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The purpose of this paper is to review briefly the position regarding the
: fundamental basis on which air pollution levels may be estimated from meteoroclogical

data, and also to bring out the uncertainties which appear to be unavoidable in

practice.

1. The fundamental basis

The background of theoretical study in atmospheric dispersion of airborne
material is now well-documented, Table 1 lists the main frameworks and certain of
i g : ' R
the relations involved. This is taken from a recent review which gives further
details and discussions of the conceptual problems. IReatures which have been more
or less established and important questions which remain to be clarified are as

follows (fuller discussions of many of these will also be found elsewhere(z).)

3 In circumstances of quasi-stsady, quasi-homogeneous turbulence the turbulent

spread of inert passive material has been foind +o ha related tn the oheerva
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intensity and scale of turbulence essentially in accordance with the statistical
theory. The magnitude of the scale of turbulence is irrelevant close to a2 continuous
point source But becomes increasingly important on the ratio of time of travel to
* Lagrangian time-scale increases. Allowance for this feature requires a working
relation between Zulerian and Lagrangian features, ani one such relation with some

theoretical backing and 2 rough support from observations is now available.

(2) The dispersion relation'which follows on these lines hzs been most
ciearly demonstrated in the lateral spread from 2 point source and
the vertical spread from a source well away from the ground, over

distances within about & kilometre downwind.

(b) The relation is guestionable a2t longer distances, firstly in the
respect that the observations have not included sufficient inform-
ation on the crosswind scale of turbulence and secondly in the

- respect that further complication then arises from the systenatic

burning of the wind with height,




(c)

The ultimate importance of the crosswind spread by the interaction
of vertical mixing and turning of wind direction is strongly supp-
orted theoretically, but observational demonstration of this

mechanism in the -atmosphere is incomplete., On present evidence it
appears unlikely to be of important consequence within a few kilo-

metres of the source.

There are three major aspects of vertical diffusion to be noted.

(a)

(e)

()

Regarding the use of the gradient-transfer hypothesis (for a source

which is effectively at ground-level) an essential requirement is

the explicit representation of the eddy diffusivity in terms of

measurgable properties of the flow. In the surface-stress layer the
assumption of identity with the eddy viscosity expressed in terms of
the wind profile has been given convincing support from diffusion
observations in neutral conditions. ZExtension to a moderate degree
of unstable and stable stratifications is still somewhat questionable
but probably sufficiently realistic for meny purposes. However in
most respects the approach does not lead to any better representation
of the effects of surface roughness and stratification than the

simpler semi-empirical approach provided by similarity theory.

For vertical diffusion extending above the surface-stress laver

neither the momentum transfer analogy nor similarity theory at
present offer a useful starting point. The most promising approach
is now provided by the statistical theory arguments which, largely
irrespective of stratification, prescribe an effective K profile
in terms of the observable intehsities and scales of turbulence{
The greatest hindrance to progress on these lines is the need for

turbulence measurements of a very sophisticated nature.

For dilffusion over apprecisble depths of the atmosphere, apart from

the indication that rapid vertical transport is usually effectively
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halted by an overhead stable layer, there is no well-develoved theory

or description of the detailed effect of the convective and large-scale

el IS AT

vertical motions of the atmosphere,

For horizontal spread (and also vertical spread in regions clear of the ground

>,

or stable layers) the shape of the distribution of material from a maintained source

is on average a close apvroximation to Gaussian form. However, individual cases
display considerable irregularities and distortion from this simple f'orm, There are
indications that the vertical distribution from a ground-level source is systematically
different from Gaussian, Furthermore, no useful details have yet been provided for the

distribution developed within an expanding puff or plume,

The earlier treatment of the elevated source on the assumption of o& 94 o;
constant with distance no longer appears to provide a satisfactory explanation of the
results of surveys near power stations(1). A useful fitting of such data 'has recently
been offered by1ﬁoore(7)on the basis of c& and o5 growths respectively proportiocnal
to « and x2 , There is some independent evidence for this sort of difference in
the two components of spread by atmospheric turbulence but the fundamental positicn is

not yet entirely clear, especially in regard to light wind convective conditions.

The airflow parameters utilised in disversion calculations

Table 2 lists the special properties of the airflow additional to %he obviously

cu

relevant wind speed and direction, which are required in applying the theories of
dispersion. These are all femiliar in the subject of boundary layer meteorology.
Certain of them deserve further comment here because of their over-riding
importance in the estimation of vertical spread , which in turn is specially signif-

icant in considerations of area sources of pollution.

(i) The intensity and scale of the vertical component of turbulence

Prominent features, some of which are discussed in more detail
elsevhere ¥ » are as follows. On the basis of the observational
date available it seems that at present only the broadest
generalisations about A o 8nd 1, would be justified.

Probably the most that cen safely be stated is :

(a) in neutral flow Am /2% is between 2 and 4 and effectively

constant with height in the first 20m or so,
o

(b) in neutral flow 1, /z is uncertain in thne rangs & to 2

A

over this heigbt range,




(c) the effect of thermal stratification is to increase or
decrease the scales in unstable or stable conditicns,
and in effeect to increase or decrease the heignt range
with effectively linear increase. However, the precise
magnitudes of the effects on scale,and the heights of
occurrence of maxima in the scales,are still quite

uncertain.

For the magnitude of the vertical component a large number of independent observa-
tions give values of o, 7 u, in neutral conditions in the range 1.2 to 1.4 and

suggest an overall mean value of 1.3 , in or near the surface-stress layer.

In thermally stratified conditions o / u, increases or decreases from the
neutral value respectively according as the stratification is unstable or stable.
The variation is most logically expressed in terms of z/L and for large -z/L i.e.
: > A (L) .
in markedly convective conditions recent work‘"/ has demonstrated the approach to the
relation

= o

o s Al ; )3 (zH(Z))3
W ot i
r cp T

for heights up to 1km, with A1 approximately unity, and H(z) being the local

value.

(ii) The vertical eddy diffusivity

The form listed at (b) in Table 1 has been used to evaluate profiles of K
throughout the depth of the béundary layer and these have been used in numerical
solutions of the two-dimensional equation of diffusion to give o asa functioq of’
distance up to 10Ckm for a ground-level source., Full details of this work, by
F.B.Smith and S,A.llatthews, are as yet unpublished but a preview of some of the
(1)

final results has been ziven elsewhere These results for o are being
2

()
incorporated by F.B.S8mith in a revised form of the Meteorclogical Office system,&”

originally formulated dn 1%61, for estimating diffusion.
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(iii) Mixing depth

The concept of the 'mixing depth' has long been familiar in the context of air
pollution meteorology. The essential feature is the severe reduction or complete
suppression of verticel mixing by overhead layers of the atmosphere in which very
stable stratification has been produced, usually either by large-scale subsidence or
the gradual over-riding of relative warm air. Such stable layers have bases which
may be as much as two or three kilometres in height but occasionally much lower. It
becomes obvious, on considering the typical sequence of diurnal cooling and heating,
that stable layers with a high base are likely to be effective only over limited
periods of the day, according to the vigour of the convective mixing generated
during the heating period. Thus, in general the height of a well-marked overhead
inversion méy be regardea as defining a potential mixing depth, but the'mixing depth
actually prevailing will typically start from the very smzll magnitude established
during the night and build-up toward the potential value more or less rapidly éuring
the morning and early afternoon. Simple models of this development are now
available(6), and the idea of the developing mixing layer is being incorporated in the

revised system referred to in the preceding paragraph,

Accuracy and limitations.

The accuracy achievable in calculating air pollution levels from meteorological
data depends partly on the extent to which the properties of the airflow coni'orm to
the idealised form assumed in the theoretical treatments, and partly on.the type of
meteorological data available, An indication of the range of accuracies is provided
in Table 3, which is accompanied by explanatory notes. In some of these examples the
assessment is indirect, being based on the accufaqy of estimating the lateral an@
vertical spreads and effective heipght of source, whereas in others the assessment is
based on the concentration itself, The estimates are not claimed to be exact limits
- they are partly speculetive and subjective and ave to be regarded only as a
-general guide, They should however be adequate to eliminate or prevent any gross

misconceptions on the part of users of dispersion Tormulae.
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In cases 1-4 of Table 3 uncertainties in the source strengths have bee:

assumed negligible compared with those arising in the estimation of dispersion and

of effective height of source. However, the assessment in case 5 does include the
uncertainties which must arise in practice in specifying a multi-source inventory

of emissions. Case 6 is an example of the approach in which for practical reasons
estimates of the emission inventory and direct application of the detailed dispersion
formulae are not attempted. Instead, the past history of the levels of pollution as
actually observed is used in deriving more-or-less detailed regressions between
current levels of pollutioﬁ and meteorological factors. In effect the history of the

air pollution levels is being used to represent the emission inventory.

The broad implication of the examples considered in Table 3 is that an accuracy
as good as =10 per cent in the estimate of pollution concentration may be envisaged
only for certein special ensemble averages in the most ideal combination of circum-
stances, with complete information on source strength and air flow properties. 4n
accuracy of 10-20 per cent may be achievable for certain long-term averages in
practical circumstances, though still excluding cases of stagnant or confined airflow.
For short tehn estimates at individual sites however, the uncertzinties may at best be
several tens of per cent (foot mean square), and factors of two or more on particular

occasions.
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(i)

(iii)

(iv)

llarked topographical effects excluded.
Except stagnant conditions of airflow.

Based on comparison between early Porton data and recently recommended

(1)

formulae,

Based largely on comparison between crosswingd spread measurements and
estimates from wind direction fluctuation(a) and of limited experience on
vertical spread(9). An ensemble-average uncertainty is not attempted here
because of certain unresolved anomalies in the data on concentration
distribution at the longer ranges(1). The formulee referred to in (i)
tend to give concentrations progressively too high with increasing
distence., The r.m.s. uncertainty quoted hers represents only the scatier
which would exist in estimates even if these were correct in ensemble

average.

From treatment of elevated source, 2%1 is determined essentd ally by
1/H05(-xm9 . The figures given for % = are based on Bowne and Islitzer's
sample of observations of x '(5) and those for ,( on the ?; figures

used in (ii), H being assumed accurately known.

As in (iii)but now assuming, on the basis of the practical experience with
plume-rise formulae(1o) that H is specifiable as an ensemble average at
best within 10 percent, but that individually short-term means may have
r.,m.s, devictions from the ensemble average of' 20 percent., Also assuming
that % s given by teki ingd2 = II/’o;(a;m) < /3 “and that ooe x,

It then appears that the uncertainty is essentially in resvect of x s

e 7)
being increased only merginally from this in respect of ?L ek Moore's (7)



(v)

(vi)

recent 'optimised' fitting of the observational data collected for the

Tilbury and Northfleet power stations gives uncertainties broadly consistent
with the present estimates for X9 but considerably less for ensemble
average values of 2:m and somewhat greater for r.m.s. deviations of

individual values of xxn &

The long-term maximum effect from a power station will be determined by the
crosswind integral of the distribution of concentration (hence by 1/H) aznd
by the frequency of occurrence of wind direction from the stack. Assuming
the latter is well-known the uncertainty is simply that in H ;

If the mixing layer 'h' is well-mixed vertically, as assumed, the peak
time-mean concentration at sufficiently long distance will be determined
by 1/h‘o; . If the megnitude of 'h' is known only within say < 50 % ,
the likely uncertainty of a factor of 2 in o& at say 100xm (based on
limited experience of relating q} to wind direction turning with height)

will be the dominant contribution.
: . o i o (11)
Based on the experience of the Reading, Ingland study by British Petroleum .

From preliminary evaluations of the model proposed for forecasting daily

levels of 302 in a city.(12)



