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s Numerical calculations of the forces involved in Ekman layer flov past three-
: .
* dimensional topography are presented. The forces are obtained from finite-difference

? ‘isolutions of the Navier-Stokes equations. The results confirm expectations from
earlier two-dimensional work that many flows produce no significant change in total
momentum transfer between the fluid and the surface. Only flows generating some
form of trailing vortex system appear capable of changing the total force on the

: Jower boundary. The effects of Ekman boundary layer instabilities, and their

4nteraction with topography are also discussed. : :
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.1. Introduction

An understanding of the influence of small scale topograpﬁy on the atmosphere
and the parametrisation of these effects in large scale models centres on the net
changes in momentum transfer. In a previous paper (Mason and Sykes 1978a) we

gave a general review of the magnitude of éhangea arising from different scales,

“but concentrated on larger scales for which the Rossby number was of order unity,

In a more recent paper (Mason and Sykes 1979a referred to hereafter as M & 3) we
studied smaller scale two-dimensional flows for which separation occurred. The
present paper extends the latter work to three-dimeneional flows. As in M & S
we deliberately choose not to include any form of turbulence modelling. Turbulence
modelling in such strongly disturbed flows is at present an uncertain art without
even sound empirical support. It would thus be rash to proceed with turbulence
modelling until we have a reasonable understanding of the corresponding laminar
flows. By laminar flow we mean a solution of the Névier—Stpkes equations with a
constant viscosity equal to a typical value of turbulent eddy viscoeity. This
means that the order of the viscous term in the Navier-Stokes equations will be
the same as that of the divergence of the Reynolds stresses in the corresponding
turbulent flow problem.

‘

The basic parameter determining the character of homogeneous laminar flow
is the Reynolds number R ‘s ‘w‘/l) where U is a. typical flow speed, }"‘
& typical scale and ¥ the kinematic viscosity. For atmospheric flows the
Reynolds number bzsed on molecular viscosity is very large but we may ask
the magnitude of a Reynolds number based on an eddy viscosity. This is a
dangerous procedure because of the essential differences between laminar

and turbulent flows.

. 4 -

However, rememberiﬁg this qualification, soms order of magnitude calculations

" seem worthwhile. If we consider an object in the approximately logarithmic part

" of the turbulent boundary layer (say less than 50 m height) then we may define a

Reynolds number | ?Zr % ZZA //glr




In this region the eddy viscosity \)r': [(L(*Z where l( is the von Karman constant, W

the friction velocity and 2 distance from the boundary, -Thys taking Z_'g"] we have
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Now «,. = S (’(g vhere G, 4g the Bo~-called geostrophic drag coefficient
and é{? the geostrophic wing, Taking ([ = L{g we have

g
Re =

Hence with 4 = 0.4 ang Cp = 2,103 we have typically

layer a reasonable estimate of V- is given by considering the implieq surface

2
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where (S is the depth of the boundary layer. Thus

VT = Cbgéla

and taking & = 103, 41a = 29077 as tynica) v obtain

p.‘_ o~ l) (M't(l- h in mefres>,




where ﬁ?ﬂ is the herizontal eddy viscosity and L. the horizontal scale. ' Thus

R'm * u_a’_l: & § (vith 8 i meéres\)'
Yy L

It is important that these rough calculations should not be taken as more than
order of magnitude estimates, but they serve to indicate ranges of Reynolds numbers

of relevance to the atmospheric dynamics.

In M & §, two-dimensional integrations of the Navier-Stokes equations were
made in this general range of Reynolds numbers. One of the main results was the
observation that for steady homogeneous flows, even when separation occurred, the
topography produced little net change in fotal drag. The pressure force on the
topography was nearly balanced by a reduction in viscous surface sfress. This result
and the details of these flows were shown to be well predicted by "triple deck'
boundary layer theory (Sykes 1978). This theory also predicts a similar small
net change in total drag for three-dimensional flows (Sykes 1979). Although the

agreement uith the Navier-Stokes equations was shown to be good with ﬁé- - L 57&” éCK%

4he theory is strietly only valid in the limit of large Reynolds number .

No analytic solution is available for moderate Reynolds numbers but for
small Reynolds numbers ( << 1) we can turn to existing work. Wang (1978) considers
slow flow over a corrugated base in a channel with a rigid upper surface. An
expression for the net force is given and in the limit, as the depth of the channel
is much larger than the height of the corrugations, the net effect is zero.
Thus with analytic support for steady flow at large and small Reynolds numbers
the results obtained for steady flows at moderate Reynolds numbers are perhaps

€o be expected.




The two-cdimensional homogeneous flows did not always give zero net drag on
these small length scales. When the flow was unsteady, with eddies being generated,
important net drags occurred. The eddies were shed by topography at Reynolds
numbers above a value depending on the slope (eg ,Q'z 30 for slope ~ 1/5; R ~ 500
for slope ~ 1/10). In a narrow range of parameters a smaller but significant
increase in drag occurred when unsteady eddies appeared downstream of the topoge
raphy. These had scele less than the topography and a character similar to Ekman
roll instabilities. The orientation of our twoedimensional domain (parallel to
the geostrophic flow) does not favour such instabilities and it was felt important

to investigate this effect in three-dimensional motion.

In tﬁe present three-dimensional study a number of significant results have
emerged. As expected from the analytical considerations most steady separated
flowe gave no significant net drag. A significant net drag was found only when
there was evidence for the generation of trailing vortices by the topography.

. This generally became important before but close to the parame$ers for which the
flow also became unasteady ( R Z 100 for a slope of unity). When the basic
flow was unstable to Ekman rolls the only effect of topography appeared to be on
the phase of the rolls; keeping them nearly stationary in the lee. In our only
integration with a atable_boundary layer n; topographically induced rolls were

observed.

The details of the force results and fﬁrther interpretation are given in

§ 3« In § 2 we outline the numerical model used in thie study and in §4 we
present the conclusions. The violent three-dimensional flows considered in this
paper have not been realised in previous numerical. studies and are difficult to

observe in laboratory or atmospheric situations. They form a subject in them-

selves and the details of the flow structures we have found are ﬁresented in Mason

and Sykes (1979b).
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2. Numerical model

The equations of motion are the Navier-Stokes equations for a homogeneous,

incompressible, rotating fluid, ie:

2
4 , ¢.Vu = Vf’ it v L
ot
Ve =0

where jE==ﬂjﬂ9y§\ Figure 1 dofines the coordinate system and geometry, Q"C{
§ i the Cotiolis Parameéer

The method used for the numerical solution of these equations is a direct
extension of the two-dimensional method described in Mason and Sykes (19784d).
The variables are stored on the usual staggered mesh, eg Williame (1959). The
nonlinear terms are calculated using the energy-conserving form of Piacsek and
¥illiems (1970), and all spatial differences are second-order accurate. The
time-derivative is approximated by the leapfrog scheme, hence the viscous terms use

the Du Fort Frankel formulation to maintain stability.

The mssh is Cartesien, stretched in all three directions, thus allowing a
distribution of grid-points which matches the flow structure. The resulting
Poisson equation for pressure is solved on the non-uniform grid by means of a
direct reduction method due to Farnell (1979). This method is an extension of
the discrete Fourier transform method to a non-uniform mesh, and uses the
eigenvectore of the finite difference operator to effect a direct eolution.
This method is faster and more accurate than the usual ADI technique with the
number of grid-points used here. The maximum dimensions of the grid are
40 x 32 x 40 in the ( X>4, Z )-directions respectively. The direct solution

method is used in two dimensions, and the resulting one-dimensional problem

.48 solved by line inversion. The CPU time per timestep with the full mesh is

"85 on an IBM 360/195.

The lower non-slip boundary condition on the surface Z = N (x,y) is

-

included as described in Mason and Sykes (1978b). The surface passes arbitrare

ily between the Cartésianvgrid~pointa, and the viscous term only is made




accurate at the boundary, by means 6! special viscosity values around the surface.
Other terms in the equations of motion are insccurate on the surface, but provided
the grid-points are sufficiently close to the surface for the viscous term to
dominate, there is no real loss of accuracy. Mason and Sykes (1978b) contains a
formal estimate of the accuracy of the above method, based on the dynamice of the
flow near the surface. In the flows considered in this paper, for which the height
of the topography is of the same order as the boundary layer depth, the errors due
to the representation of the topography are not the dominant errors. More stringent

conditions on resolution arise from the need to close the nonlinear energy cascade

to short wavelengths. This places a restricticn on the Reynolds

number based on the grid length, but the precise magnitude of the error is ;
Reynolds number based on the grid length, but the precise msgnitude of the error is
difficult to determine due to the uncertainty in the estimates of terms in the
equations. From resolution tests in two dimensions, it appeared that values of grid
Reynolds number ug A /v of about 20 were adequate (where A is the gridlength).

We also found that the effects of larger Reynolds numbers (up to about 100) were rot
too serious, generally only producing grid length scale motions with amplitude up to 20%

of the mean amplitude.

In the flows considered here, the rotation plays no real part in the dynamics,
epart from providing the basic Ekman boundary layer. The advantage of the Ekman layer
is its horizontal hombgenoity, allowing the specification of periodic boundafy
conditions in the x~ and y= &irections. Although this complicates the details of the
local flow, it is necessary if estimates of total momentum transfer due to the oresence
of topography are required. Theories‘of laminar flow over small humps, eg. Smith
.{1973), Bmith, Sykes and Brighton (1977) show that the surface stress returns

3 slowly to ita upstream value; the decay of the perturbation downstream is algebraic,

. With a relatively small negative power of distance. In view of this fact, an
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extremely large domain of integration would be required to contain all the signifie
. cant effects of tke hill. In a periodic doma'in, and in the steady state, the

-

entire domain is selfw-contained, and the total momentum transfer can be ascertained.

The remaining boundary conditions in the vertical direction are

o &) oM Z = S(x)'é>

.:~ ResultB
In all the results prescnted here we have adopted a standard form of topography.

The height of the topography is

S=,1 0962 LZIL_ (= 8z ),i] for (x2 + yz) < Lz and S =0
- for (x2 + yz) > Lz « The relative size of the domain varied slightly but was
= generally 8 L in the x= direction and SL in the y~ direction. This was enough
to effectively isolate the topography in all but one case (Run 27; Table 1). 'l'he.
basic non-~dimensional parameters aetermining each integration are a R‘eynolds numbers,
8 Rossby number snd various ratios of scales. The Rossby numbers Ko = u-g / L¥
_were always greater than 10 and were typically 100, so effects due to the basic |
¢ rotation were of no consequence in the dynamics of the flow other than to determine the
* basic Exman boundary layer structure. A complete set of consequential parameters

)

was thus R= hUl / Y, h/S ana h/L wnere U is the mean velocity in the x-direction,




between z=0 and z = h, in the undisturbed velocity profile, and & = (2 v/$ yz i

« the scale of the Ekman boundary layer. In discussing the results it is convenient

in what follows to consider two cases (a) [_/5 ~ (O and (b) L- /& ~ 1

(a) Forces on scales [~ 108 :

On these scales & significant factor in the integrations is the instability of
the basic Ekman boundary layer profile. These instabilities depend on the
: Reynolds number of the boundar?' layer 'Re = us Cg/)? and the first instability
to occur is the so-called class A viscous instability (eee eg Lilly 1966) at
Re > 55. At Re > 125 the class B or inflexion point instability with higher

growth-rate occurs. The values of Re considered in the present study ranged up to

600 and given a mesh with appropriate resolution, instabilities were triggered. The
instability gave rolls with a typical wavelength of 18 ) s &nd an orientation

“dependent on Re but within + 15o of the geostrophic wind (in accord with Lilly 1966).

In M & S we discussed such Ekman layer instebilities in a two=dimensional domain
aligned with the geoctrophic wind and found horizontal diffusion to be a powerful
stebilising factor. By rotating the geostrophic wind direction in the two~dimensional
wodel we have been able to investigate some aspects of the etability of rolls which

“ occur in the three-dimensional model without recourse to three~dimensional integrations.
¥hen the rolls are not perpendicular to the geostrophic wind, but roughly parallel
to it, growth rates are much larger and horizontal diffusion, of reasonable wagnitude,
is noJonger able to suppress the instabilities. Our interest in suppressing this
instability arises from our wish to unambiguously identify the effects of topographye.
In the next section the boundary layer has been effectively stabilised by restricting
t.h-: size of the computational domaix;, end thus the largest possible wavelength, to
;alues smaller than 185 (typicslly 58). Since computer resources prevent the
zsosolution of processes occuring on widely disparatescales the stabilisation is

on aimost inevitable consequence of studying scales -~ S .

Our study of three-dimensional flows involving Ekman rolls is sadly limited.

This ie a consequence of the long time scale associated with development and

9




equilibriation of flows involving the rolls. The twmhdimensi;nal studies
suggest integration times perhaps 10 times as long am those necessary for

flow over topography in & similar domain (ie 100 I/T <f 10L/T). The main
dntegration (Run 19) involving freely-occurring Exmam rolls had parameters

Re = 600 (R = 300), /& =1 and h/L = 3, and a computational mesh of

40 x 32 x 32 points was used. Figure 2 illustrates the vertical velocity

field at z = 870 m after 3.3.10us (=1/T x 33) from the start of the integration.
The fields are far from steady; the amplitude of the rolls reached a maximum of

1vat t = 1.5.10ue, a mimimum of w 2= O.Z:nm-l at t = 3.0x10hs and

¥ ¢ 0.4 ms™
are currently increasing in strength. A time-average of the surface stress
between the maxima and minima shows a 14% increase im surface stress (confirmed
by longer two-dimensional integrations). The pressure force on the topography
is very small ccmpared with this change in net viscows stress (comparable to that
in Run 30 Table 1) and if the topography is having amy significant effect on the
net force it must be through the Ekman rolls. It is of interest that the
topography clearly affects the phase of the roll disturbances appearing to keep

4them nearly stationary on a length scale ~ 3L in its lee. Elsevhere in the

domain the rolls appear to drift in accord with Lilly's (1966) results from

linearised stability theory. To try to quantify this qualitative impression
we have averaged the velocity fields over a periocd of 2.hx10hs. During this
period the rolls remote from the obstacle drift and at least 5 wavelengths
pass over such points of the terrain. Figure 3 shows the mean vertical
velocity field at z = 870 m. It follows from the instantaneous amplitudes of
the rolls and simple statistics that any value over 0.02 ms"1 should
represent a significant mean. The main effect occurs in the lee of the
obstacle but the whole domain is affected. The amplitude in the lee

is about 0.05 as showing that even where the rolls were fairly

10
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stationary some '"wobbling" must have occurred. The mean ve;tical
roll structure 1.37x104 m downstream of the top of obstacle is
illustrated by the vector plot given in Figure 4. The vertical
scale of the rolles is seen to be somewhat greater than the depth

of the boundary layer and comparable to the horizontal scale of

the rolls. To see what effect the topography was having on the

net forces it vés removed at t = I.Hxlous and the integratioﬁ again
continued until ¢t = 3.3110hs but with flat terrain. The subsequent
behaviour of the net stress, apart from a . short term transient, was
almost identical to the case with topography. The phase behaviour
was howvever different with the rolls gradually assuming & nearly
uniform propagation over the whole domain.

In M & S, topography appeared to excite Ekman rolls in
otherwise stable two-dimensional flows. Here, with expensive
three-dimensional integrations, we felt we could only justify
a single test. Three methods appear open to us to achieve a stable
boundary layer (for arbitrary length disturbances), we may either
make the Reynolds number Re < 55, employ sufficient horizontal
diffusion to make the horizontal Reynolds numbers of the rolls of
order unity, or impose a small vertical stratification (Kaylor and
Faller 1972). The latter choice undoubtedly has the greatest
atmospheric significance and fortunately the value of stratirication
required is not large enough to significantly affect the.dynamica
of the flow over the topozraphy. Studies with the two-dimensional

model with Re = 600 showed stabilisation to occur with the

11
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. Brunt-Vaisala frequensy N ‘-‘—[— 9/?‘ 5§] greater than a eritical

value between 2.10"3 and 3.10-35"(3 is the acceleration due to gravity,

R § the mean density and a?/éz the vertical density gradient in our
incompressible fluid). The parameters in the three~dimensional integration were
identical to that for run 19 (see above) except that N = 3, 10-35;‘giving a

FL - _2_?_1:_}1%1% = 3 was used. Since FL is greater than unity very little gravity
wave energy can be produced. In the results no discernable rolls were excited

and the forces in this integration (run 30) are discussed in the next section.

(b) Forces on scales LS

Flows on this scale which produce significant changes in net force involve
flow separation. As we mentioned in the intmductioh, a detailed description
of these flows is beyond the scope of this paper and is to be found in Mason and
Sykee (1976b). For the purpose of this paper we simply wish to roughly classify
these sepaiated flows. FiguresS to 7illustrate limiting (z —> 5(x,y)) surface
flow trajectories obtained from the surface stressdirections., These are a
powerfu} diagnostic in characterising the flow. Figure 5 is typical of separatisn
close to the critical Reynolds number (for a given slope) at which separation .
first occurs. The separation is confined to the lee of the obstacle. At higher
Reynolds numbers and/or slopess upstream separation such as that illustrated in
Figure 6 may also occur. In these flows with upstream separation the well-known
horse.shoe vortex formation is found (see eg. Sedney 1973). The horizontal
vortex lines of the undisturbed boundary layer are advected towards and trapped
* ' at the upstream stagnation point where the flow iméingea va the surface.
g The rest of the vortex line is advected round the obstacle and downstream with

s concomitant vortex stretching. In the case of Figure 6 the Reynolds number is

12

TR R SR ' S P et LB 5 e e A e N T e SR R ) o S e et



go small that the resultant vortex travelling downstream is dissipated on

the length escale of the topography. In Figure 7 we show the pattern from a
higher Reynolds number flow; strictly (see §2) this Reynolds number is

beyond our computational capabilities and the presence of grid-length features
in some fields must be acknowledged. This flow is not steady and the
generation of significant trailing vortices (4o ~ 3L here) seems to occur at
pimilar parameters to unsteadiness. The swirls evident in the surface stress
pattern on the lee side of the obstacle are not related to the horse shoe
vortices but are a feature of lee separation at high Reynolds number (Hunt et al
1978, Sedney 1973).

As we mentioned earlier we adopt a periodic domain to facilitate estimates
of net changes in momentum transfer. Onepenalty which the pezriodic domain
incurs is flow equilibriation on the time scale:iB/U where B is the length of
the domain. Thus to make useful estimates of total forces each integration was run
for a time scale of about 10 L/U  i.e. 2B/U (typically 1200 time sieps).

We have determined the pressure force on the topography, P =(F§)F§), and the net
viscous force on the surface, ){==(V§)\ﬁr>, by plotting graphs of these ‘quantities
-against time. From the graphs we have judged by eye a final value (for unsteady
flows & time average) and an estimate of maximum possible error., The errors in
’g and V were generally small but the relative errors in the net change in
momentun transfer T = V+P -V (where Vo is the viscous force .
on the domain in the'absence of topography) were clearly very large when V4P was
; nearly equal to Yo

In Table 1 we summarise the basic parameters, flow characteristics and net
forces for the integration we present here,

. In Figure 8 we consider obstacles with h = L = $ s i.e. slope-of unity

and height equal to the boundary layer scale, and vary the Reynolds number.

12




Two of the quantities plotted are the x-direction pressure drag coefficient

Ny ]
Cex .—_R /i SAU (where A is the frontal area of the obstacle) and
an efficiency factor pr = —rx /Px representing the net change

§n x-direction momentum transfer. For large Reynolds nu:nber) CpxX would

on general grounds (Batchelor 1967 p.339) be expected to be ~ 1 e« At R = 300
this is true and the efficiency factor is also ~ 1 « This situation accords with
the general rules upon which net momentum transfer estimates in the atmosphere
have been made (see eg Smith 1975). At R=100 voth Cpx and pr have been
reduced so that Ciyx= —i: /5'_§A (,72 (see Table 1) is nearly a factor of 3

or less. At R = 30.Cpx has risen, this is probably due to the increased
viscous stress of the lower Reynolds number flow and is more in evidence

at R = 10 when CP)& is comparable with estimates for low Reynolds number flow.
However, at both R = 30 and 10 the efficiency pr is essentially zero; the
caleulations are not accurate enough to give the sign of T, reliably although

we presume negative values to be unlikely and unsupported by analysis. It

thus appears that for topography with slopes of unity, Reynolds numbers R > 1C0
ax;e required for significant net x-direction momentum transfer. At smaller
Reynolds numbers the x-direction pressure force is nearly balanced by a
yeduction in x-direction viscous stress. The forces in the transverse direction
ghow a different behaviour. The y-direction pressure force is indicated in
Figure 8 by the ratio R/@. This ratio does not vary significantly with R

and the nearly constant value of about 0.6 is consistent with the smaller values
of y-dirasction flow in the basic Fxman boundary layer. Values of C-ryare given
in Table 1; unlike G.rx. which tended to zerc ag R became small, Cry increases.
This is r.xot due to changes in the pressure force but duc to the viscous

stress VY remaining near to its undisturbed value. Since this behaviour

does not occur in the small R examples (discussed below) with W < T ik

seems to be a feature of flow with WA~

1%
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In Figure 9 we explore how the forces depend on the horizontal length scale

L with h = & and R = 100 (except for the data at I/S = 8for which R = 300).
The prime variable is thus the topographic slope. The data for L/ cg = 1 is the

same data at that at R = 100 on Figure 8. For smaller L the separation is more '

- wiolent and both Cpxand Ep  are increased, although in the limit of small L/S

and consequent low Reynoldl; number flow about a thin vertical cylinder, we
would not expect this trend to continue. For larger L we see that both Cpx and
pr steadily decrease even though the flow remains separated. It is not clear
whether the apparently more rapid fall between /S =3 and 8 is significant,
although the ‘h'igher Reynolds number of the latter flow may have actually increased
its relative effect. In either case the net changes in momentum transfer are
clearly small for slopes of less than 1 in 3. In many applications it is approprisz
to compare the net change in momentum transfer with the viscous force ,\\!_/Hz(vm ,vﬂ Y
acting on a flat surface with area equal to the base of the topography. It is
clear that since I YH/ is proportional to 1° whilst the scale % §A az
is proportiocnal to L, the relative effect of shallow topography is even less
than that implied by Figure 9. Values of E\/)("- 7;/\/“ are given in Table 1.
The y-direction forces do not show any marked veriationc but scme tendencies can
be discussed. In particular for larger values of } 3 R/'Px (Figure 9) is
reduced a little and as can be seen in Table 1 CTX/CT)( increases a little. No
explanation occurs to us but since upstream separation does not occur with large
L this behaviour may be related to changes in flow type.

In Figure 10 we illustrate the effect of varying h with L = g and
Re = 200. This study was made with a view to investigating the dependence of
flow pattern on VA and in the present context must be examined carefully.
As h reduces so does the Reynolds number R (see Table 1) and the effects on
the forces are primarily a consequence of the Reynolds number dependence. The
results for L/ & = 1 are also given in Figures 8 and 9. For h/g A
mxis seen to rapidly tend to zero whilst, as at low R in Figure 8, Cpincreases,

These results indiéate that the relative scale of the boundary layer, h/cs s 18

not a dominant factor in deterﬁining the x-direction forces.

15
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Conclusions

The y-direction forces do show some systematic variation with h/g. '
as h/g becomes small the cbstacle is exposed to a basic flow at h5°
to the x and y directions with a consequent tendency to symmetry. This is

reflected in both PV/P;( and CTY/CTX tending to unity as }1/5 tends to zero.

Ve have made a range of numerical integrations of three-dimensional laminar
flow over surface-mounted obstacles. These flows have ranged from fully
attached viscous'flou to violent separation. In each case the pressufe force
on the obstacle had a magnitudein keeping with simple ideas. However, the
net change in x-direction momentun transfer uhich the obstacle produced was
only as big s this pressure force for flows with violent separation (involving
upstream separation). At smaller slopes and for Reynolds numbers when only
downstream separation or fully attached flow occurred, the x-direction pressure

force was nearly balanced by a reduction in x-direction surface stress. As

aith the similar result obtained for two-dimensional flows in Mason and Sykes

"{1979a) this small net force is in keeping with predictions of both ’triple deck'

and low Reynolds number theory. It appears that the occurrence of a
significant change in net x-direction force requires eddy motions which
transport momentum to the surface. In two dimensions this can only occur
vhen eddies (transverse to basic flow) are shed by the topography. With
éteady separation the only transfer across the separating streamline is
viscous diffusion. In three-dimensional flows such eddy motions are possible
with longitudinal rolls and can occur in steady flows. The present work
ﬁuggests that “he principal source of the longitudinal rolls may be the
horseshoe vortex mechanism.

‘In Mason and Sykes (1979a) two-dimensional topography appeared able
to excite disturbances similar to Exman rolls. The boundary layer used
in that study was unstable to disturbances at angles close to the gecstrophic

wind. In the present three-dimensional study the only effect of obstacles

16.



on these freely occurring Ekman rolls was to hold them nearly stationary
in their lee. This may be related to the atmospheric observations of
stationary rainbands in the lee of topography (Browning and Bryapt 19757.
end aleo to the stationary rolls downstream of a heat island (Kropfli and
Kohn , 1978). A single test with a stable boundary layer flow did not

show three-dimensional topography to excite any rolls.
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Legends
Figure 1
Fipure 2

Figure 8

Schematic geometry of the domain of integration.

Horizontal section through the vertical velocity field at z = 870m.
The contour interval is 0.06 me-l, and solid contours denote positive
values. Grid-point positions sre indicated by tick-marks on the
boundary.

Horizontal section through the time-averaged (see text) vertical
velocity field at z = 870m. The contour interval is 0.05 ms-l
and solid contours denote positive values.

Vgrtical section through the time-averaged (see texf) velocity
vector field in the y-z plane 1.37x10u m downstream of the top

of the obstacle. The mean flow at,eéch level has been removed to
illustrate the roll motion.

Surface stress directions with R = 30. The dashed circle indicates
the base of the hill.

As figure 5, but R = 100.

n

As figure 5, but R = 300.

Graph of pressure drag coefficient, CP v 'efficiency factor', EPX_,
and ratio of y-direction force to x-direction pressure force Py/Fx
against Reynolds number, R.

Graph of Cpx and EP)( and Py/P . against non-dimensional base width, L/&

Graph of Cp, and Eps and Py/P against non-dimensional height, h/8
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. Teble 1(a)
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Bagic parameters used in the numerical integrations

and main features of the resulting flow
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100

10
100
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N

21

Upstream
Separation
Occurs
YES
YES
RO
RO
YES
NO
YES
NO
NO

NO

Downstream
Separation
Occurs
YES
YES
YES
NO

YES

YES
RO

Flow
Steady

NO
YES

RO

YES
YES
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Table 1(b) 5
v Rct.forces from integrations
o ol e B c
Number igau* N » TgAu®
21 0.80% 0.12 63* 10 0.35 £ 0.05
22 0.32% 0.08 25t 5 0.20 = 0.04
23 L 0,01 0,20 PMETA 30903 iy
. 24 -0.15% 0.20 -10% 14 1.00 % 0.1
25 | 0,555 0.0 132% 22 0.31 < 0.08
26 0.2k¥ 0.10 ot 2 0.21 % 0.05
27 0.70% 0.20 180% 48 0.25 2 0.12
28 0.28% 0.20 &6k 0.21 2 0.07
29 ~ 0.00% 0.60 ot s 0.00 ¥ 0.30
30 0.03* 0.01 0.3 0.08 0.03 £ 0.01
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