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Section l. The Model

DH :

The model described below is that of a two-dimensional laminar incompressible

viscous. Boussinesq fluid with an irregular lower boundary. Such a model will

be used to investigate flows over simple topography and can be generalised to

three dimensions and to varying levels of turbulence parameterisation. The

essential difference between this model and the other programs

available in the branch is the grid on which the integration is performed.

A co-ordinate transformation is used to map the domain with bottom topography

onto a rectangular region in the transformed space, where a rectangular grid is

imposed for the numerical formulation.

In this way the physical boundary becomes

a co-ordinate surface and the resolution in the grid can follow the boundary,

(fig 1). This should make specification of the turbulence easier and more

exact near the ground when the model is generalised.

That is the main reason for undertaking this work.

However the model will 3

be very useful in studying laminar flows too and the comparison with the ordinary

Cartesian system should help indicate when the improved boundary treatment is most

important.
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The model is based on that developed by Clark (1977).



The model equations in Cartesiam co-ordinates (y, '.},) are
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where "7 and “C‘J have been normalised by a reference density €° and a
hydrostatic pressure is incorporated into F.
We have the continuity equation
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and the thermodynamic equation

e Te

where K is a diffusivity, and we write Kk 31—/3)( e i T
L - { )

In using T in the equations we have defined

e < eo (‘ -—o(T)

and thus ‘r', O is the reference temperature in the basic state.

The term ¢ (o3 is the background pressure gradient driving the geostrophic
’ .

wind in the X-direction and is not inconsistent with the two-dimensionality
of the flow. The terms in TR are Rayleigh damping terms used to suppress waves
reaching the upper boundary and thereby prevent spurious reflections; this is a
simple approximation to a radiation condition. "CR is a function of height and
is practically infinite below the uppermost levels in the model. w' and T'
are deviations of W and [ from some background profiles to be defined below.
The viscous stresses are defined conventionally as

e = ( 3_!:(.‘ + a“/
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Now consider a rectangular domain of height H with a ground surface at

%: %3 , as suggested in fig 1.




Now transform the co-ordinates (x‘)t) P \Z,S) such that

W= e

2? - 2 —~%2
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L
which clearly transforms the region containing fluid onto a rectangle in ¥ )Z

space.

-

If d\} is a volume element in él,%) space which maps to d \}

the areas are related through the Jacobian
AV = a(x,%) d 3 .;(I-E_J‘
S o H
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i/ :

an = (% —}) dts /.

\
‘ from which we can write
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for any function ¢ .

An important relationship is deduced

(AR dz - ._L $ (w.yc"su) the (0 equation.
e 'h
at G
The equations may now be rewritten ian-,i) space and are reproduced in
the Appendix.
Boundary conditions are provided by a no-slip bottom boundary and no-stress

upper boundary. Lateral boundaries can be inflow/outflow but the initial form -

of the model has periodic conditions.



The numerical scheme will be described in the next section.

/

Returning to the Rayleigh friction terms, W and T, are defined

/
b’ = M...Mo

e T - T

where “0,7-0 are the reference profiles. °T.

o
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and thus Wg = Y, (x)‘) . This defines a reference velccity which is ccnsistent

is largely arbitrary but

with mass conservation if one assumes the streamlines are approximately co-

ordinate lives in G,i space.

Section 2. The Numerical Formtilation

The domain is represented in (\?,i/) by an irregularly spaced rectangular

grid, defined by the intersection of lines

X = (Fxck): ;k [ "Ji,)oi"":k""!i.
T = ‘Ft("‘)‘—‘i\_ \n«:vl‘-’)o)...,Mﬁ—"-—

where g‘ and G% are arbitrary strictly increasing functions.

The variables are held at the staggered locations of Harlow and Welch (1965)

shown in fig 2. s
: T
Tl) W)Q T‘3
H . i+ <
# Pl o S P TEY Prig 2
T H\‘k-'."
2 W,w T.s

52{ . Tz
where is a general scalar, 1.e. T, s A S TJ)
The remaining variables, ” i is held with '*C.z' and HJ is held with "sz.
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and a are calculated everywhere they are needed but are essentially
] - e
functions of single variables only (C' — «“—(X)}(t) ) 3
The lateral physical boundaries run through ¢& points and the horizontal

ones through W points. It is necessary to define an extra two prows outside




the horizontal boundaries and two columns beyond the lateral boundaries.

Those variables needed outside the domain are shown in fig 3.
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which shows a general horizontal or vertical boundary.

Define the operators (Shuman 1960)

pralt 18
¢ ? (nt"k) > ¢('Ylkdi) k a half integral

2 index as above

S,(K?‘ * [¢(’luk) g 750‘(“"&)] /[’Zku; = ’?x-g]

where 7] can be any of X, € or 't (t\:""’ ‘At)

g’uﬂ = e Bl s iy,
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the grid interval width straddling 'DZK &



It is a property of the differencing that it is second order accurate
despite the non-uniform grid provided the grid stretching is not too severe
(Kalnay de Rivas 1972).

Now the bars on co-ordinate symbols will be dropped.

The difference form of the momentum equations is

St(a"’-) + ABVY = (G707 )% PP e kEX « RAYY

St(C."’V) + ADVY 4 (¢% PR i T

S o d
6, (6™w) + ADVE . PFE 4 8"« kP y RAYZ™

vhere the superscript denotes the time level of a source term. Notice that
Clark §€1977) takes his Rayleigh friction (RAM X etc.) terms at the centred
time step which is unconditionally unstable when the term is examined in
isolation.

The thermodynamic equation is

e ’
S{: (c"*—r) 4 ADVT - KET =+ RANT

(Clark did not use a RAY T term).

The equation of mass continuity is

SX_(GWVO 4~ %(G""a):

The numerical €D equation is

e e R
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This is not the same operator as Clark and is still being investigated. Clark
_suggests that the form is quite crucial for good momentum and energy budgets but
does not expand on this. Consistency between the €J equation and the Poisson

v equation for pressure is clearly essential and we have ensured this with our

formulation.



The advective terms are of thePiacsek and Williams (1970) absolutely

conserving form, i.e. conservative of u"’*vz‘_,_ W and "r'
within round off whatever the divergence of the velocity field but only

conservative of linear quantitiesto within an error of the order of that

divergence.

Define the difference operator

MR ¢an>~e<nn»- b (e ¥ (M)

Then the advective terms are given by <Y.L‘“‘"’ - nlc—.!->
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The pressure gradient terms are

PF)( .o S’)( (C\o/\'> S Sﬂ (C‘ v!-\(‘b)

P;% = o g& F'
with buoyancy g\( - 0(3 ':‘."a

The Rayleigh friction terms are given as
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The diffusion terms are given by

iceic . S)L(C"f“‘t,,) 3 S,b (T.z*’Cuf.”f)
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KET = S (C™H) + S, (Hy + & TR™)

where "G. + and H‘. are calculated straightforwardly by the natural centred-
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difference formulae following
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In summary we have presented equations for S_tu,v,w )T and implicitly @
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In order that these tendencies are well-defined, an elliptic equation is solved
for P given \,VyW,

To find this equation consider g‘e D where

D = g,,_ CC\‘,"U\ - QECC‘""w)

to give ;
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T+ vl
where b has been used. The term :D is retained to limit growth

of ) during the integration (Harlow and Welch 1965).

The resulting equation may be written

: C' S‘x '/\. ) S’ (C‘h—) . b‘t-' +. ;

th
et { G Siase s ¢ §%(3N+Q',’ ?j“)} ¥l

\ \ e
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where P“ - g%(cw 2 e )
and %t (C""M)t =. S“ ’/;.) Fu .
B —Saf%

The method of solution will be described in a later section.

5% Boundary Conditions

Boundary conditions are needed to close the equations. The model must
calculate %t& St‘r on interior to step these fields there, S-L-' “
is needed out to the first row/column outside the domain in order thah the
elliptic pressure equation may be calculated.

We impose a no-slip boundary condition on & = O

h - - .
usV =w =0 -_:.-) ws= 0O y the kinematic condition



and stress-free at i ] H

?._"A_:BV ':W‘:-Ov;) W= 0

% 2%

y the kinematic condition

On the lateral boundaries we assume'periodicity. However inflow/outflow
conditions can be applied with the same sort of considerations as on the
horizontal boundaries. The choice of extrapolation scheme is the non-trivial
part of the problem cf. Clark (1977).

Consider the boundary i = O for example. We define WUqg = =Wy
Voz =V, w";,;o (!) w‘\_v,_o) to give first order
boundary conditions based on the specified values at =0 ., Given ‘P and

e | .
necessary ’\ch this enables S‘tg to be calculated on all the interior

points.
Now to calculate the elliptic pressure equation sw is needed on s =0
\ o=
and S‘e C‘h"u\ on 20 The second follows directly from
X S e E 7 &

' /%
S.ECQ \h)l.-.- =-Sb<c\ u.> l.- —
Tz 2 e,

; = 'I:e calculation of Sw (ig O) requires TO! (;V )and
' “/s
C| « l;\ 2 w"/'b >

To ensure momentum conservation we define

— e, _——"-%
)
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which is equivalent to assuming zero flux through the boundary and taking first order
differences.

Q(“)"/:- and all the other stresses required outside the domain (fig 3)
are calculated by extrapolation across the boundary, using their calculated values
on the boundary. These values are found directly from the definitions applied
naturally at i - O to first ordér.

The boundary condition on the pressure equation is that on the top and bottom

of the domain

(Y Sagl s
b(c‘ w)‘ < Q"Pw"‘_c_;:;g.



with periodicity in the horizontal.
In general this is a tri-diagonal equation for '{? on the boundary in terms

of interior values. However in this case the boundary conditions show

Se(a"'*we) =0 = S, — 8,p.

which is an explicit relation for F on %Q and is calculable from above.

Section 4. Solution of the Pressure Equation

Write the pressure equation as

BE o Sae v LN Y el NS

where

Q= C«'/*f Pl B e é__gi -\-3__§i

oX - T
S = (Sz.S%)
ST A e e ""[Sw-»f;"__%x
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The pressure equation is solved iteratively following Clark (1977) subject

to periodic lateral conditions and

C—L S%C‘? © (@:)5 . ew T =0,H.

The solution @ is easily found by a direct method given §$ but since

53 depends on @ , we must proceed with iteration. G1ven a guess for the
”

\.M
CP‘ field, the elliptic problem is solved for a new Q o Then §S is

oty



recalculated and the process continues until convergence is achieved.
The efficient solution of each

C; E;)()L <¥;*{+ S;Qﬂt,i? v/ ‘ C; . §[&f

is made possible by using the boundary condition

- '/
6o g%cp = O
whose sclution is the same as that above except on the boundary. The application of
el
S;a= f) = S:VV
there completes the solution. (This property of the numerical solution is
discussed further in an Appendix.)
The method of solution is that of Farnell (1980).
Initial experience with this algorithm suggests that convergence is very
rapid for hill slopes less than 30° (with a 4Ox6h4 grid). Two or three iterations
is sufficient to achieve a relative error of 10-'5 provided the flow is not rapidly

i
changing. However the correcting source term c‘v. § increases with aspect ratio
S

. in such a way that tlhe scheme will not converge for slopes of 450. Convergence can

be achieved in this case by underrelaxation. However about 450 this artifice will
probably not produce convergence. This restriction should not be significant for

the work envisaged with the model.

.
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Appendix Numerical Poisson egquations - a result

Consider the numerical solution of

S:Lxcp =5 S“cp - gngu

S)L C? - g:r, ""8

-\-S%S% c\(:o,lll'

LA ’L.‘«O)‘

S%Q{;, S?__ac@ o~ T=0)

where g is a general function defined on the boundary,

is sketched below.

and the grid arrangement

It is easily seen that the values of CQ not on the boundaries are

et Doty
2= D (@b

2o 9 - - - 2€)9
Yo é é - By IA%
x=0Rk Ayl M \ /

then efficient accurate direct methods may be used.

This result can be generalised so that the problem

L (%) gxx.cp e F(’t) S%?:CP 2

< (2) &, @
ﬁ(") g%‘{) =

has the same property.

Ean T oA

independent of the .
bounding S values
(circled). Only

the boundary values depend
on fhese S .

This convenient prope: ty

of the numerics means that
by setting %g"g, g%a"g
on the appropriate boundar:f)

conditions C? Q and

84:(?5 O can be used, and
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Appendix Two-dimensional analytic equations in the transform co-ordinate system

Momentum equation
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2 (€"w) v 2 (6™e) -

'f\-) o (C"?p>
"c..) + 9—- (Co%aT) =6 e

.
P

aé.
+ 2
BT s B " )+ 2 (6"va) +

. 'é—f;‘ \ 9—((&’*1,,) +39%(c‘"’c&,+ ) T’;
5;(&""\./)-}6.32(&'/» w) + d (&"‘wa> T éf +o<C'%‘.‘i‘

R
Continuity

)« 2 (@)
P /o o e
e T>*a::<° mD oG NT)

- (C‘WH ) 31((43 +C\'3H\> e I_’..

TR

-l e



References

T L Clark

L Farnell

F H Harlow & J E Welch
E Kalnay De Rivas

S A Piacsek & Williams G P

J.Comp.Phys.2k (1977) 186.
(1980) to appear in J.Comp.Phys.
Phys.Fluids 8 (1965) 2182.
J.Comp.Phys.10 (1972) 202.

J.Comp.Phys & (1970) 393.




