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The spectral methed of integrating the meteorological equations and

[seTiite! comparisfona with the finite difference method

B J Hoskins* (Vacation coasultant, Met O 11)

1a Introduc{ioﬁ

ln recent years, an alternative to the usual finite difference method for
integrating the meteorological equations has been developed. In this paper, a
description of the spectral method is given (sections 2 and 3). This is followed
by a summary of some detailed comparisons of integrations using the two methods for
a simple baroclinic instability problem (section 4). Possible forecast models are
then compared for timing and storage requirements and other advantages and dis-

advantages.




2 The Method

The spectral method used in baroclinic models is perhaps best illustrated by

its application to the barotropic vorticity equation on the sphere:
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where > = longitude
/i-\ = sip (latitude)
O. = radius of earth
(L = ux cos(latitude) = - % (1 -/A )é—*— (2)
V = v x cos(latitude) = -g;-—g\-t f‘ (3)
absolute vorticity S - Z-QIA +v f) (&)

In the spectral method a function such as S is represented, not by its value at
a finite grid of points, but by the coefficients of a finite set of basis functions.
In a periodic box, the convenient functions are products of Fourier series. On

the surface of a sphere, again it is convenient to use the eigen functions of the

™
Laplacian operator ie the spherical harmonics \{h (r'\). These satisfy
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They are products of Fourier series in the EW with Legendre functions in the NS:
e
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The index m is, thus a zonal wave number, n is a total wavenumber, Q/E\(k*‘w'l 2
being the length scale of the harmonic.

For some purposes, n - fmf{+1 may be considered a latitudinal wavenumber. The

spherical harmonics are defined only for n;lml, and Y-:\ is t;he complex conjugate
of Y: . Thus a real function is represented
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and only the complex numbers ?; p
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where 3“ is the complex conjugate of S
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fox m2.0 need be stored to define g .

In contrast with the variety of choices of finite difference grids and operators,
there is really only one choice to be made in a spectral model. This is the choice

of truncation. The two truncations commonly used are called rhomboidal and

triangular (Fig 1).
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In rhomboidal truncation the same number of latitudinal modes is retained for each
zonal wavenumber. In triangular truncation only scales greater than a certain

value are retained. For a variety of reasons the author prefers the latter truncation.
With this truncation the spectral metbod treats every point and every direction on

the sphere in the same manner. Programs may be written so that it is a minor job

to change from one truncation to the other.

It should be noted that the spherical harmonics are either even or odd about the
equator, and if an integration is to be performed on one hemisphere only, then half
the coefficients are identically zero and, for efficiency, need not be stored.

The spectral method was pioneered by Silberman (1954) and Baer and Platzman
(1961). They used Eg. 1 to determine the interaction coefficients which described
the interaction of two spherical harmonic components to produce a third. Though =
suggestive theoretically, this method was not suitable for the forecast problem.

For anything but a severe truncation the calculatidn soon became unwieldy and long.

Furthermore there was little possibility of the inclusion of local physical processes.



The introduction of the spectral-transform method (Orszag 1970; Eiiassen et

al 1970) has now removed both these obctacles to the extent that a spectral method
is a serious competition with the usual finite difference methods. Subetituiing
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the series for g in the left hand side of Eq. 1, multiplying by ( Y “ ) and

integrating over the sphere gives
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using integration by parts. The spectral coefficients of ~§ directly (from Eq, 4)
inply those of the streamfunction QP . From Egqs. 2 and 3, these determine the
spectral coefficients of U and V. The integrands (A) and (B) may be shown to be

complex exponentials in >\ with wavenumber between ~3M and +3M. The zonal inte-

ration may therefore be performed exactly at every latitude by summation of values
. P Y

at at least 3M +71 equally spaced zonsl points. It may also be shown that the
integrand for the N§ in tegration is then a polynomial in /M of maximuin Cegree

2M + 3J (rhomboidal) or 3M (triangular). Hence this integration may be evaluated

2M + 3J + 1 M+ 1
2)J or 2 2

exactly by Gaussian integration using at least specially
chosen latitudes.

Thus, to perform the integration, the sphere is covered with a grid composed
2M + gJ et M

lines of latitude. The latter must be at "Gaussian'" latitudes which are very nearly
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of at least 3M + 1 equal spaced lines of longitude and :
equally spaced. Grid pocint values of U, V and g are obtained from their spectral

representations. The products US ) V§ are obtained by grid point multiplications
and the integration performed by taking Fourier sums in the EW direction, multiplying

by Gaussian weights and taking sums in the NS direction. It may be shown that {his

method is exact for the retaincd modes.

The basis of thie method is to perform linear operations, piarticularly

derivatives in spectral space, but to move to physical space to perferm products.




The physical space is chosen so that on moving back to spectral space the retained

wodes describing the product are exact. The method is aided by two factors. The
transformation in the zonal direction from spectral to grid and the zonal part of the
integration may be performed using the extremely fast Fourier transform routines
available. These are most efficient if the number of lines of longitude is a power of 2 and
little worse if it is a power of 2 times a power of ?. The second factor is that the tendency of
each spectral coefficient from one iine of latitude may be computed and ardded to the accumulated
values before moving on to the next latitude. Thus the grid point values at only
cne latitude are required at any timee.

Apart from severe truncations, this transform method is quicker than the
interaction coefficient method. It also allows the possibility of putting in Jeocal

"vhysics'" when at the grid-point stage.
8 v 8

%. The primitive equations

When proceeding to the application of the spectral method to the full primitive
egquaticns, the question arises of what vertical representation to use. Machenauer
and Deley (1972) formulated a model using a spectral method for all three dimensions.
However-this work has enc6untered many problems associated with the upward propo-
gation of waves and their amplification and representation at the top of their
atmosphere. It is not at all clear that conventional layered models correctly treat
the ton of the atmosphere and much study will probably be performed cn this problem.
in the next few years. It appears that in the next decade the spectral method will
be efficiently applied only in the horizontal and that levels will be used in the
vertical, though with some modification in upper levels. In what follows it will be
assuned that  coordinates and a finite difference scheme are used in the vertical.

Since only true scalers may be represented by a series of spherical harmonics, .

it ie convenient to vse the primitive equations in their vorticity and divergence A

form. This alsc facilitates the application of the semi-implicit time scheme (see



below) and in any diagnostic study is conceptually helpful. The dry equations may

then be written:
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and QU’ QV' QT are the sources and sinks in the U, V and T eguations. A water
vapour equation may be added and latent heat release added for QT.

The integration procedure is much as described for the barotropic vorticity
equation. It is described in detail in Bourke (1974) and Hoskins and Simmons (1975)*.
The same horizontal grid as described previously is used. This grid is insufficient
fo ‘determine exactly the implied triple product in the vertical advection but
various studies have shown the implied errors to be small. This should bectested
again in fhe presence ofsteep topougraphy.

In HS it is shown 'how the above equations may be integrated using a semi-

- implicit scheme in which the short external gravity wave modes are slowed so that a

large timestep may be used. This demands only slightly more computation. Thus

* Hereafter denoted by HS



the whole computation time may be reduced by a factor of at least 6 compared with
an explicit scheme for a negligible loss in accuracy (see HS). This is in contrast
with finite difference models in which either the computation is much increased so
that only a factor of 22 is realised (Gauntlett and Leslie, 197%4), or second order

accuracy is sacrificed by the use of a splitting method (Burridge, 1975).

4, Some ccmparisons with finite difference ihtegrntions

When trying t; compare integration methods for the meteorological eguations,
the major problem to overcome is that no exact soluticns of the nonlinear equations
are kncwn. One could compare (eg by RMS error of 50Cmb height field) full forecast
medels, but this allows the damaging effects of initialisation and analysis errors,
and physics more suited to one model. A different approach used by the UK
Universities Group (Simmons and Hoskins 1975, hereafter referred tn as SH) is to
take a simple situation and models with no "physics". By using increasing resolution
with two different integration methods one obtains a good idea of the correct
answer and thus of the errors in the various resolutions. In SH comparisons were
made using as initial conditions a baroclinically unstable zonal jet plus a very
small perturbation in zonal wavenumber 8. Four spectral models using triangular
truncation at wavenumbers 21 and 42, and rhomboidal truncation at wavenumbers (16,15)
and {(%2,3%1), and two second order finite difference models with grids of 5° > 30
and 2%0 % 1%0 were ccmpared. In all the models a wavenumber 8 barcclinic wave grew,
producing its warm and cold fronts. In SH a detailed synoptic comparison was made.
Further, a spherical harmonic analysis of the finite difference results was made and
the behaviour of individual wave compenents studied. These comparisons are all
described'in some detail in SH. To highlight one of the advantages of the spectral
method, inclusion is made here of one figure from SH (fig. 1). This shows that the
phase differences between spectral models is small whilst that between finite
difference models can be large, there being iddications of ﬁonvergqnce towards the

spectral. phase value.



There can never be an exact equivalence made between two resclutions of the

spectral and finite difference methdd because their inherent errors are different.
However, from this work we may tentatively state that T2 (trisngular truncation
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M = 42) is equivalent to second order finite difference on a 234 x 13 grid, in
that the medium and large scale are better treated in the spectral model, and the

snallest scale better treated in the finite cdifference model.

5. Comparison of possible forecast models.

Inorder to attempt a comparison of the requirements, capabilities and drawbacks of
spectral and finite difference methods for apossible forecast model a second-order finite
difference model ona 1° latitude-longitude hemispheric grid with 10 layersin the vez"tlcal

is considered*. Based on-the comparison in the previous section, we may postulate thatan

"equivalent' resolution spectral model is somewhere in the region T63 or T84, the latter very

likely being superior in most respects. Experiments with the T€3 resolution do
indeed show that it is capable of producing realistic baroclinic waves with sirong
fronts. Thie resolution uses a transform grid of 48 latitudes and 192 longitudes,
equivalent approximately to a 4.9° grid. The T84 resclution requireé 64 latitudes
and 256 longitudes, approximately a 1.4° grid. Figures for this resolution will be
given in brackets.

Total storage figures may often be misleading in that not all the arrays will
have to be in core at any instant. This is particularly truc for a finite difference
model, ‘but is also true for a spectral model. However, consideration must be made
of the total storage requirement and of the necessary shuffling in aand out cf core.
Tor the finite difference médel. estimate may be made from the need for 10 arrays

Orae por the

each 6f 8 % 90 x 360. This suggests a requirement of at least 2,800K
spectral mcdels the estimates from 16 arrays of 10 x 632./2 (10 x 842/2) are 400 k
(800 k) words.

* Storage and computation time for both models are approximately proportionsl to °
the number of layers and should be doubled for the whole sphere.



For the adiabatic part (dynamics) of the model, timings will be given based on
the experience of the UK Universities Atmospheric Modelling Group running programs
on a CDC7600. The spectral models and the smoothing in the finite difference
models use a machine code fast Fourier transform. Otherwise the models are program-
med in Fortran. As shown in the Appendix, T63 (T84) would require 18 (56) minutes
for a forecast day, using a semi-implicit time scheme. An explicit time scheme {°
finite difference model would require 296 minutes per day. Making large allcwances
for a semi~-implicit scheme and/or a déifferent mesh might reduce this time tc nearer
the T84 value. However the specitral method clearly has a huge speed advantage.

This is also true for the diabatic part of the calculation. The timing for
this is proportional to the number of grid points which is a factor of 3.5 (2.0)
smaller for the spectral models.

As mentioned previously, the polar point for a triangularly truncated spectral

wodel is he same as cvery other point. The polar prohlem which has been

s0 prominent in the f{inite difference literature i

+

s thus ncaexistant. This nay be
graphically demon&trated by solving the barotropic vorticity equation for both a
super-rotation and a Rossby-Haurwitz wave when the axis of the coordinate system is
at right angles with the rotation axis. After 5 days the super-rotation is exact to
within round-off error, O (10-11) - gee Fig 2a. In 11} days, due to the time scheme,
there is a phase error of %0 in the Rossby-Haurwitz wave integration - see_Fig 2b.
Other problems aecscciated with representation on the sphere (eg different phase
error at different latitudes) are also absent when the spectral method is used.

One problem that might be thought tc occur with the spectral method is the
represenfation of a strong local phenomenon by global functions. To examine this,
e five layer, Th2 primitive equation model wae initialised with a baroclinically
unetabie zonal flow plus a very small local perturbation. By day 7 (see Fig 3) two
depressions were growing, and by day 11 these had become very strong mature systems
end other waves had been initiated. Here we comment only on the undisturbed nature

of the fiow on the opposite side of the hemigphere. The non-local nature of the



functions is clearly not a problem here.

The major drawback at the moment with the spectral method is that there islittle
experience in the inclusion of physical processes in these models. Now that the transfora
method is used there appears to be no reason why the physics ghould not be included in the
grid-point domain just as for a finite difference model. Indeed this has bheen done in
Canada(Daley)andAustralia(Bourke)withru>obviousproblem§. vYhen representing the
earth's topography with spherical harmonics, there will be spurioushills inoceanic regions.
Depending on the smoothness of the topography to berepresented and the truncationused,

these hills should be only of the order of tens of meters high, and thusof little problem.
““The non~local nature of
{the representation again arises here in that, for instance,intense very local rain-

' fall may have effect elsewhere. However, since all the grid point fields are derived
from the spectral series, fields will tend to have less features on the
smallest scale than in s finite difference model, and thus irigger less physics on
the smallest scale. Lxperience in these possible problem areas should be gained in
the next few years.

The spectral-transform method is clearly logically more complice‘ted than a
simple finite difference method. Thus a progrem for a spectral model tends {c be
rather more difficult to write and to modify. However, mohe.t finite difference models
include many different kinds of averaging, so that the diffcrence between the twe in
practice is not large.

Spectral ana.lysis of model output and error can be moest revealing of the
behaviour of the atmosphere and its poor or good representation in the wodel. If

one uses a spectral model, this information is routinely available. If one uses a

finite difference model, it can easily be obtained. However, it will usually be

e
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Some were. machine oriented, buil tentative comments are now given. Experience

- obtained only in special situations at best.

has suggested that oC bit word length is necessary in a spectral model if, for

instance, surface pressure is tc remain constant within tolerable bounds in a

2



general circulation run. The new generation of computers will be faster cnly if the
relevant variables are in main core and this core is likely to be liitle larger

than on the present machines. Thus the smailer total storage and less shuffling

in and out of core for the spectral method may be important. Efficient implcmen=-
tation of the spectral method will require the development of really fast Fourier
transform routines for the new generation of computers. The Distributed Array
Processor concept sounds tailor made for a finite difference model, and for such a
machine the computation time superiority of the spectral method may be eroded.

Finally, we note that for some purposes the spectral-transform method may be

considered little different from the finite difference methods presently used on
latitude~longitude grids. These calculate zonal derivatives by consideration of the
functional value at three zonal points (second order), five zonal points (fourthorder)
or all zonal points (pseudo-spectral), The spectral method was the functional value at all
points. The finite difference models do a Fourier smecothi
of a certain latitude. Spectral models do a full spectral analysic and smoothing based on total
wavelength. These improvements in derivative and smoothing techniques explain the need for

a grid of less resolution in the spectral transform method.

6. Conciusiqa

The spectral method must now be a stirong competitor with the finite difference
methed for integrating the metocorlogicel equations. The main sdvantages of the-two
methods described in the previous section are summarised in Table 1. The estimated
comparative ccmputation times, in particular, suggest that the spectral method could

well prove superior within the next decsde.
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Table 1 Advantages of the two methods Spectral figures given for T63 (7184) and

finite difference for a second order scheme on a 1° latitude-longitude grid, hoth
10 layers on the hemisphere.

Sgectral Finite difference

Representation of medium and large-scale. ~ ~ y/"

Representation of smallest scale - "/’ 14
Storége (words) . Look (&00k) 2,800k

Timing of adiabatic calculation {CP minutes per = ™

day forecast) when using a semi-implicit time 18 (56) 296 f

scheme for the spectral method and an explicit
time scheme for the finite difference method

Timing of diabatic calculation, taking f1n1te 3:(.5) 1
‘difference time as 1. ~ £

Pole problem and representation of the sphere s ;)/( - -

Experience in inclusion of physics 4 ol ";;//, )
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AFFENDIX Derivation of tining estimates.

1.

ro
.

3.

-Basic fact: T63 on § hemisphere, 5 layers takes 55 secs/day

Requirement: TG3 on hemisphere, 10 layers
Estimated factors: 10 2 = 18 min/day
Comments: A factor 10 is probably an over ectimate, though 8 would be an
underestimate.
Basic fact: T42 on hemisphere, 5 layers takes 1L0 sec;/day
Requirement: T84 on bemisphere, 10 layers
Estimated factors: 6/tstep, 2 for tstep 2 =P 56 min/day :
Comments: A doubling of resolution implies more than 4 times the computation
per timestep.
Basic fact: 5.6° x 3° on hemisphere, 5 layers takes 94 secs/day
Requirement: 1° x 1° on hemisphere, 10 layers , .

Estimated factors: 5.6 x 3/tstep, 5.6 for tstep 2296 min/day.
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Figure Legends

Fig 1. The variation with height of the longitude of the maximum of the dominent
- - ? . . 5 - . -~
vorticity component (?;“) at days &4 and 6 for two spectral and two finite differesnce

integrations.

Fig 2. Integrations of the barotropic vorticity equation with the pole of the
coordinate system on the equator of the rotating sphere. The maps are stereo-
graphic projections based on the pole of the coordinate system (one hemisphere
only). The rotaticnal north and south poles are marked.
(a) Initialised with a superrotation -~ an exact solution
(b) Initialised with a Rossby-Haurwitz wave. At day 11.25 the whole
pattern should have moved 7 of the way round the sphere to the west relative
. to the rotation axis, and the picture should appear identical with that

at day O.

-

Fig 3. Polar stereographic maps of the northern hemisphere for a 5§ layer,
Triangular 42 primitive equation integration starting with a baroclinically unstable
zonal flow and a very small local perturbation. Intense local eddies develop. The

ability of the spectral model to handle local disturbances on this scale is apparent.

Pressure contours are drawn every 4mb.
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