 below S the pressure forces are negligible. Thus the only diagnostic
pressure equation which is consistent with the finite difference analogue of the oontinuit
equation is obtained by setting ]:.= O at all points beneath S, as can be seen from
equation (2.9). This ensures that the continuity equation issafisfied on our mesh,
but incurs the flux errors near the surface described in the previous section.

It will be seen that values of Tz outside the domain are required to define the
right hand side of (2.10) at all interior points. Since w = O on both upper and

lower boundaries, the boundary condition on pressure is
Nz /

and it can be shown that if this boundary condition is applied, then the solution
i‘brP at all interior points is independent of the value assigned to Tz outside
t‘he domain. The horizontal boundaries lie on the levels containing the w-points,
see figure 3, so the pressure is o'nly required at interior points to advance the
fields. Hence we set Tz = O below z = O and above z = H, and solve the Poisson
equation with boundary conditiops%@z =0 onz = 0, H. The equation is solved
using a Fast Fourier Transform for the x~direction, and line inversion of the
resulting tri-diagonal matrix for the z-direction.

We have found that the du-Foﬁ-Frankel scheme does not give unconditional stability
of the viscous terms when Coriolis terms are also present. We have not presented
our linear stability analysis because empirical  results from our model indicated
the importance of spatial variations in viscosity. (A similar stability analysis
by Lipps ﬁ_@7 was brought to our attentién by a referee). The empirical results
show a rapidly oscillating instability when 1&_@% > constant of order 1. Here
Dt is the time-step, D= is the smallest grid-?ezngth. end Y max is the maximum
éiscosity used by.the model. This will be one of the interpolated viscosities, since
viscosities beneath S are not used in the numerical scheme. This stability criterion
limits the maximum viscosity which canbe calculated from eguation (2.3). However,
the criterion is not very restrictive, since in most cases, limiting the interpolated
viscosities to satisfy V.0t /A2z2 < 0.5 at each point effectively only changes

the position of S by a small fraction of a grid length.



For flows in which ‘isbj'ls not much less than 0.5 (none of which are
presented below), we have ¥Zund that the use of larger interpolated viscosities,
vithout instability, is made possible by the application of a time smoother to the
u,v,w, and ] fields. The values of a field g at time levels n and n-1, which

are used in the leapfrog scheme to produce values at time n+1, are replaced

by smoothed values ¢2 and ﬂ:'1, defined by
£ = (1-e)g® + eg™?
¢:'1=(l—e)¢"'1+ € g°

where & is about 0.05. The use of this time smoothing clearly does not affect
steady state solutiong, and compafison with unsmoothed results in cases where
they were stable showed insignificant differences, apart from a reduction in
timescale by a factor of (I-¢).

: Finally, the slow 'time-splitting' instability of the leapfrog scheme is
removed by the use of an occasion;l forward timestep. This is only first-order
accurate in time, but does not significantly reduce the overall accuracy since it

is only used roughly once every 25 steps.

3. Examples of model results

Some results of integrations over a range of scales of topography are
presented in this section. Parameters were chosen so that the flows bear some
resemblance to atmospheric flows. The fluid viscosity, V, is 5m=S.. ,and’ﬁhe
Coriolis parameter, f, ie 10" # , giving an Ekman boundary layer depth s (a\))g~
of approximately 300m. 5" is chosen to give a geostrophic wind U, = —é— ;‘LP‘»

of 10 ms-1. The first two examples are of homogeneous flow, ie contain no

buoyancy effects.

In order to provide some verification of the method of representation of
fopography we first present a comparison with a linearised analytic‘theory. The
theory is based on a 'triple deck' analysis of the type discussed by.Smith'Z7lj7
and is des;ribed:in detail in Sykes'zrﬁaJ7. - This is an asymptotic theory bﬁsed
on the small parameter (ié/UQS)&; which for the present case has a value of 0.22.

The theory has been linearised by assuming the height of the hill is small, and



the small parameter involved in this is 0.2. Figure 4 shows the dimensionless

surface pressure from the theory compared with the model results, and it is
clear that the errors are well within the limits of accuracy expected of the
theory ie ~ 20%.

The next example is that of strongly separated flow past an obstacle 50
m high with slopes of order 45°. For this case the only relevant scale is A
(see § 2a) which is ~ 25m giving %%Trv %. Figure 5(a) shows contours of the
streamfunction, contour values being chosen to give a fairly uniform spacing
on the stretched grid. The solution presented is close to equilibrium and is
characterised by a long separation bubble. The pressure field is shown in figure
5(b), and it can be seen that the pressure varies smoothly across the surface of
the obstacle. Along the surface there is a strong favourable pressure gradient
_ﬁssociated with the acceleration of fluid over the obstacle, but due to the
separation behind the obstacle, the corresponding adverse pressure gradient is
greatly reduced.

Although not particularly evident in Figure 5, we should emphasise that the
contour plotting program is simply based on linear interpolation between grid-point
values, Since the plotting program has no information about the interpolated
viscosities, this procedure can produce spurious contours near the surface.

These effects are more obvious in figure 6.

The final example includes effects due to a stable stratification which are,
of course, important in many geophysical flows. In the simulation of such flows
it is normal to use a form of radiation boundary condition at the upper boundary
to allow gravity wave -energy to leave the domain of integration. The use of such
boundary cénditions is independent of the method of representing topography, and
in this example a radiation conditior at z = H was simulated by the use of Rayleigh
damping on the uppermost 5 grid points (for details and other examples see Mason and
éykea [ 1}_7). :

' The basic stratification is chosen such that the Brunt-Vaisala frequency N
=[-§- 43 }i= Io_as_'and to prevent the generation of 'slope winds', due to

S dz J o
temperature contrast between the hill and the adjacent fluid, the densities beneath

the surface are taken to correspond to the basic stratification.,

-1k o




Figure 6 shows steady flow over a long length-scale hill which is higher

than the boundary layer. The hill is 1 km high and 60 km long in a periodic
domain of length 240 km and depth 15 km. In this case the scale N\ is . 200 m
giving %%«v{;,whilet the stratification length scale is some 23 times greater
than A and consequently unimportant. Figures 6(a, b) show the u-and w-
components of velocity, respectively. On this length-scale, the principal effects
in u and w are due to the strong stratification. This inhibits vertical motions,
forcing the fluid to rise gently upstream and flow over the summit in a vertically
constricted jet. On the leeward slope, the buoyancy forces rapidly accelerate
the fluid as it returns to its equilibrium level. Note that the buoyancy forces
have made the flow separation nearly symmetric about the centre of the hill.
Figure 6c shows the buoyancy perturbation from the undisturbed state; as with
the u and w fields,vertically propagating gravity waves are evident. Finally figure
6d shows the pressure field; it can be seen that since the slope of the
~£opography is small,2L£ is almost zero at the surface.

4, Conclusions >Z
When the viscous boundary layer resolution requirements discussed in §3 2a

are met, it is poesible to include topography into a Cartesian model without loss

of accuracy. The method can be considered in two parts :

. Small terms are neglected near the surface.

2. The diagnostic Poisson equation for pressure is solved in the entire rectangular
domain by posing a trivial physical model for the state of zero motion beneath

the surface. Motivation for using this method, in problems where the resolution
requirements cau be accomodated, lies in the ease of adaptation of an existing
Cartesian code and the fast execution speed in comparison with more formally
accurate methods. The examples given here and in Mason and Sykes {13] demonstrate
the utility of the method.
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Legends

1.

Schematic diagram of domain of integration.

2e

Illustrating the intersection of the surface S and a vertical line of

grid points.

3.

The staggered mesh.

L,

A comparison of dimensionless surface pressure p* between the numerical

model and analytic theory. The hill has the form z = cos2 (X)), /x/ 0.5

and z = O otherwise. The smooth curve is from the theory and the values

of p* at grid points are indicated by the open circles.

S.

Numerical results obtained with a mesh of 64 by 24 points. The results

are presented with a uniform spacing between grid points, the actual grid

point heights in metres are indicated on the right hand side of the diagram,

(a) shows streamlines, chosen to give an almost uniform spacing in the
absence of topography.

(b) shows the corresponding pressure field. The contour interval is 0.125
Nm"2 and negative values are denoted‘by dashed lines. The zero contour
is shown ae a slightly heavier solid line. These plotting conventions
apply to Figure 6,

6. '

Numerical results obtained with a mesh of 64 by 36 points.

(a) shows the x-éomponent of velocity u plotted with a contour interval of
108

(b) shows the vertical component of velocity w plotted with a contour

interval of §.5 x 10":l wa L




(¢) shows buoyancy (-3 8 ) perturbations from the initial state plotted

oot )
with a contour interval of 6:0x [0 ms & ~

(d) shows the pressure field plotted with a contour interval of €83 Nm
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