Numerical Weather Prediction

Forecasting Research
Technical Report No. 266

Removal of spurious radar echoes with a
Meteosat neural network precipitation
classifier

by
G Pankiewicz, C Johnson and D Harrison

May 1999

The Met.Office

Excelling in weather services



Forecasting Research
Technical Report No. 266

Removal of Spurious Radar Echoes

with a Meteosat Neural Network

Precipitation Classifier

by
George Pankiewicz, Colin Johnson & Dawn Harrison

May, 1999

NWP Division
Room 344
Meteorological Office
London Road
Bracknell

Berkshire

RG12 2SZ

United Kingdom

© Crown Copyright 1999

Permission to quote from this paper should be obtained from the above
Meteorological Office division.

Please notify us if you change your address or no longer wish to receive
these publications.



Removal of Spurious Radar Echoes

with a Meteosat Neural Network

Precipitation Classifier

Contents

1 Summary

2 Introduction

3 Training and Validation Data

4 Feature Selection
A0 Infrared features 0 v e e e an el ST
49 Nisibletand infrared featutes v oo o 0 o s i s

5 Neural Network Training
51 Iabrared Jeabures: 0 o s e e e e
52 Nigibleand infrared features . 0 0. e ooEs s ot et

6 Nimrod Case Study Assessment
6.1 28th May to.8th September 1998 . . . . o0 Do o daion oy
6.2 28th Octoebér to 18th December 1998 . . . 0. i vio s o el o o
6.8  Discussion of case study assessments . ... . . L o0 sl

7 Conclusions and Recommendations

8 References




1 Summary

This report describes the development of a new neural network scheme based on the
use of Meteosat infrared, or visible and infrared imagery, to determine a probability
of precipitation within the Nimrod domain, for use in removing spurious echoes from
Nimrod radar composite images.

The neural networks were trained on samples taken from 3200 boxes of 17x17 pixels,
selected from 48 sets of Meteosat and radar images, taken throughout the period
July 1995 to June 1997 during day or night. Feature selection was performed on the
images to look at the ability of various visible and infrared features calculated over
different sized regions to discriminate rain from no rain at a threshold of J;mmh=".
The Meteosat features which were found to best discriminate rain from no rain in
individual 5km radar pixels were the central value, the minimum, maximum, range
and the ratio of maximum to minimum of 7x7 pixel infrared samples. When visible
reflectivity data were also available, the best features were found to include the same
features for the visible samples, except the central value.

Two multilayer perceptron neural network classifiers were trained using the features
obtained, and were found to provide overall probabilities of detection of 66% for
infrared and 69% for visible and infrared features, for a 1:2.8 wet to dry ratio of
pixels used for testing. The corresponding false alarm rates were found to be 57%
and 41%. These can be compared with the estimates for the Meteosat step of the
current Nimrod anaprop removal scheme of 61% and 47% for cold frontal cases, but
of 28% and 74% respectively for cold-air convection.

The new neural network scheme was trialled during summer and winter 1998, and
although it was found to provide better diagnosis of anaprop during summer, and
better diagnosis of rain during winter, it provided a slightly worse diagnosis of rain
during summer and a worse diagnosis of anaprop during winter. Part of these prob-
lems may be associated with the lack of surface temperature data used in the new
scheme (affecting the winter scores), the way in which the rain is deleted near strong
cloud edges, but also in the way that the threshold for deleting anaprop has been
determined (outside the neural network scheme) for the infrared neural network. As a
result of these trials, the decision has been made not to implement the neural network
scheme at this stage.

The major contender for improving anaprop deletion is to convert the radar network
to Doppler radars. However, this is unlikely to happen in the next 5 to 10 years. As
it is thought that nearly all of the problems with the neural network scheme noted
during the Nimrod trial can be remedied, thereby resulting in a superior anaprop
removal technique, it is recommended to continue with the development of the scheme,
for example by including surface temperature, snow cover and surface climatological
albedo fields, all of which are used in the current scheme.
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2 INTRODUCTION

2 Introduction

Spurious echoes in the form of anomalous propagation (anaprop) and clutter can
provide fairly common, yet unwanted signals in weather radar data, resulting in false
observations of precipitation.

The Nimrod nowcasting system (Golding, 1998), used at the Met. Office to generate
analyses and forecast guidance in the time range 0-6 hours for the UK and surround-
ing areas, produces a variety of cloud and precipitation fields which are also used in
initialising the mesoscale model. These precipitation data come largely from the net-
work of radars situated around the British Isles. The quality of radar data therefore
has an important consequence for both short-range forecast guidance and mesoscale
model initialisation.

Currently, the Nimrod nowcasting system attempts to detect spurious radar echoes
automatically using a scheme that includes a Probability of Precipitation (PoP) field
determined from two independent sources: ground-based synoptic data and Meteosat
visible and infrared imagery. The Meteosat data are analysed on a pixel-by-pixel ba-
sis to help form the PoP field by using a simple thresholding technique, described by
Cheng et al. (1993), and based on the method of Lovejoy and Austin (1979). Essen-
tially, cloud-free areas result in a low PoP, whilst in cloudy areas, PoP is estimated
according to the climatological occurrence obtained by Cheng et al. The scheme is
often referred to as the Nimrod anaprop removal scheme, although the aim is to re-
move all spurious echoes; in this report, references to anaprop include all types of
spurious echoes.

This Meteosat PoP is then combined with the ground-based synoptic reports and
forecast PoP using Bayes’ theorem (Pamment and Conway, 1998), and results in a
value of a parameter known as alpha, which can range from 0 (definitely no rain)
through 1 (the climatological probability of rain) to large values (definitely rain). A
threshold is set within the field of alphas to remove radar echoes where there is a
sufficiently low probability of rain. A detailed description of the Nimrod anaprop
removal scheme has been given by Johnson (1998).

Although the current Meteosat thresholding scheme provides a Probability of De-
tection of about 60% for cold frontal precipitation where rain rates are greater than
~mmh~!, it is about 50% for warm fronts, and only 30% for cold-air convection.

In 1996, a study was undertaken by the Satellite Image Applications Group to esti-
mate precipitation rate in 4 classes from NOAA AVHRR data using a neural network
classifier, which provided a new capability of incorporating spectral and textural im-
age characteristics. The results were encouraging, with an average PoD of 72% at
a threshold of tmmh~', taken in various synoptic conditions, compared to similar
mesoscale model PoD values of 69% at T+0 and 63% at T+6 (Chris Jones, personal
communication). False Alarm Rates were 37% from the neural network, compared



to 51% from the mesoscale model at T+0 and 56% at T+6.

The combination of different discriminatory inputs such as infrared brightness tem-
perature and visible reflectivity texture meant that local neighbourhood information
around the pixel of interest could be used to improve the estimate of precipitation,
over and above that of a threshold technique (for example in cases of cold-air con-
vection, by recognizing convective cells). The neural network approach used in this
case had further advantages in that its output values provided Bayesian estimates of
the PoP directly, and that it could operate at high speed, because of the statistical
nature of the trained neural network.

Following these initial results, the potential was seen for developing a neural network
method of diagnosing PoP from satellite imagery for Nimrod. A set of requirements
was established by the Observational Products Group, listed below in table 1.

| CHARACTERISTIC | SPECIFICATION |

Product Nimrod field of PoP in each pixel

Domain Nimrod domain

Resolution 5km, 30 minutes

Timeliness No later than HH+5, HH+35

Availability 95% overall

FAR <0.50 for cloudy pixels in all synoptic conditions
PoD >0.98 for rain rates > lmmh~?

Table 1: Nimrod requirement for the diagnosis of Probability of Precipi-
tation from satellite data. (FAR = False Alarm Rate, PoD = Probability
of Detection.)

Unfortunately, the use of high resolution polar orbiter imagery from AVHRR is lim-
ited, due to its poor temporal sampling. Meteosat is however capable of providing
imagery within the Nimrod domain at the required 5km and 30 minute resolution.

A neural network PoP classifier, using spectral and textural information from Me-
teosat, was therefore considered a suitable candidate to improve upon the current
Meteosat thresholding scheme. A neural network using infrared imagery alone could
be used, as such data would be available 24 hours per day. However, in practice, the
inclusion of textural features from visible reflectivity data were expected to improve
the network performance during daytime, and in fact, it proved to be a relatively
simple matter to consider the merits of both classifiers, once the necessary training
data had been restored from archive.

This report describes the production of the infrared as well as the visible and infrared
PoP classifiers: how the training and validation data were chosen, how the input fea-
tures were selected, and how the neural networks were trained. Finally the potential
for the use of the new scheme within Nimrod is assessed.
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3 Training and Validation Data

At the Met. Office, Meteosat imagery is processed through the Autosat system, which
reprojects images into polar stereographic coordinates, and derives a range of prod-
ucts, including visible reflectivity and infrared brightness temperatures, from the
instrument counts. Infrared grey-scales range from 4 to 251, and represent brightness
temperatures of 198K to 308K respectively. The Nimrod nowcasting system ingests
these two Meteosat products, corrects them for parallax and sun angle and maps
them onto a 5km grid within the Nimrod domain (Golding, 1998).

The radar data come from a network of 15 radars sited around the British Isles, and
each image undergoes processing including identification and removal of corrupt im-
ages; removal of spurious echoes (with the help of the Meteosat thresholding scheme);
correction of echo intensity with range, bright band contamination and orographic
enhancement below the radar beam; and rain gauge adjustment. The images are
then composited into the Nimrod domain, at 5km resolution.

For the development of the PoP classifier, 48 sets of Meteosat and radar compos-
ite images were restored from archive, covering the period July 1995 to June 1997
(including visible reflectivity data when available). Two sets were restored for each
month at random times, coinciding with half hourly Meteosat imagery (see table 2).

[ Tmvestamp [ VisiBLE | Non-MissING | RAINING || TimesTaMP | VISIBLE | NON-MISSING | RAINING |

199507012230 N 36986 2137 199607010100 N 32073 3594
199507151230 Y 36137 1842 199607152030 N 32942 179
199508010830 € 32207 1336 199608010600 N 33973 2974
199508152100 N 33124 61 199608150900 X 32073 200
199509012300 N 35368 3587 199609010200 N 33791 1733
199509150430 N 33973 2797 199609151730 )¢ 33973 21

199510012100 N 30369 427 199610011630 X 33973 4064
199510152330 N 33973 1788 199610152100 N 33973 4985
199511010930 Y 26402 630 199611011300 N 33973 3524
199511130600 N 33977 1653 199611150230 N 33973 1050
199512181230 Y, 26550 1072 199612011730 N 33973 3349
199512251130 X 34146 3041 199612150300 N 33973 1549
199601011930 N 36990 3589 199701011600 N 32073 2122
199601151130 Y 36956 1168 199701151500 N 37086 651
199602010500 N 33351 105 199702011300 Y 37086 2430
199602150930 5 36986 1643 199702150030 N 37086 1723
199603012330 N 36986 225 199703011030 3, 33973 5981
199603150900 Y 35115 3160 199703152230 N 33973 5319
199604011230 X 28469 1130 199704010630 N 37121 654
199604150130 N 33973 338 199704151630 v 37086 213
199605032230 N 33973 610 199705010730 Y 35259 143
199605150500 N 33973 668 199705152030 N 33973 1834
199606022100 N 33973 515 199706010200 N 37086 154
199606151530 X 33973 28 199706150100 N 33462 2422

Table 2: Timestamps (YYYYMMDDhhmm) of data files restored from
the Nimrod archive. Availability of complete Meteosat visible reflectivity
data is shown, as well as numbers of non-missing pizels and pizels with
a rain rate > gzmmh™" in the radar composites.



For each radar composite, two additional radar composites were chosen before and
after the time of interest, to form a radar movieloop with 5 half-hourly frames. These
movieloops were examined for anaprop, often seen best in this way as patches of
shimmering radar echoes bearing little relation to real rain systems, and often related
to orography. Areas suspected of being contaminated with anaprop were marked on
a copy of each image, to avoid selection for the neural network training set.

A total of 3200 samples of 17x17 pixels (85x85km), were selected from the collo-
cated infrared brightness temperature and radar rainrate fields, from uncontami-
nated regions of the images (see figure 1). Samples were labelled as either no rain (<
Lmmh~'), or as rain (> j;mmh~"), depending on the central radar rainrate (centre
labelling) or the average radar rainrate over the sample (average labelling).

Average labelling is less sensitive, but provides a better correlation between cloud
brightness temperature statistics and rain or no rain. Any subsample could therefore
be chosen, with its own centre or average label, if required. Of the 3200 samples,
2097 had no rain as the central label and 1103 had rain, giving a dry to wet ratio of
1:1.9. This compares to the dry to wet ratio used by Cheng et al. (1993) of 1:2.8.

From this set of 3200 samples, 1142 were selected for which uncorrupted visible
reflectivity data were known to be available (see table 2). These data were restored
from archive, and added to the training and validation sets. Of the 1142 samples,
749 had no rain as the central label and 393 had rain, giving the same dry to wet
ratio as for the infrared only cases.

Figure 1. An ezample of collocated Meteosat infrared brightness temper-
atures (white is colder), and radar rainrates (dark blue > ~mmh™", light
blue > Lmmh™!, green > jmmh™" and orange > Ommh™; pizel size is
5km). Red bozes in the Meteosat sample represent the areas over which

the candidate features were calculated, from 3z3 to 15¢15 pivels.
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4 Feature Selection

Given samples of infrared brightness temperature or visible reflectivity pixels which
we wish to correlate with a central or average rainrate label, it is possible to calcu-
late numerous statistics or features over different sized regions (figure 1). The most
obvious features are the infrared brightness temperature or visible reflectivity values
at the central pixel; given this information, a neural network classifier should be able
to classify as well as, or better than the threshold classifier discussed in Cheng et al.
(1993), for example. However, it is possible to extract some simple local features,
such as the mean, standard deviation, minimum, maximum, and the range and ratio
of the maximum and minimum, providing a total of 7 features per spectral channel,
including the central value.

It is also possible to extract textural features from regions of at least 3x3 pixels,
such as grey-level difference vectors (Weszka et al., 1976). A grey-level difference
vector Ag(¢) is the absolute difference between two grey-levels with a fixed spatial
relationship ¢ of angle, and distance (in pixels). In this work, four relationships were
used: ¢(0°,1.00), #(45°,1.41), ¢(90°,1.00) and #(135°,1.41). Grey-level differences
were calculated for every pair of pixels in the sample governed by these relationships,
to produce a series of histograms hg(Ag). These histograms were then used to con-
struct five statistics of interest: the mean, contrast, angular second moment, entropy
and homogeneity (detailed in Pankiewicz, 1994). As an example, the homogeneity
statistic H is given below:

_ R hy(Ag) 1

Ag=0

(1)

Here, T is the total number of grey-level differences in the sample. Mean and maxi-
mum values were calculated for the 4 spatial relationships described above, giving a
total of 10 grey-level difference features per spectral channel.

To determine the ability of these 17 candidate features per spectral channel to discrim-
inate rain from no rain, multidimensional Bhattacharyya distances were calculated
(see Gu et al. (1991), for example), with mean vectors p and covariance matrices &
obtained for both no rain (0) and rain (1) classes:

1

To = gy ) (B4 S )
1 l%(20+21)|}
e R D (2)
2 { 10|24

Bhattacharyya distances were calculated for sample sizes of 3x3, 7x7, 11x11 and 15x15
pixels, for both centre and average labels, for all possible combinations of feature
vector for infrared features only (a total of 17Cy +'7 Cy + ...+ Cy7 = 131071, where
n(), is the number of combinations of r features from n). They were also calculated
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for all possible combinations of feature vector up to 9 dimensions for infrared plus
visible features (a total of 3*C; +%* C; + ... +3* Cy = 77663191 combinations). For
each feature vector dimension, the 10 feature vectors with the largest Bhattacharyya
distances were noted.

4.1 Infrared features

The results for infrared brightness temperature features alone are presented in figure
2, showing the Bhattacharyya distances for the most separable feature vectors. As the
number of features used is increased, their ability to separate the classes increases, but
at a decreasing rate. Also, there is more ability for textural features to discriminate
average labelled samples. If the sample size increases, so does the ability to separate
the classes, but again at a diminishing rate. In particular, centre labelled samples
were unable to discriminate further for samples of 11x11 pixels or more. For an
operational classifier, speed is important, and the smaller the sample size, and the
fewer the textural features used, the better.

0.6

0.4

0.2

Centre labelling

Bhattacharyya distance

0.0

0 2 4 6 8 10 12
Feature vector dimension

0.6
15x15
. 1x1d

0.4} 7x7 o

3x3

Average labelling

Bhattocharyya distance

0.0

0 v 4 6 8 10 12
Feature vector dimension

Figure 2. The largest Bhattacharyya distances obtained for different
sample sizes of infrared brightness temperature data only, for both centre
and average labelled classes, as feature vector size increases from 2 to 9.
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This suggests that for centre labelled samples (more sensitive to the detection of
anaprop), 7x7 pixels and 5 features are adequate (resulting in a Bhattacharyya dis-
tance of 0.29, compared to 0.37 for 15x15 pixel samples and 9 features). The corre-
sponding feature vector consists of the minimum, maximum, range, ratio and central
pixel value. Figure 3 shows these feature values (plus the most useful textural fea-
ture, the mean homogeneity), normalised by the means and standard deviations to
provide values in the range 0 to 1, for the no rain and rain classes, for 1000 centre
labelled samples per class.

Minimum Maximum
200 g 200
i .
150} -- No rain 150 .
2 100 2 100
8 8
50 50
0 A ) oLz, :
0.0 0.5 1.0 0.0 0.5 1.0
Normalised feature value Normalised feature value
Range Ratio
200 200 ;
150 150 ;
§ 100 A 5 100
50 /V\\‘ 50
0 y 0 .
0.0 0.5 1.0 0.0 05 1.0
Normalised feature value Normalised feature volue
Centre Mean homogeneity
200 200
150 150
£ ! £
é 100 ¥ é 100
50 50 M
o - . .- O ‘~.
0.0 0.5 1.0 0.0 0.5 1.0
Normalised feature value Normalised feature value

Figure 3. The five feature distributions used to train the infrared only
neural network, as well as mean homogeneity, normalised in the range 0
to 1, for 1000 samples per class, using centre labelling.

4.2 Visible and infrared features

In order to speed up the analysis, Bhattacharyya distances were only calculated
for sample sizes of 7x7 pixels, using centre labelling for cases where both visible
reflectivity and infrared brightness temperature data were available. In this case, the



largest Bhattacharyya distances were found to continue increasing at a feature vector
size of 9 dimensions, with textural features starting to be used at 9 dimensions.

The largest Bhattacharyya distance of a feature vector without textural features was
found to consist of the minimum, maximum, range and ratio of the visible reflec-
tivity, plus the minimum, maximum, range and ratio of the the infrared brightness
temperature (8 dimensions). At 9 dimensions, the largest Bhattacharyya distance
included the same features as at 8, together with the maximum visible reflectivity
entropy measure of texture.

The best features selected to train the infrared, and the visible and infrared neural
networks are listed in table 3.

| INFRARED ONLY | VISIBLE AND INFRARED

Infrared minimum | Infrared minimum
Infrared maximum | Infrared maximum

Infrared range Infrared range

Infrared ratio Infrared ratio

Infrared centre Visible minimum
Visible maximum
Visible range

Visible ratio

Table 3: Selected features used to train the infrared, and the visible and
infrared neural networks.

5 Neural Network Training

Feature selection showed that 5 or 8 features depending on availability of visible
reflectivity data are most useful at discriminating 2 rain classes (no rain and rain
with a threshold of L mmh~'). Discrimination of a feature space into a number of
classes is a typical statistical pattern recognition problem, which can be solved using
a number of methods, including a multilayer perceptron neural network. MLP neural
networks provide fast, robust and highly accurate pattern classifiers, and are being
used more and more in the remote sensing community (Pankiewicz, 1995).

Conventional MLP networks consist of a number of input nodes (representing the
features calculated in the image, denoted by z;), one or two “hidden layers” of nodes
(j) and a layer of output nodes (k), the latter representing the output classes of
interest (two in this case). The nodes in each layer are connected to all nodes in
the next layer, so that for a network with 6 input nodes, 8 hidden nodes and 2
output nodes, there are a total of 64 connection weights, each representing connection
strengths between various nodes.
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MLPs can be trained using the backpropagation learning algorithm (Rumelhart et
al. 1986), where an error function is calculated at each output node, and is then
backpropagated through the network. For a given training sample belonging to a
specific class, the feature values z; are calculated and are input to the network.
Initially the connecting weight values (w;; and wj) are set randomly, and a sigmoidal
thresholding function is used as the feedforward transfer function. The activity values
on nodes at the hidden layer j and then the output layer k are calculated:

1

Y e 3)
1

ar = (4)

14 e2 Z(wlkaJ)

where o measures the spread of the thresholding function. The value of the error
function at the output layer is then determined, and is related to the difference
between the calculated output values ai, and the true output values or. The simple
difference oy — a;. is not used, because of the way in which the error is backpropagated
through the network (see Bishop, 1995). The error functions used in this work (see
Pankiewicz, 1994 for a derivation), are:

6k = aak(l S ak)(ok = ak) (5)

6; = oa;(l—ay) zk:(&kwjk) (6)

Weights between layers k and j are then updated with a gradient descent algorithm,
the technique being used to search for the minimum value of the error function:

wik(t + 1) = w;r(t) + pbra; + afw;r(t) — wik(t — 1)] (7)

Here, p is the learning rate, and a (not to be confused with the assigned PoP field
values) is a momentum term used to carry forward previous weights changes. For
weights between ¢ and j, the same equation is used with j replaced by i, k replaced
by j and a; replaced by z;. In this way, the error function decreases to a minimum
after repeated presentation of training samples, each presentation being referred to
as an epoch.

Numerous parameters affect the performance of such a network, including the num-
ber, type and normalisation of features calculated in the image samples, the number
of hidden nodes, the range of output values oy used during training, the spread of
the sigmoidal thresholding function o, the number of training samples presented at
each epoch, the rate of adaption of weights p, and the momentum factor «.

5.1 Infrared features

The 3200 samples were split randomly into a training set and a validation set, con-
taining two-thirds and one-third of the data respectively. An MLP network was
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trained with the input features described above, as well as a bias node (a standard
technique in which an extra input is included with z set to a value of 1). Weight
values were recorded every 5 epochs, and the validation set were used to obtain the
average Probabilities of Detection and False Alarm Rates. The aim was to increase
the PoD and decrease the FAR. Note however that to get the same ratio of wet to dry
pixels, we require FAR = 1-PoD. If FAR > 1-PoD, then the scheme is overestimating
the number of wet pixels. In tests, a 1:2.8 wet to dry distribution of samples was
used in order to compare the results with the work of Cheng et al. (1993).

After a large number of experiments in which the number of hidden nodes was
changed, as well as values of o, p, and «, the best network was found to produce
a PoD of 664+9%, a FAR of 57+5%, and an Equitable Threat Score of 174+6%. These
are average scores in the sense that the validation set was constructed out of samples
taken during various synoptic conditions. An idea of the variances was obtained by
calculating PoD, FAR and ETS for subgroups of samples from the total validation set.
A total of 8 hidden nodes provided this solution (see figure 4), and values of o = 1.0,
p = 0.5 and a = 0.05 were used. The input features were normalized according to
zero mean, 40 variance, and all samples were 7x7 pixels with centre class labelling.

Threshold

=\ X ",,[’
NS ‘( /4>
L
OSKIXRA L 77

v

Range ir

v

Ratio ir

Centre ir

Figure 4. The infrared neural network, showing the 5 input features
(plus a standard bias input), 8 hidden nodes and 2 output classes.

The results for the infrared only network can be compared with the best PoD of
614+24% and FAR of 474+12% for cold frontal cases obtained by Cheng et al. (1993),
and their values of 28421% and 74+11% respectively for cold-air convection, and
50419% and 50+16% respectively for mesoscale convective systems.
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An example of the resulting PoP where echoes were recorded in the Nimrod radar
composite is shown in figure 5 for 20:30UT on 15th May 1997, together with the
Meteosat infrared image and the radar composite. The radar composite was obtained
after processing with the Meteosat threshold classifier, and a large number of spurious
echoes still remain over Ireland, Strathclyde, Grampian region, the Midlands, the
southeast and the Normandy and Brittany coast. The neural network PoP classifier
has assigned PoP values of around 0.02-0.3 over Northern Ireland, Strathclyde and
the Grampian region, 0.02-0.5 over the Midlands, 0.01-0.3 over the southeast and
0.02-0.3 over the Normandy and Brittany coast. However, PoP values of around 0.5
are found for the band of rain over the Firth of Forth, and 0.5-0.7 for the rain off the

Lincolnshire coast.

Rainrate (mmh~?)

PoP

Figure 5. An example of PoP values from the infrared feature neural
network: (a) Meteosat infrared image for the Nimrod area at 5km resolu-
tion, at 20:30UTC on 15th May 1997, (b) the Nimrod radar composite,
and (c) the neural network PoP field where radar echoes were recorded.
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5.2 Visible and infrared features

For the visible and infrared feature network, the 1142 available samples were again
split into a training set from two-thirds of the data, and a validation set from the
remaining third. The same procedure was adopted to search for the best classifier,
and in this case, the best network was found to produce a PoD of 694+10%, a FAR of
414+3%, and an ETS of 334+7%, all superior scores to the infrared only PoP classifier.
A total of 12 hidden nodes were required, together with training parameter values of
o =1.0, p =0.2 and « = 0.01. All other neural network aspects were the same as
for the network using infrared features alone.

(a) Visible grey-level

(c) Rainrate (mmh~!) (d) PoP

Figure 6. An ezample of PoP values from the visible and infrared feature
neural network: (a) Meteosat visible image for the Nimrod area at 5km
resolution, at 10:30UTC on 1st March 1997, (b) Meteosat infrared, (c)
the Nimrod radar composite, and (d) the neural network PoP field where
radar echoes were recorded.

Figure 6 shows an example of visible and infrared PoP values for 10:30UT on 1st
March 1997. Again, the radar composite was obtained after processing with the Me-
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teosat threshold classifier, and a large number of spurious echoes have been retained
over the Welsh Borders and West Midlands, and the Normandy and Brittany coast.
The neural network PoP classifier has assigned PoP values of around 0.02-0.4 over the
Welsh Borders and 0.04-0.4 over the Normandy and Brittany coast, whilst retaining
PoP values of 0.5-1.0 over the large areas of rain to the northwest of Ireland, to most
of Scotland and out in the North Sea east of Aberdeen.

6 Nimrod Case Study Assessment

In the Nimrod anaprop removal scheme, actual PoP values are not used in the cal-
culation of a final probability map. Alpha values are used instead, where in general,

an alpha is defined as:
P(W)

where P(W) is the probability of a pixel being wet and P(D) is the probability of a
pixel being dry. An alpha value can be said to be the “odds” that a pixel is actually
wet and ranges from 0 (definitely no rain) through 1 (the climatological probability
of precipitation) to large values up to 100 (definitely rain). The use of alpha values in
the Nimrod anaprop removal scheme is described by Pamment and Conway (1998).
The neural network PoP product needs to be converted into a field of alphas before
it can be implemented into the current anaprop removal scheme.

The neural network PoP field must be shown to provide a better diagnosis of pre-
cipitating and non-precipitating cloud than the current field (described by Cheng et
al., 1993), if it is to be implemented into the Nimrod anaprop removal scheme. The
current PoP field diagnoses shallow and small-scale convection poorly and this is par-
ticularly evident when only infrared data are available: the neural network classifier
would be of particular value if it can show improvements in such conditions. The clas-
sifier must identify areas of non-precipitating cloud in order that spurious echoes in
radar images can be effectively removed. However, an overriding requirement of the
anaprop removal scheme is that precipitation echoes must not be removed, therefore,
the classifier must also accurately identify areas of precipitation.

The performance of the new classifier was evaluated during two periods, between 28th
May and 8th September 1998, and 28th October and 18th December 1998.

6.1 28th May to 8th September 1998

In this period, the assessment was designed to measure the performance of the neural
network PoP classifier, without surface reports or short period forecasts. The PoP
from the classifier was converted into a field of alphas (neural network alphas) which
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could be directly compared to the Nimrod Meteosat field of alphas (Nimrod alphas)
of the current anaprop removal scheme. In the current scheme, an alpha value of 1 is
the threshold with values below 1 assumed to indicate dry conditions and any echoes
falling in these regions being deleted. Alpha values of 1 or greater are assumed to
indicate a climatological probability of rain or higher and any echoes falling in these
regions are retained. A set of linear transforms were used to convert the neural net-
work PoP into alpha values. These transforms were derived by examining a number
of radar composites and finding a transformation which produced a balance of alpha
values for wet and dry radar pixels in a similar way to the current Nimrod alphas field.
The threshold at which echoes would be deleted or retained was derived by finding
a value which produced a balance of anaprop removal and rain retention similar to
the current Nimrod alphas. The same linear transforms were applied to the neural
network PoP field, regardless of whether infrared only or visible and infrared data
were used. In this period, the transforms used meant that, for the neural network
PoP, the threshold probability below which echoes are removed was 0.143 (i.e. a
neural network PoP of 0.143 is equal to an alpha of 1).

On an hourly basis, the Nimrod and neural network alphas were automatically com-
pared to a Nimrod radar composite and a count made of the number of pixels which
would have been deleted by each of the two fields of alphas. The assessment was
carried out on a daily basis and cases where there were large differences between
the number of pixels deleted by each method were examined. A subjective assess-
ment was made as to the effectiveness of the removal of clutter and anaprop, and the
retention of echoes associated with precipitation, using the criteria shown in table 4.

Over the summer assessment period (28th May - 8th September 1998), 141 cases were
examined and scored, and the results are presented in tables 5 and 6. Note that the
averages referred to in tables 5 and 6 are weighted by the scores in each case - the
ideal values would be 1.00.

The neural network scheme performed better than the Nimrod scheme in terms of
the accuracy of anaprop diagnosis. 97% of the cases examined showed the neural
network scheme to have either diagnosed all cases of anaprop correctly, or retained
only some light anaprop or clutter. This compares favourably with the same figure
for the Nimrod scheme, which was 84%.

In terms of the accuracy of rain diagnosis, the current Nimrod scheme performed
better than the neural network scheme. 77% of the cases examined showed the
Nimrod scheme to have either diagnosed all cases of rain correctly or removed only
an insignificant amount of light rain (e.g. from the edges of rain clouds). The neural
network scheme diagnosed 60% of cases to this level of accuracy, with the remainder
having rain deletion likely to give a misleading analysis and forecast, or deletion of
significant amounts of rain.
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| Score | Description of anaprop assessment scores | Description of rain assessment scores |

q No misdiagnosis of anaprop No misdiagnosis of rain
2 Some light anaprop retained Some light rain removed - e.g. from edges
of rain cloud (insignificant amount)
3 Anaprop retention likely to cause problems for | Deletion of rain likely to give misleading
TV applications, but does not significantly analysis and forecasts
affect precipitation forecast
4 Significant amount of anaprop retained Significant amounts of rain deleted

Table 4: Description of assessment scores.

Scheme 1| 2|3 [4] Average
Nimrod alphas 50 | 6820 |3 1.83
Neural network alphas | 87 | 50 | 4 | 0 1.41

Table 5: Frequency of each score in the anaprop assessment.

| Scheme | 1] 2] 3| 4| Average
Nimrod alphas 84126 .21 |11 1.
Neural network alphas | 53 | 32 | 28 | 28 2.22

Table 6: Frequency of each score in the rain assessment.

The assessment of the schemes over the summer highlighted a known problem of
diagnosis in the current Nimrod alphas. When only infrared data are available, the
Nimrod Meteosat alpha fields often contain large areas which have been set to the
climatological PoP (an alpha of exactly 1). This means that other sources of data
such as synoptic reports and forecast alphas could lower the combined alpha value
below the threshold of 1. The current scheme is therefore rather too sensitive to
information from other sources. It was noted during the assessment that the neural
network scheme produced a more useful alphas field, giving a much higher PoP when
precipitation was actually diagnosed.

Figure 7 illustrates a case where the current Nimrod alphas field shows little skill in
diagnosing precipitation, only setting some of the precipitating cloud to an alpha of
100. The images (c) and (d) in figure 7 show only the alpha values of the Nimrod and
neural network schemes where there are echoes in the radar composite. The neural
network image shows high alpha values which correspond with areas of precipitation
shown on the Nimrod composite image. The Nimrod alphas (in this case, derived from
infrared data only) show alpha values much closer to the threshold, with precipitation
echoes shown in a dark purple colour having an alpha value of 100 (the threshold)
which will be retained, but given a lower threshold from other sources of evidence,
could be deleted.
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Alpha x 100

(e) Rainrate (mmh~?)

Figure 7. A case showing the reduced skill of the Nimrod alphas when using infrared
data only (00:00UT 11 February 1999): (a) Nimrod alphas, (b) neural network
alphas, (c¢) Nimrod alphas where echoes are recorded in the Nimrod Radar Composite,
(d) neural network alphas where echoes are recorded in the Nimrod Radar Composite,

(e) Nimrod Radar Composite.
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To summarise, over the summer assessment period the neural network scheme was
more useful at diagnosing areas of anaprop (i.e. identifying areas clear of rain) but
there were a significant number of cases in which the rain diagnosis was worse than
the Nimrod scheme. In practice, the neural network scheme may not delete many
cases of rain because synop reports of rain will be used as an additional source of
information, but it should perform to a similar standard of rain diagnosis as the
current Nimrod scheme before implementation into the anaprop removal scheme.

6.2 28th October to 18th December 1998

The summer assessment established the potential of the new PoP classifier and some
limitations but did not examine how effectively this information would combine with
other sources of evidence (surface reports and short period forecasts). The aim of the
winter assessment was to examine the performance of the new PoP classifier when
implemented into the Nimrod anaprop removal scheme. This was carried out by
running a full anaprop removal scheme with the new PoP classification implemented
as an alphas field (i.e. replacing the current Nimrod alphas field), and combining it
with the other sources of evidence. The number of pixels removed by each scheme
(Nimrod and neural network) was recorded for each available radar site and cases
of the largest pixel difference examined first. In this assessment, a score was also
recorded for the amount of anaprop retained in the Nimrod “raw” radar images
(before processing in the anaprop scheme).

Over the winter assessment period (28th October - 18th December 1998), 144 cases
were examined, using the same scoring system as that used for the summer assess-
ment. Results are presented in tables 7 and 8. Again, averages refer to averages
weighted by the scores in each case.

| Scheme 1|2]3] 4| Average |
Nimrod “raw” 10119137 | 78| 827
Nimrod alphas 36 |67 (39| 2 2.05
Neural network alphas | 12 | 23 | 52 | 57 3.07

Table 7: Frequency of each score in the anaprop assessment.

Scheme 1 | 2|3 |4 Average |
Nimrod “raw” 144 (0 [ 0 | O 1.00
Nimrod alphas 112 110|113 |9 1.44
Neural network alphas | 142 | 1 | 1 [0 1.02

Table 8: Frequency of each score in the rain assessment.
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The anaprop assessment scores show that the current Nimrod scheme removed more
anaprop and clutter (i.e. the Nimrod scheme had more scores of 1 or 2) than the
neural network scheme in 47% of cases examined. In 76% of cases examined, the
neural network scheme retained a significant amount of anaprop or an amount likely
to cause problems for TV applications. The neural network scheme performed better
than the Nimrod scheme in terms of the amount of rain retained. In the rain assess-
ment, the neural network scheme deleted significant amounts of rain in only 1% of
cases, compared with 15% of cases for the Nimrod scheme.

6.3 Discussion of case study assessments

A direct comparison of the results obtained for 28th October - 18th December 1998
and those obtained for 28th May - 8th September 1998 cannot be made because the
trials were comparing different products. However, some conclusions can be made
about the differences between the performance of the schemes in the two assessments.
In the summer period, both schemes performed well in terms of the amount of anaprop
removed, with the new neural network scheme clearly performing better than the
current Nimrod scheme. This is very different from the winter period, where the
Nimrod and neural network schemes retained significant amounts of anaprop in a
larger number of cases. The neural network scheme, however, performed significantly
worse than the Nimrod scheme in the winter period. The rain assessments indicate
that there has been an improvement in the amount of rain retained by both schemes,
although this may be due to the use of synoptic reports.

Over the summer period, the neural network scheme performance was satisfactory
in terms of anaprop removal, but would be unsuitable for implementation because of
the amount of cases of significant rain deletion. It is because of these cases of rain
deletion that a change was made on the 9th September 1998 to the way in which the
neural network classifier PoP was converted into an alpha value. A new set of linear
transforms was derived to be applied to the infrared only PoP field and a similar set
of transforms maintained for when both the visible and infrared data were used to
produce the neural network PoP. These changes shifted the threshold of rain deletion
to be at a lower neural network PoP so that echoes would be retained at a lower PoP
in the infrared only scheme. The new threshold meant that echoes would be retained
if the infrared only PoP was greater than 0.02. This threshold was very low but it
was found to produce suitable levels of anaprop and clutter deletion whilst retaining
rain echoes, in a number of cases examined in the summer of 1998. The threshold
was derived by finding a value which produced a balance of anaprop removal and rain
retention similar to the current Nimrod alphas. This threshold was very sensitive and
needed to be of an accuracy of two significant figures because changes of the order of
0.1 had a significant impact on the amount of pixels retained and removed.

Over the winter period, the results for the neural network scheme indicate that it
would be unsuitable for implementation because of the poorer removal of anaprop
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compared to the current scheme. One factor which is likely to have had a significant
impact on the results over the winter period is the change in land and sea surface
temperature. This might be causing a problem of contrast in the satellite imagery,
with cold surface temperatures being misinterpreted as low cloud and hence resulting
in relatively high estimates of PoP. Figure 8 illustrates the alpha fields for the Nimrod
and neural network schemes and the radar composite and Neural Network PoP for a
case on 21 January 1999.

Alpha x 100

(c) Rainrate (mmh~1) (d) - = PoP

Figure 8. A case study of 04:00UT 21 January 1999 showing higher
PoP over the UK land mass in the neural network scheme: (a) Nimrod
alphas, (b) neural network alphas, (¢) Nimrod Rainrate Composite, (d)
neural network PoP field.

The neural network alphas show a higher PoP over the UK land mass compared with
most of the surrounding sea areas. The Nimrod alphas are actually showing clear
areas over the UK where the neural network alphas do not drop below an alpha of
1. The current Nimrod alphas scheme actually takes the surface temperature into
account when calculating the PoP and it is likely that this must also be included in
the new neural network PoP scheme for the classifier to perform effectively.
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It is likely that the change to the way in which the PoP is converted into alphas
has also had an impact on the amount of anaprop removal in the winter period.
The deletion of too much rain over the summer period meant that a change was
necessary to reduce the rain deletion, which may have resulted in a slight reduction
in the amount of anaprop removed. It is very difficult to determine the exact impact
that this change has had on the assessment results. The threshold at a PoP of 0.02
did produce suitable results in the summer cases examined but given the change in
surface temperature in winter, this threshold change became significant because all
PoP values were slightly raised. This meant that over the winter period, there were
fewer cases when the neural network PoP actually dropped below 0.02.

(a) Rainrate (mmh~1) (b) Alpha x 100

(c) Temperature (°C) (d) : Grey-level

Figure 9. [llustration of a case where significant amounts of rain were
deleted at the edge of very cold cloud by the neural network scheme at
10:00UT 15th January 1999: (a) Nimrod Raw Radar image at Druima
Starraig, (b) neural network alphas, (c¢) Meteosat infrared brightness tem-
perature, (d) Meteosat visible reflectivity.

It is also possible that the threshold of 0.02 set during the summer was based too
strictly on the criteria that there should be no rain deletion. In practice this is very
difficult to achieve and some cases of rain deletion should perhaps have been accepted
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if it meant that more anaprop echoes could be removed. However, the success of the
neural network scheme would then have been dependent on the value of other sources
of data, i.e. if rain was not diagnosed by the neural network alphas, it would need to
have been identified from another observational source.

During the assessment periods a further problem with the classifier was noted. Some
cases were examined where the neural network PoP classifier had diagnosed regions
of moderate to heavy rainfall as being of a very low PoP (i.e. diagnosed as clear
in the neural network alphas). This problem was found to be infrequent but could
result in serious rain deletion. Over the winter assessment period, this problem did
not result in significant rain deletion because other sources of evidence gave high
alpha values for the areas of precipitation. The cases of very low neural network
PoP in areas of real precipitation appeared to occur when the infrared temperature
of the cloud varied significantly over a short distance, for example, at the edge of
extremely cold cloud. Figure 9 shows a case where significant amounts of rain were
deleted at the edge of very cold cloud. This is unlikely to have arisen from timing
errors (the Meteosat data are taken from the 10 minute B-format scans rather than
the 25 minute full earth disk), and is more likely to be related to the way the network
has learned to assign low PoP near cloud edges. In cases of extreme gradients, the
network appears to assign very low PoP, which may not alway be true.

7 Conclusions and Recommendations

A Meteosat probability of precipitation classifier in the form of a neural network has
been developed for use in the Nimrod anaprop removal scheme. The classifier can
be run in one of two modes: when visible and infrared data are available or when
infrared data alone are available. Trialling was performed using the classifier without
other sources of evidence during summer 1998, and combined with other sources of
evidence during winter 1998.

During the summer period, assessment of 141 cases indicated that the neural network
classifier has the potential to provide an effective input into the Nimrod anaprop
removal scheme, particularly in diagnosing shallow convection when only infrared
imagery is available. Correct diagnosis of rain was not, however, as good as the
current Nimrod scheme. As a result the method by which the PoP field was converted
to an equivalent alpha value was amended.

Over the winter period, the neural network scheme showed a worse diagnosis of
anaprop than the current Nimrod scheme. The main problem in diagnosing anaprop
appeared to be related to surface temperature, where cold surface temperatures in
cloud free conditions were assigned a relatively high PoP. This was likely to have
been more apparent because of the reduced PoP threshold used in the winter period
which became less suitable with the change in surface temperature. Another problem
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was evident in both the summer and winter periods, related to a poor diagnosis of
PoP where extreme gradients were observed in the satellite imagery. On the basis of
the assessment results, the neural network PoP classifier is not currently suitable for
operational implementation within Nimrod.

Perhaps the most effective method for removing spurious echoes would be to convert
the British Isles radar network to Doppler systems, in which the velocities associated
with a radar echo could be used to imply whether the echo is from a moving rain
system, or spurious. However, there are no current plans to upgrade the radar network
for at least 5 to 10 years.

The neural network scheme showed early promise, particularly for improving PoP
diagnosis based on infrared data only. Although a number of problems emerged dur-
ing the trial period, it became apparent that nearly all of these could be remedied.
Given that few alternatives exist to improve the analysis of spurious echoes from in-
dependent data, and that the neural network technique can be refined with the use of
surface temperature, snow cover and a surface climatological albedo field (all used in
the current scheme), it is recommended that an improved neural network PoP classi-
fier is developed, and trialled next winter. In addition, the current threshold used for
infrared data only should be reviewed, and the effect of extremes of visible reflectivity
and infrared brightness temperature (and their gradients) should be examined.
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