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Abstract

Two dimensional numorical integrations of the Navier Stokes equations for flow
of an Lkmon layex over.a ridge on a range of length scales corresponding to large
Rossby numbers are presented. The results are compared, wheré eppropriate, with
numerical solutiona of the triple deck equations of boundary layer flow., For steady
flow egreement is gocd and, as predicted by triple deck theory, the net change in
Yotal force on the domain is swall for homogeneous flow. An increase in force arises

either through gravity wave radiation, when'triple deck predictions agree well, or

when the ridge is sufficiently steep to give eddy shedding.
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3% Introduction

Topography with horizontal length scales of the order of a few kilometres is
often sufficiently steép to induce flow separation in the atmosphere. Such flows
might well be expected to produce significant changes in the total momentum exchange
between the atmosphere and the surface, but there has been little work on the
topic; There have been a number of recent papers concerned with turbulent boundary
layer flow over topography. Jackson and Hunt (1975) present a linear theory of

turbulent flow over a small hill. Although this theory is limited to small

N

perturbations, it is useful in interpreting numerical results such as those of

Taylor (1977). Taylor's numerical work is mainly based on a transport equation for
the turbulent kinetic energy, which together with a prescribed length scale gives
an eddy viscosity. Any numerical model of a turbulent boundary layer is necessarily
empirical, and the results are generally inaccurate in the case of strong
perturbations such as separation bubbles. Fof.this reason, Taylor has restricted
most of his modelling to relatively shallow topography. An understanding of the
corresponding laminar flow over a ridge would be very valuable in interpreting the
turbulence model results; since it clarifies the distinction between basic
dynamical processes and features due to the particular turbulence model utilis;d.
Thus, as a preliminary step towards understanding atmospheric boundary layer
separation over topography, we shall investigate the response of a laminar Ekman
laqer.

A recent development which has opened up research into boundary layer dynamics
is the triple deck theory of Stewartson (1969), Messiter (19?0), see Stewartson
(1974) for a review. This theory incorporatés an interaction between the boundary

layer and the free stream, and permits the description of strong perturbations.

This is in contrast to the classical bouhdary layer theory where

the boundary layer responds entirely passively to external forcing. One major

- problem inherent in the passive (parabolic) boundary layer flows is the singularity

at separation, Brown and Stewartson (1969), which prevents any useful description
of separated flows by these methods. Smith (1977) has shown that separation within
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the triplo deck framework is a regular phenomenon, and that the triple deck structure
is the corxrect description of the flow near the separation point. Swith (197%) was
also first to apply the thecry to flow over obstacles, olthough Hunt (1971) presents
& similer,; but incomplete, structure which is valid near the obstacle. Thene twq
studies of flow over ridges both.contaiﬁ lincar analyses, bﬁt the non~linear equations

of Smith (1973) have recently been solved numerically for separated flows by Sykes

(1978).

The triple deck structure is valid in the limit of large Reynolds numbar,ﬁze:
Uo S/v_ , vhere U, is the free sctream ﬂpecd,g the boundary layer thickness, end
VY the kinematic viscoeity. VWhilst the triple deck is a consistent theoxy which
has been guccessfully applied to a nmuber of boundary layer phenomena, it still
remeing en asymptotic theory, and it is not possible to determine a priori how large
the Reynolds number must be to obtain sccurate results. Furthermore, when the hill
dimensions do not satisfy the restrictions of the theoxy there will be loss of
accuracy. In the case of the Ilmren leyer, there is another complication due to
instebilitics at Reynolds numbers greater than about 55 (Faller and Kaylor (1966),
Lilly (1966)), which may prevent the triple deck giving any usoful results. In
view of the above difficulties, it is necessaxry {o solve the complete Navier-Stokee
equations to determine the actual flow.

In this paper we shall describe some numerical golutions of the Navier-
Stokes equations for flow ovexr topogrephy. Theee results will be compared with -
some numerical solutions of the triple deck equations of motion. The effects of
a stable stratification will also be investigated. Stratification effects were

incorporated into the triple deck structure by Sykes (1978).
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It will be shown that fop small hille, the triple deck x'c'multa 8re very similg
to the Navicr-Stokes solutions, Furl:hormoro, fox the emaller hillg the Navier-
Stokes solutiong confirm the triple dock theoxy prediction that the not change in
total momentun transfor ig Bm8ll; the Prossure forco on the hill ig bala.nood'by
& reduction in the total viscous otresg (Sykes 1978), Detailea enalysin

(Brighton 1978) shows that the rolative inerease in drag should be O( G) end thig

« 18 confirmeg by the numericol resultg, Tn the case of rddges which ere as high

as the boundaxy layear depth, inctabilities can be triggored vhich completely

change the flow. Thege instabilitieg also havo g dramatic effeot on the total menentum
transfer,

2.  Outline of triplae deck theory

In this section, we briefly describe the éssunptions ang structure of the
triple deck, The reader ig referred to Stevartson ( 1974) for a moral detaileq
discussion, The theory ig based on the tnall paranmoter 632((,10 S/v)‘ff and i
W o e linif a0 | triple dock, as its nage Buggests, 1s & floy
hetructuro with threg different roglons; ecach region hag g horizonta] length geale
of ordor é_'é s but differing vertical dimensiong, The main deck is the
wndisturbegd boundary layer scale, S « In tho triple Qeck interaction, a
Jover dt;g!_c_ .develops with a vertical secale of ¢ S s and algo an unper deck with a
height seale of ordor g : g » ie the sameg ag the l;origontal Bcale., :

Tﬁis particuler structure is determined by watching the order of magnitude of
.various terme in the Navier-Stokoes equationg, Some- of" the.myetery of the length




ar'1d a height of O(ECS), where & and X are to be determined f.rom a balance of
terms in the equations of motion. Since a laminar boundary layer has a linear
velocity profile near the surface, the velocities in the vicix-lity of the hill will
be O(S (-{o> « We require the triple deck to describe separated flows, so the

perturbations must be of the same order as the basic velocities, hence the inertial

i)

and pressure gradient terms have magnitude O(Ez u:. /Ké) « The viscous terms
g oo Bxe O()’ U.o /E(Sz) s therefore balancing these two quantities gives 6‘3;'\;’::/?3-{
A second relation between & and X is obtained from cénsideration of the
flow at the top of the boundary layer. Th'e boundary layer is flowing over a hill
with slope O(EXJ) » 80 the vertical velocities at the bottom of the upper deck
will be O(E 3(.’[/03. The pressure field will vary on a length scale of O(?‘((S)
in the vertical, since in an inviscig interaction, neglecting effects such as
stratification, there is no scale other than the horizo.ntal one to determine the
vertical structure. Now the essence of the triple deck is the interaction between
the upper and lower decks via the pressure gradient. So, postulating the pressure
perturbation to be 0(82 u:) y the vertical pressure gradient in the upper deck

2/
is O(Széfo//’\'5> - This must balance the linearised vertical term in the vertual

: 312 for
“ momentum equation, which is O(EL(f /\/?6> . Hence
X& XS
ie 8 = X-’

Thus £ = /{)e-Vq. y as anticipated. This argument is not a derivation of the
triple deck, but illustrates its consistency, and the balances involved. The
topography must be on & leagth cselo of 5"5 y and have a height of order 86
in order to ;c;rovoke' a triple deck interaction, and then the topography will be
.. entirely _in the lower deck. This restriction on the size may seem to be a weak-
ness of the theory. In fact, a$ far as boundary layer dynamics is concerned, this scale
of topography is the most important, because 1.:he balance of terms cnsure that
all the forces, ie inert_ial. pressure, and viscous’. aré involved in the interaction,
. 80 that no essential effect is omitted. |

We note at this stage that Brighton (1978) has shown that the variation of the
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direction of the flow with height in the Fkman layer does nét affect the triple

deck equations in two-dimensions. The transverse velocity component is irrclevant

because the triple dgck length scale is too short for the Coriolis force to be

effective.
e Briefly, tﬁe dynamics of the triple deck are as follows. The lower deck

flow satisfies the usual nonlinear boundary layer equations, ie parabolic equations
. driven by a pressure gradientksee $3(b)). This flow results in a streamline displaceme
at the top of the lowerbdeck, vhich must match with the main deck flow. The main
deck solution is then completely described by this displacement, ie the undisturbed
boundary layer is simply displaced vertically throughout the main deck. The
displacement Aepends only on the horizontal coordinate, and thus provides the lower
boundary condition on the upper deck flow. The small perturbation generates a
pressure field in the upper deck, where the flow is inviscid and linear. The
horizontal pressure gradient at the bottom of the upper deck is precisely that
wvhich drives the lower deck. ;

Thus we have an interactive flow structure. The nonlinear lower deck equations
aré parabolic, and thus contain no upstream influence. However, the pressure
gradient vwhich drives this flow is related to the resultant streamline displacement

via the clliptic upper deck flow, and this allows upstream influence.

/
B Numerical models )

(a) Navier-Stokes model

The numerical technique used to solve the Navier-Stokes equations with
a curved boundary is described in Mason and Sykes (1978a). Briefly, the

incompressible, Boussinesq equations of motion in the (“»Z) - plane are
= M, uls 4 wH = «.{’ s a“v-&-é(ﬁ ?u) + /M o«.f,)i,<)d)
' ok X 0z 3z \ §z ox
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whero (u, v, w) io tho velocity veotor in (x, y. %) coordinates, shown in
figure 1, .g is the relative perfurbation density (the mean
density is taken to be unity), {} is the Coriolis

parameter, é} " is the acceleration due to gravity, 13 is the pressure,

and 9%%

. dU

- wind in the x-direction. The diffusion terms require some explanation. ¥,

is the basic pressure gradient, responsible for the geostrophic

Y and Kp are the kinematic viscosity and thermal diffusivity respectively,
and describe diffusion in the vertical direction, while Yy and Ku
are diffusivities associated with horizontal derivatives. The equations are
written in the above form to allow the use of artificial horizontal diffusion,
vhich is necessary when using highly anisotropic grid spacings. The precise
form of the viscous terms in the momentum equations is obtained from con-
sideration of the form of the stress tensor, see Mason and Sykes (1978b).
When N%'s Yg » the equations reduce to the usual form appropriate to an
isotropic viscosity. The effects of different values of WH will be

discussed in the next section.

"

The equations of motion are solved numerically on a rectangular Cartesian
~ grid; with the usual staggered spacing of variables (sece eg Piacsek
and Willi§m§ 1970). Second-order accurate finite differencing is ﬁsed for
both time and space derivatives. The topography is included by setting
velocities equal to zero below the surface, and making the viscous stress
continuous across the solid boundary. Provided the first grid point above
the surface is near enough to the surface, in a sense made more precise in
Mason and Syke# (1978a), then the model is effectively second-order accurate
everywhere. Essentizlly, the boundary layer must be resolved sufficiently
well for the dynamics on the first grid point above the surface to be
B ~ dominated by viscosity. It is also péssible to solve the Poisson equation for
the pressure in the entire rectangular domaiﬁ, thch allows the use of efficient
solution methods.
Finally we discuss the boundary conditions on the system of equations.
The lower surface is a no-slip boundary, ie « ='\’VW =0 y while the upper
surface is stress-free, ie éﬂ o oy =W = C> « In the horizontal direction,

oz z
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periodic boundary conditions are specified. Apart from being simple to
compute ?umcriCally, and well-posed mathematically, periodic boundary
conditions are almost essential when attempting to estimate the total change
in force on the lower boundary. This is because the viscous stress on the
surface is reduced over long distances downstream, especially in strongly
separated flows, and an extremely large integration domain would be necessary
to include the full effect of the hill.

When stratification effects are included, the pertﬁrbation density on the
surface of the topography is maintained at the value which would obtain at
the same height in the undisturbed fluid. This minimises the effccts.of slope
winds, induced by surface heating or cooling. . The upper boundary is main-
tained at the initial témperature, but on the uppermost levels in the
numerical model, a Rayleigh damping term is included in the equations. This
is described in Mason and Sykes (1978p), and simulates an infinite fluid by
absorbing gravity waves radiated by the topography, ie preventing any reflec-
tion.

(b) Triple deck model

-

The method used for the solution of the triple deck equations is

described fully in Sykes (1978). The problem is to solve the two-dimensional

boundary layer equations

wdu ¢ wou ~dp 4 éﬁf

dx 0z olx 0z2
B, W
ox Q%

where (x, z), (u, w), and t: are the dimensionless coordinates, velocity, and
pressure respectively. The lower boundary condition is no-slip, while the
upper boundary condition relétes the streamline displacement to the pressure.
This relationshib is rather complicated and will not be presented here.
Unfortunately, the upper boﬁndary condition does not specify a local relation-

ship, but is of elliptic type, ie involving values of thé field at all points.
B B
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Thus, a stroamline dieplacemont is guepsed, then the boundery layer equations ore

intograted humorically Qownutream, calculating the preanﬁro field to sotisfy the
specified displacement. Tho uvpper boundary condition is then used to provide a
new streamline displacement, and tho whﬁlc process is repeatod until tho fields
oonverée. |

The method used to step tho boundary layer equations (Sykes 1978) is a multi-

. stop, mixed explicit implicit method.

There is some small oscillotion of
the velocity field in the flow reversal rogions in the resulis presented below,‘
but the oscilletion does not grow downstreem, end diesappeors as the grid length
is reducod.

4. Results
In 11 the results from either the Nevien-Stokes equation model or triple deck
theory wo have adopted a standard form of topography end relative size of domein., The

height of the topogrephy usod isS=zh cooa(TLL&') for [%] £ L/ anaS=0 for |x]| wE/a

. vhere 4L is tho total length of the periodic domain. This fixed typs of topography

-

end relative length of the domain is intended to help intercomparisons betwecn various
results. In general, longor domain lengthe relative to the length of the topogrephy
are precluded if the numerical model is to adequately resolve the features of the floﬁ.
In all the results presented here L is sufficiently smell to meke rotation wimportent
in the dynamics of the flow over the hill. (i.e. Rooeby number,uc/ﬂL )5‘),

We have presented fhe Heovier-Stokes equation results in terms of atmospheric
length and height scales and have used values of diffusion coefficient which are

!axmospherically reagonable. This hes not been done on the pretext of simulating

.atmoepheric flows, but rather, to elucidate vhat dynemical processes cen occur in

laminar flows on etmospheric scales. In our future work we plan to take a step
nearer atmospheric reality by seeing how these processes are changed by the
éimulation of a turbulent boundary layexr.

In all the Ravier-Stokes results tho depth of the domain has been fixed et

1

10 km, The vertical cocfficient of diffusion 17, has been taken as 5 weo) ana

basic enguler rotation epeed§ﬁ&1aa 0.00005 xad Sf1 giving an Ekmaﬁ boundaxy laycx




. ' .
depth&-‘(ZE{,/&‘)z = Sfém » The basic pressure gradient in the v—dircction

dfs

J~ has been fixed to give a basic geostrophic flow [10 o {On134 which with
the other parameters gives E::C)ug (except for one of the tripie deck comparisons
in which U.o‘;/r‘oms.’and Ez0l& ), The component of the undisturbed viscous stiress
in the X - direction is O'(?’Nhfz « In the stably stratified flows presented
below the basic density gradient, which the thermal boundary conditions are set to
s maintain, is such that the Brunt-Vaiszla frequenéy, N = {S;Z g“g)/a = fo-is"’

The streamfunctions presenfed below are flows after 3000 time steps from the

initial conditions. This is usually about sixty L/Uo time scales and can be

considered to be effectively an equilibrium state.

(a) = Comparison with triple deck theory

To examine hbw the results of triple deck theory compére with those of

the Navier-Stokes equation integrations it is desirable to see how the agreement
-depends on £ = Re—& which triple deck theory requires to be asymptotically
small. This‘implies very large values ;f Reynold's number and the consequent
breakdown of the flow into turbulence. For an Ekman boundary layer the first
such Reynold's number dependent instability to occur is the so called class A
viscous instabilities (see eg Lilly 1966) at Re & 55. At Re 42 125 the class B _
or inflexion point instabilities with higher growth rate occur. The modes of
maximum growth rate for these instabilities have an orientation at a small
angle to the geostrophic flow direction. In the two dimensional flows
presented here any instabilities are restricted to being at right angles to the
geostrophic flow direction, and Fkman boundary layer instabilities are consequentl;
stabilised. Without conducting an extensive survey, but by integrating oér

* Navier-Stokes equation model with an initial perturbation, we have established
that Re § 600 is stable while at Re 2, 1,000 instabilities occur. This
limits the value of € to A 0.2. To obtain smaller & we have exploited
the fact that Ekman ins£abilities have slow growth rates and are sensitive fo
stabilisation with horizontal‘diffusion. In the following Navier-Stokes
equatioﬁ results wé have chosen Y:( such that RH = q_g__f' = 160. This value

Vi
gives negligible horizontal viscous stress gradients and thus leaves the basic

-9 - :
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dynemicn unchonged but stabilises the flow to instabilitices with Re A2 2500
(€ = 0.14).

Fig 2 shows dimensionless strcss and pressure from Navier-Stokes cauation
model neutral flows with € = 0.2 and 0.14, togother with results frem triple
deck theory. As is clear from the surface stress the flow possesees a small
socparation bubble. Tho other general featuros ere as oxpected for thie type of
flow (Smith 1973) cxcept for the abseonce of the downstreanm pressgure moximum, due
to the rolatively short periodic domzin., The main result of this comparison
is that agrecment iszgood a8 could be oxpected for the values of}é\izsad. The
vaiues of ¢ o4t not sufficiently spaced to demonstrate convexrgence to the

triple deck results but the discernable trend is encovraging. A further comparicon

of total forcos is mede below in § 4(a).

(b) The effect of horizontal diffusion

Owing t§ the nonlincar cascade of energy to the smallcst sceles, if a -
non-physical build-up of enexrgy on the emallest scales is to be prevented,
there is a computational requirement for adequate viscous dissipation. The
value of vV, we are using is typical of a ver'ticai cddy diffusivity in the
atmospheric boundary layer, and for intcgrations with horizontal topographic
scales of the order of or less than the boundary layer depth, ro non-physical
amount of cnexrgy occurs on the smallest scales, uvsing 1)“:\70 + VYhen the hoxizontal
longth scales are much greater then the boundary layer depth v, is required to be
>>V, to effcot closure. Suitable velues of Yy can be found empirically.
Such values depend on the exzot flow but we have .found RH% 480 to be typical

in thoe present stvdy. This is similer to the valuos eppropriate to the




- aunogpheric bounaary layer. Atmospheric values of >1, can be derived from

measurement of horizontal turbulent energy and spectral scales or more simply

by observing that all components of the Reynolds stess tensor have roughly the

same magnitude. Vhen using an eddy viscosity parameterisation this implies

N\
? J
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For the parameters considered in the presént integrations Re ; 630.

Ve should emphasise that in most cases the offect of
varying RH around this typical value is found to be very small. In particular,
steady flows with and without separation and strongly unsteady flows are not
much affected. As might be expected, in the case of violent separation, the
critical height of topography necessary for eddy shedding to occur is slightly
increased by a reduction in RH . However a more significant change in flow type
with verying RH occurs at particular pafnmeters for which the separation bubble
end wake appear to be subject to a weak instability; low values of Rﬁ appear to
be capable of completely suppressing this instability.

= In producing fig 3 a~f we have chosen scales which we(have found to favour
this instability. The height of the hill (h = 200 m) is similar to the boundary

~ layer depth and the length (L = 5 kms) gives a good sized separation bubble for

small RH . Fig 3 a and b show the steady separation bubbles at RH = 80 and

160 respectively. The separation bubble for R, = 80 is slightly smaller, but

H
the close similarity of the flows confirms that )%; is unimportant apart from
suppressing the eddies.  This unimportance was also confirmed in the previous
section by the good agreement between triple deck solutions and Navier-Stokes
integrations with large Yy, « Fig 3 ¢ with RH = 320 is similar but shows a weak

. wnstcady downstream eddy. Fig 3 d and e with RH = 640 and 1280 ghow larger
unsteady eddies which become increasingly vigorous and extend further dovnastican
as Ry i? increased. ¥Yinally fig 3 { has =), giving Ry = 104, in this casc the
eddics persist all the way around the periodic domain. Some onergy bas built up te

a steady value on grid sceles though this iz not obvious in the stream function.
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' : Similar eddies with a wavolength of 2-3 lms ocour -60T a 04ﬂ44%‘4<%»9£ o&

|
scalos of topography'whoao height is comparable with boundary. layer depth, This

is the pame wavelength ag typifies the inflexion point instability occurwing at

larger unstable values of Re. As we montioned in § 4 a the basic stato for

these intcgrations with Re = 630 is stable even vith V|, =Y, , and the instabilitics
¢ vhich occuxr et larger values of Re are easily supprossed with the use of larger

V, » Genexral enorgetic considerations make it clear that the separation bubble

and wake, with flow reduced near the ground end accelerated higher up, may be

susceptible to an inotability of the inflexion point type. We are thus inclined

to tentetively suggest that the instabilitics are related to the inflexion point

instability but defer a moxe detailed discussion to a future paper presenting

the results of 3-dimensional numerical integrations of this type of £low.

(¢) XFlow choracteristics

In this section we give an impression of the character of the variocus types
of flow seen in the present study. We exclude the downstircam eddies displayed
in the previocus section end concentrate on flows which sre insensitive to RH 4
In all the cxeuwplos present RH = 480, a valve which when usced with the scales
of fig 3 gives only a few weak dovmsirecem eddics.

(1) Homogeneove flows

To illustrate the range of flow types, we consider a fixed horizontal
scale, L = 3 km, and presents results for variation of the height, h.
Figﬁres 4 a-d show the streamfunctions for h = 75, 150; %00, and 600 m -
respectively. When h = 75 m, the slope is emall (~ 1/20), the flow is
attached, and the streamlines are only slightly deflected by the topography.
Increasing h to 150 m (slope «r1/ﬁ0) gives a‘steady separation bubble; rathex
¢ emaller than the topography. Tho velocity components and pressure field
fér this particular flow are prescnted in figure 5. The horizontal velocity
component, u, shows the reversea flow region in the lee of the ridge, and
an increase in shcar along the upper edge of the separation bubble. The
velocity profile at the edge of the box is not very different from the
undisturbed Eanon leyer profile. The vertical velocity component, w, ehows
the localised influence of the ridge. The pressure field is precinmely as
expected in this rolatively eimple flow. There is a minimum in the surfoce
R




pressure just downstream of the summit, and a maxinum at the.loading edgy
of the hill. The pressure has a vertical scale similar to its horizontal
scale. As explained in Mason and Sykes (1978a) pressure is esctually defined
undor the ridge in the numerical model. Finally, the transverse velocity
component, v, is hardly influenced by the presence of the ridge; the
contouré aro simply displaced vertically by an amount roughly cqual to
S(x). The profilc at the edge of the domain is egain very closmo to the
wndisturbed profilo.

Roturning to figure 4 c, increaming h Yo %00 m causes the flow to
become unsicady. As h increases, the soparation bubble becomes larger,
and more unstable to shoar ingtabilitics. Figure 4 ¢ shows an instantoncous
piloture of the streemfunction, which consists of lexge eddicz which are
shed from the back of the ridge, end roll downstream. These eddies are
not sensitive to the value of RH’

Increasing h to 600 m, figure 4 d, results in even larger eddies
filling the domain. Instantancous pictures of the other fields for this
flow are presented in figure 6. The pressure ficld is completely d&minated
by the ecddies, as ig the vertical velocity field., The vertical extent of
the disturbances is clearly much greater than the height of the topography. .
The flow is very chaotic, and resembles & deep "turbulent" boundary layox.
This is evinced by the transverse velocity component, v, which ghows a
well-mixed region with strong gradients at the bottom. The v-field is
almost a passivo gecalar field in these flows.

' Datailed interpretation of the unsteady flows in figures 4 ¢ and d is
not useful, since a real flow would not remain two-dimensional in guch
chaotic conditions. Regular eddy-chedding is not achieved in these flows
because of the periodicity. The separation bubble cxtends dowmeiream
fairly quickly as the height of the ridge incroases, and soon interferes
with the upstream flow. This appeaxs to.make the system more unstable; and

vhen eddiéb are shed thoy travel around tho domain, again directly affecting

the incident flow,.




An averege shedding froquency, , can be calculatsed by exemining the

oscillations in the pressure forco on the ridge. This gives é Strovhal numboi
u)L/th“& for all the unsteady flows we have examined, including those in
figure 4. quever, there doecs seem to be a recl differcnce in chervacter
betweon the eddies in figures 4 ¢ end d, and those of tho previous sectlon.
The eddies in figure 3 scem to bo on a smaller length scule xrelative to the
topography, end are & weak instability occurring only for special parametier
velues., The eddies in the present flows are wuch more violent, and nof
sensitive to the valuwe of horizontel viscosity. It is possible that they
are a manifestation of the same instebility mechenicm as those in figure 3,
but under conditions when the instability is much stronger.

(ii) Stebly stratified flows

In the homogeneous flows the topographic slope was the most important

pavameter but in stratified flows the horizontal length scale can be cqually

2 U
importent. The relevant parsmster is the Froude number Fp = A&~ / 2

which measures the relative frequenéy of the motion Qvllo,/Lﬂ to thﬁt
of the stratification. For EHEQ7I (L << 6 Xm here) the stratification
has little effectybut for Fp¢ | wavos will be excited. Vhen h is large
enougn to give UO/%!hgfseparation in the lee of the hill is suppressecd
as dense fluid lifted over the summit falls rapidly to its cquilibrium
level. Otherwise sepavation is inhib;ted when the wavelength of gravity
vaves coincides with the scale of the topography. Upstream separation;'
where fluid near to ground level camnot be lifted over the summit may elso
occur, In fig 4 e-g the stratified counterparts to fig 4 e-d are prescanted.
On this horizontal scale the shortest pousible gravity wave has wavelength
6 kms end corresponds to ~ 2 wavelength in the periodic domein. Vith
h=175mna slight wvave is evident and less stress roduction in the lee of
the hill is seen. Vhen h = 150 ﬁ ceparation has been suppressed and the
wave geneiatad is éeen to give & stress reduction at the edge of box.

In this and tho other results pregented the wave energy appearing down-
streem has not been reflected off the lid, wher; a radiation condition ig
simlated, but has propagated horizontally. For h = 300 m steady upstiean

end dovnetream separation occurs and the wave ahplitude is pufficlent to




give a oteady rotor. Finally with h = €00 m the flow has become unstoady

but the eddy intensity and helght are pomewhat reducod'from the homogeneous

case.

The downetreecm cddics illustrated in fig 3 a-c havé not been found

in eny stratified flows. This is consistent with suppression of inflexion

‘point instebilitics by stable stratification (Ksylor and Faller 1972).
(a) XNet forces '

In Tables 1 and 3 we gi#e the changes in net forces over a range of height
and length scales for homogeneous and stratified flows respsctively. FT is
the sum of the pressure and the total viscous forces on the surface Z = S;(X)
in the Uo direction and Fo is the component of the totel undisturbed viscous
force in the Ub direction (ie the force in the absence of topography). Ths
anglo X is defined as ban ) F&/?T, vhere Fy is the totel viscous force in the
y-direction. The character of the flow and tho relative size of the presscure
force Fp are also indicated. The forces presented are the final, or for
unsteady flows a time average, occurring after integrating for a time of about
) L/ Uo « After this time the flows are not completely steady as wimportant
changes are inevitably still occurring on a time scale 5—'. As a result of this
uwnstoadiness we estimate changes in total force FT - Fo to have & typical

accuracy of 10%.

(1) Homopencous flows

At high Reynolds numbers, the prescure force on the hill would be
expected to be of order §'Czl}\ s where CZ is some average velocity
inéidont on the ridge and § is the mean density, taken to be unity.

_Thus for a constant shear flow,.it follows that the pressure fonce could
increase as rapidly as h5. In the preseﬁt results, this rate of increase
is limited by the finite boundary layer depth, and also by changos in the
incident velocity profile due to the periodicity of the domain., Table 1
shows a rapid initial increase in pressure force with h, tailing off when
the ridge is sufficlently high for its weke té £ill the domain, On the
other hand, the total force on the surface, and its direction, hardly

changes from the undisturbed velue during the initial increase in h.




The totel force riseco dramatically when the flow beccries unsteady.

For stcady flown, even when separation occurs, the pressure force
is almout cgmplotely balanced by a reduction in viscous force. This near
zero increase in net drag in spite of large pressure forces on the
topogrephy is oxactly what ioc predicted by triple deck theory for smsll

€ . For finite & e second-order steady linecarised analysis by

Brighton (1978) gives a force depending on h2. Results for the pfeeent
cases are given in Table 2 and can be scen to be of the observed magnitude
for eteady flows. Better agreemént cannot be expected since none of the
flows arc linear. Any apparent agreement in the unsteady regime is
fortuitous.

In the wsteady flows, the large eddies trenfer momentum vertically,
increasing the viscous surface stress in both.the x~ and y-directions.

The actual value of the resultant viscous stress is strongly affecicd by

the periodic boundary conditions. For the most violent flows presented

here, the average viscous stress in the x-dircction is almost zero, and

the total foice is entiroly due to the precsure force. 4&s noted in the
previous section, for these violent flows the pressure field is donincted
by the large eddics; snd the instantancous pressure force may change sign.

Teble 1 aleo serves to illuctrate how, whilst the occurrance of
separation depends primarily on‘topographic slope, larger values of h
give separation more easily than smallexr ones of the same slope. This is
because the larger valuces of h correspond to 1arge: vertical Reynolds
numbers, Uch /v,

(i1) Stably stratificd flows

As is particularly evident on the larger horizontal scales, for these
cages gravity wave radiation can give a contribution to the total force
¥n» Separation and eddies are secn to be inhibited except for the
h = 600 m cases in which upstream separation occurs even with L = 5.1040\.
To judge the results we can compare with inviscid linear theoxy (Queney
1947) and triple deck equation solutions (Sykes 1978). Results axe given
in Tables 4 and 5 respectively. For L = 102 the domain is too short %o
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support gravity waves and no radlation can occur. .As a consequence of
eddy suppression the totel forces axe reduced in comparison with the
homogeneous flows. For other valuecs of L gravity wave radiation occurs
and when eddioe are absent the drag incrcase is primarily due to this.
The linear thecory, as would be expected with its supposition of the
vertical velocity on Z-=S(x) being (19 %éi y overcstimales the drag by
a feotoxr of between 2 to 4, being most inaceurate for smzll h and IL.
The triple deck solutioha include the viscous boundary layer end cgreement
is genorally better, especially for the smaller hills. .

5.  Conclusions |

Over a wide range of scales relevant to the atmosphere we have shown that
homogeneous leminar unseparated and steady separsted flows give no net incroace in
the total force acting on the lower boundary. This result is predicted by triple
deck theoxry for small values of the parameter ¢ and its validity for larger velues

confirmed
of € is L by the good overall agreement between triple deck solutions and
Navier-Stokes equation intcgrations. The integrations algo show thet the genoration
of large cddies by the topogfaphy is the main mechanism giving an increase in total
dreg. ‘These are found to occur with violently separated flows. An excoption to
this generation mechaniem is what appeared to befﬁownstream instébility and which
ve tentatively suggest is related to Ekman layer inflexion point instability. These
instebilities hohave quite difforently in three-dimensionel flow when they can tQEe
an enexgetically more favourable oricentation to the mean flow (Mason end Sykes 1978c).
Likewise, no significance can be placed on the oxact valucs of results for violent
separation, due to the imposition of two-dimensionality. .

In the stably stratified flows the Navier-Stokes equation integrations showed
how on many scuales a total drag reduction, through eddy suppression, occurred even
though gravity wave radiation was also taking pi&co. With regard to the value of
gravity wave drag in less violent flows the integrations confirmed the triple deck
theory results (Sykes 1978) which showed that the invisecid theory overestimated

gravity wave drag.

7=




Overall we have identified a number of impﬁrtant foaturcs of the effoct of
topography on laminar flow on atmospheric scales. These featuros have potentially
importent implications for the parameterisation of topography in numerical models
and it is an urgent mattor to extend this work to include turbulence modelling of
& standard able to give useful results with meean flows of the type seen here. This
forms part of our current resecarch programme. For the present we feel able to
_speculate that the basic nature of the results may not be altorsd. This iz based
on our feeling that the main effects arise from mean flow eddies and preliminary
results from a crude eddy viécosity turbulence model with "log layer" boundary

conditions and valid for small topographic slope.
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Table 1. Total forces and flow character in homogeneccus Navier-Stokes integrationsz:

S - denotes steady separation and E - denotes eddy shedding.

s 1
Q\i 103 m 3x103 m 101+ m 3x10* m

o Fp r F F F
-« -i‘_- q l."‘ .IT:— N 'i:‘ “ o b<
(o] (o] o} (o] 0 (o) O

=3
b
=

&

-

ik
owkw

75 m |S 1.05 44 0.24 | 1.00 45 0.05 | 1.00 45 0.01 | 1.00 45 0.00
150 m |E 1.52 38 1.24 [S 1.02 46 0.25 | 1.01 45 0.0% | 1.00 45 0.00
300 m |E 3.00 24 3.18 |E 1.56 37 1.22 [S 1.05 46 0.18 | 1.00 45 0.01

600 m |E 2.38.29 2,54 |E 3.1525 3.12 |E 1.35 39 0.67 | 1.02 41 0.05

Table 2. Total force FT/Fo from second order, linearised, triple deck analysis

(calculated using &£ = 0.2, ete).

)NL 10° m 3x10° m 10" u %R0 =
75 m 302 1.01 1.00 1.00
150 m 1.09 1.0k 1.01 1.00
> 200 m 157 117 1,03 1.00
600 m 2.48 1.67 " 1.14 1.01
Table 3. Total forces and flow character in stratified Navier-Stokes integrations:

S~ denotes steady separation and E - denotes eddy shedding.

sk hV’ 102 m 3107 m 10" 310" m

F F F ¥ B F F

i S S ) B Y g g R M S

v ¥ ¥ F ¥ ¥ 3 3 3
(0] 0 (o] (o] (o] 0 (o] (o]

75 m [S 1.04 44 0,21 | 1.00 45 0.05| 1.02 44 :0.04| 1.01 45 0.02
150 m [S 1.09 47 0.95| 1.08 44 0.25| 1.12 43 0.18| 1.05 44 0.03

300 m |E 1.33 46 1.21 {5 1.38 42 1,20 ] 1.57 36 0.79| 1.23 40 0,33

600 m |E 2.15 41 1.90 |E 3.2k 28 3.00 |s 2.84 26 2.41|s 2.1k 32 1,42




Table 4.

Table 5.

from linear theory.

Normalised wave drag, Fw/Fo. Fw is the inviscid wave drag calculated

ﬁ\f’ 10° m 35107 m 10" m 310" m
75 m 0 0.05 0.08 0.03%
150 m o 0.18 0.33 0.13%
300 m 0 0.73 T i 0.50
600 m 0 2.92 5.28 2.00

Total force FT/Fo from numerical stratified triple deck.

Q\{E aeta b oot e |0t 310" m
25m | 1.00 % .01 1.02 1,01
150 m | 1.00 1.06 1.10 140k
300 m 1.00 1.28 1.46 119
600m | 1.00 1.50 2.50 | 1.82
10




Filgure 1.
Ilustrating the doman 05 he Navier Rlolieo ﬁﬁyxallbvb jmd&;?+«i10nou
Figure 2.
Comparison betweeﬁ triple deck and Navier-Stokes results. (a) dimensionless
: sk £ Ny
surface stress C = UZY;Z[;z:S(x) and (b) dimensionless surface pressure
P*:=f)/eqc4? . The solid line denotes the -triple deck solution and the
croeses and circles the results of Navier-Stokes equation integrations with
€ = 0.2 and 0.14 respectively. The dimensionless value of the height of the
topogrephy h/e § = 1.7 and the dimensionloss base width ¢L/ £ = 1.11.
Figure 3
Illustrating the effect of varying horizontal diffusion. (a) to (£) show
streamfunctions obtained from the Navier-Stokes equations on a mesh of 64 x 40
pointse h = %00 m and L = 5.0 107m, The values of Ry uscd axe (e) 80 ;
(b) 1605 (c) 3205 () (u0; (o)iag0; (£) 10"
Pipgure 4.

Illustrating the effect of verying hoight scale. (a) to (h) show streamfunctions

~

obtained from ths Navier-Stokes equations on a mesh of 64 x 40 points. In all casos

L = 3 km and Ry = 480, Cases (a) to (d) are homogemeous snd (e) to (h) stably

stratified with N = 10725, The heights of topography,h.used are (a) end (o)

75 m; (b) end (£) 150 m; (c) and (g) 300 m; (3) and (1) 600 m.
Figure 5.
Velocity components and pressure for the flow 11lustrated in figure 4(b).
(2) v~component of velocity, éontour interval 1 ms™ 1. (b) Pressure field, contour

interval 0.5 ot e (¢) v-component of velocity, contour interval 0.34 wi'l (a)

w-component of volocity, contour interval 0.04 ms—1. Solid lincs denote positive

contour values, negative values are, dashed. Noto that contours are generated by

linear interpolation between grid-points, end are consequently inaccurate close to

the purface.

Figure 6.

Velocity components and pressure for the flow illustrated in figure 4(a).

(a) u~-component of velocity, contour interval 1 ms~1, (b) Pressure field, contour

interval 1.8 No 2 (¢) v-component of velocity, contour interval 0.53 ma™7,

(@) w-component of velocity, contour ing?rval 0.19 ms™ ',
' \
. ; BT RS,
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