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Abstract:

An important model for describing discontinuous atmospheric flows
takes the form of a set of Lagrangian equations with the trajectory
determined implicitly. An implicit finite diiference method is
prezented for mocelling such flows. It is demonstrated that it is able

to approximate the correct solution in two test problems.




INTRODUCTION

It is well known that finite difference and related methods

will converge to smooth solutions of differential equations if they
are consistent and stable. If the desired solutions are
discontinuous, they are not strictly solutions of the differential
equations as given, but may be solutions of a 'weak' form of the
equations. Such solutions may not be unique unlesc extra
constraints are given, such as the entropy condition for shocks in
compressible gas dynamics. Finite difference schemes are not
guaranteea to converge to such solutions unless they are concsistent
with the weak form of the equatiorns and satisfy the extra

constraints.

In meteorology an important class of cdiscontinuous solutions is
a type of contact discontinuity whose geometry is determined by the
requirements of balance between the horizontal pressure gradient and
the Coriolis acceleration resulting from the earth's rotation.
Various sets of equations appropriate in this case have been
derived, see (1] for a recent discussion. The set introduced by
Eliassen, (2] and Hoskins [3] was shown by Cullen and Purser {4] to
make sense for discontinuous solutions, such as atmospheric fronts.
This is because it can be written as a set of Lagrangian equations
with no derivatives except those implied by the D/Dt operator.
While the properties of fluid parcele have to vary smoothly in time,
the solutions do not have to be continuous in physical space, and
parcel positions do not have to vary continuously in time. The
existence and uniqueness of such solutions was proved in (4] for all
finite dimensional versions of the problem, subject to an extra
stability condition, There is considerable observationai support

for the physical useiulness of such solutions, (5], [6].

It is not clear whether a conventional finite difference methoc
can approximate such solutions. It is not known, for instance,
whether they correspond to generalised solutions of the Eulerian
form of the equations, or to the inviscid 1limit of the Eulerian

equations with viscosity addea. It is much easier to use Eulerian
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finite difference methocs on fixed grids for operational weather
forecasting than moving grid or fully Lagrangian methods. In this
paper standard finite difference techniques are applied to two non-
trivial tect problems with discontinuous solutions. They are
compared with a Lagrangian method developed by Chynoweth, [7], from
the existence prooi in (40. Tne latter method is thus guaranteed

to approximste thc solution decired.

2. MATHEMATICAL XODEL

This secticn summarises the equations and the prooi of exicternce

and uniqueness of solutions to the extent needed to design finite

difrference approximations. The meteorological justification is
given in [4) - (6], and the proois are set out in full in [4! and
i8l.

The equationc are written in a2 terrain-following vertical

coordinate o which ic pressure p divided by surface pressure ps.

They are written in terms of the geostropnic wind defined by

fu, = - &¢ - RT Qin(p.) , fv, = 9¢ + RT ¢in(ps) (2. 1)
3y Qy dx Ox

where ¢ is the geopotential whose horizontal derivative is the

pressure gradient force, and i is the Coriolis parameter. u, and
v, are the cartesian components of the geostrophic wind. R is the
gas constant and T the temperature. The atmosphere is assumed tO

be byarostatic, so that

- RT = ¢ 2.2
(4 v
The evoiution equationz are then:
PuBas Gy — S di=i() ¢2.3)
Dt
Dvoi= fitu = ud =0 (2.4)
Dt

na




Dt

® is the potential temperature, given by 6 = T(p/p.)" where po is a
reference prescure, k=R/C.. and Cp is the specific heat of air at
constant pressure. V is the specific volume of the fluid. The
equations are to be solved in a region @ with boundary 3, subject

to the boundary condition

u.n =0 on 4df (2.

It is also poscible to use periodic boundary conditions. For
different applications,source terms can be specified on the right
hanéd side of (2.3) to (2.6) and non zero velocities and fiuxes of
Uy, Vy and 6 specified on eéQ.

This set of equations determines the actual velocity (u,v,w)
implicitly, and hence the trajectory. The direct proof, (4], that
this can be done requires two further simplificationms. The
problem has to be solved between two fixed values of pressure, so
that the boundary condition at the earth's surface is applied at a
typical value of suriace pressure. This device allows the
equations for air motion to be written in the same form as those for
an incompressible fluid. A form of Boussinesq approximation is

then made, [2], which allows (2.2) to be written as

g8 = 9¢ (2.8
60 ez

and (2.6) to be written as
du + v + 3w =0 2.9)

BX AWy

where z = z(v) is the new vertical coordinate.The Coriolis parameter

f has to be treated as constant, though it is in reality a slowly




varying function of position. It appears likely that the proof can

be extended to remove the need for these simplifications.

The proof restis on rewriting (2.3), (2.4) as

) Cfv=U.y) = fv, .10
Dt
Divatfx) = fug (2.11)
Dt
For convenience write (X, N)=(v, + ix, fy - uy). Then the equationz
(2.5), (2.10) and (2.11) are lLagrangian evolution equations for M,N
and ©. The constraints (2.1), (2.8) can be written as
(iK, fN, g6/60) = VF $2.12)

where P = g + ¥Bf- (x~1ty~).

The solutions can then be constructed as follows:

(i Divide the fluid in @ into finite parcels with volumes V..
(ii) KRepresent the data M,N and € as constant on each parcel at
an initial time t.

(iii) Arrange the parcels within @ to satisiy (2.1) ané (2,2) by
constructing a convex polyhedral approximation to the
hypersurface P(x,y,z), with the volumes of the facez being V.
and with VP = (M., N., ©6:) on the ith face. The existence and
uniqueness of this construction is proved in [4]. The
reguirement that P be convex is the extra information that has
to be cspecified to get a unique solution.

(iv) Solve (2.10) and (2,11) for new values of M. and N. at a
time ttat. The right band sidec of these eguations will be
discontinuouc linear functions of (X,y,z) and must be mapped
into piecewise constants. This mapping restricts the overzall
procedure to first order accuracy.

(v) Repeat step (iii), and continue for as long as desired.



The procedure can be extended to cases where additional terms

independent of u are present on the right hand sides of (2.5),
(2.6), (2,100 and (2.11). If the right hand sides depend on u, it
may still be possible to obtain solutions by iteration. In
particular the assumption that f is constant can be relaxed. The
velocity field u never appears explicitly, but can be deduced from

the movement of fluid parcels.

This procedure can be used in principle to construct solutions
of the equations [4], and an implementation is described by
Chynoweth [71. However, it is very expensive computationally and
the first order accuracy is not adequate except for certain special
classes of problem where the approximation in steps (iv) can be
avoided. The solutions may be discontinuous in physical space and
it is also possible for parcel positions to change discontinuously

in time.In the latter case the velocity field u cannot be defined.

Vhen solving the equations by finite difference methods it is
necessary to ensure convergence to the solution described above even
when it is singular. It is not yet possible to prove such
convergence, and in particular it is not known what if any finite
difference formulae are consistent with the equations if the
solutions are discontinuous. Certain principles are clear, however.

(1) The system of equations is implicit, so that implicit

finite difference methods must be used.

(11> The consistency conditions (2.1) and (2,2) must be

satisfied by rearranging values of 6, M and ¥ ; no new values

of these qualities can be created and the volume of fluid with
values of M, N and 6 within a given range must be conserved.
If iterative methods are used to obtain solutions satisfying (2.1)
and (2.2), each iteration must consist of a rearrangement. The
volume conservation requirement favours the use of quadratically
conserving centred differences of the type introduced by Arakawa [9]
to mimic such a constraint on the vorticity in the solution of the

two dimensional Euler equations.



The boundary conditions state that it is known which fluid
parcels lie in @ at any time. However, no parcel positions are
known. Fluid initially in contact with the boundary can separate
from it. Though the normal velocity is zero at the boundary it can
be discontinuous and non zero flow can occur arbitrarily close to
the boundary. These conditions are difficult to treat correctly in

a finite difference calculation.

In this paper we solve two dimensional test problems derived
from equations (2.1) to (2.7). The first test problem was
introduced by Hoskins and Bretherton, [10], as a model for the
formulation of fronts in the atmosphere. The fronts are formed by
the action of a deformation field u=(-ax,ay 0) on a basic horizontal
temperature gradient. The equations for the evolution of the cross-

section along y=0 can be written:

fvg = Q¢ + RT_J1npx (2.13)
ax dx
- RT = ¢ (2.14)
g do
Dvg + fu = ~ alvg +£fx) $2.15)
Dt
DB =0 (2.16)
Dt
DV = -aV (2:47)
Dt
u = 7 ox at x = + ol (2.18)
v =0 At Cup w00 2.19)
g =0 at v =1 (2.20)

v is the vertical motion relative to the coordinate v,

For Eulerian calculations write
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o
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D= 9 +u +0d (
Dt ot Ox Jdo

and write (2.1%5) as

(38}
oD
(SR}

¢p+ + ¢psu + £p.0 T - aps (
R x Jo

where p« 15 the suriface pressure.

Since equations (2.13) can be written in terms of X = v, +ix ac
LDE = -aX (2.23)
Dt

the general solution procedure described above can be simplified

because K,0 and V are determined for all time by their initial

values for a fluid parcel. The solution is thus exact for

piecewise constant initial data.

The second problem ic one of flow over a two-dimencional

mountain ridge.

fvy, = 8¢ + RT_d1n(ps) 2.24)
ox ox
- KL = &4 (2.25)
o do

D (vg +ix) = 1U (2.20)
Dt
D =0 (@et)
Dt
LV =0 (2.28)
Dt

y u=U at x=iL (2.29)
6 =60.(), M= M,C0) at x = -L : (2530)
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0 at o = 0,1 (2:33)

Qe
]

geix) at o =1 (2. 38D

#

Tnis problem can also be solved exactly for piecewise constant
initial a@ata ii the boundary conditions (2.29 - 2.32) are replaced
by moving the mountain at speed -U througr a fixed domain and not
allowing any flow through the boundaries. The right hancé side of

(2.26) hac then 10 be set TO zZero.
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The standard difference notation

6.A = ox "(A +w - A -w) (3.
A = k(A o + A )
is used. A cecond oraer accurate scheme on a staggerec gric ic
presentead. A natural extension would be to use higner order
compact differences, e.g. Beam and Warming [(11J. The finite
difference approximztions to (2.24), (2.2%) and tne Eulerian iorm
2.286) are
ivae = 6 g+ + RIa 6. 1ntpa) (3.
y A e e
Iéng C RéT + Ro_'ul 6 .Lnkp.o) L85
0
Rpe + 6.(pau) + Satpio) = 0 (3
ot
The suifices # refer to values at the earth's surface, o=1l. In

1)

.4)

order to use these convenient approximstions, the variabples must be

arranged on the grid as shown in Fig. 1. If the dimensions oi the

grid are X x N in the x and ¢ directions, equationm (3.4) is applied

at (M-2) x (N-2) points , u is specified at 2N boundary pointe and

w at 2X boundary points. The vertical average of (3.4) gives,

using (2.31),

Ap. + 6.(pu = 0,
4t

where u is the vertical mean of u.
Subtracting (3.4) from (3.3) gives
6. (psCu-u)) + 6o(pao) = 0

Tnis implies that there is a stream function y defined at

(3.9)



(M-Z)xN-2) interior pointe and speciiied ac zero at 2N+2K-4

boundary pointg, where

pio 3472

6.y =
éay = -pd (u-u)
Condition (3.3) ig applied at (M-1)x(N-2) points. Tne evolution

ecuation (3.5) is soivea at (K-1) pointe.
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to0 the evolution equations

g

Qv,, + v v, + ) + o Bevy = £V (&

3:83
dt
95 + UY 6.6 t ¢6zet = 0 (39D
9t

.

Tae approximations to the advection terms used in these equations
would be susceptibie to nonlinear instability ii used for expiicit
time integratiomn. Since this model is implicit, it is nececssary 10
avoid averaging Ior reasons wiich will become clear.

The procedure for advancing from time t to t+at is a predictor
corrector method suggested by that of Meek and Norbury [12]. A
stanaard Crenk-Nicholson scheme is used to step equations (3. 5),

(3. &) ané (3.9 torwara, using values oi y and hence (p.u) and f‘a

kpgv )at time t. The new values oi ¥ry.8 and ps will nat ‘satisiy ;
p(3 ) an* (330 The values of ¢ are tnen cnrrected sc that (Ha2) ‘
and 3) are satlsf‘ed and new estimatec mace of the other"’




pet = pat - at(paw) (3. ]

where cuperscript # denotes a provisional value at t+at and &
denotez the time averaging
Viy'™ & B Wt + v, A )

Q- = Bl BY F glrak )

(Psud* = (paul!

<
"
Q

1he natural metnoa Ior the corrector step would be a fully

O
8]
[ =4
u
5
o
@)
M
O
-
[ o}
Pl
P
(8]
e
o
=7
ct
B
1
[
=

inite aiiierence approximations (Z.2),
(3.3) anc (3.10) - (3.12) using Newton's method to linearise the

eguations 10r tne corrections to v.,,8,ps,u ana o. Thie methoa i

= §
e
()]

guccessiul for smooth colutions of the equations solved in t

paper tut fails for discontinuous solutions. Tne failure is cue

r

viclatvion of the condition that the potential F defined in equati

(2.12) is convex in tne finite difference approximztion at t+aAt.

v

A less direct method is therefore used to attempt to ensure
convergence to tae correct pnysical solution. A stream function

correction Ay is calculated irom the eguations

gerer gt =t AR CAr 230 ) ¢

3
Vo = yat = AT AU (Vg it 2O M) L
Pat = pute = ALK 6rA(p4G) ) (3.
6.0y = A(p‘;) 3
boby = —A(p;ﬁu-a)) (351
AU = A(paud/pa* , A; = A(p.;)/p.“ (3.
fvge® = 6.fa + RTRM6. (In(pa=)) (3.
160va” = ~Ro 6.7 + Ré.o (12%6. 1n(pse) (.

1f the residual values obtained by substituting v,", p.* and &%
into (3.20) and ¢3.21) are denoted by E , then substitution of

(3.14) - (3.19) into (3.20) and (3.21) gives :
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(28]
~—

~£8t{ 6o (ByIa (62,vy + £)4%) - At RT.{(6.6.4(psud/pa) = Eu (3.

”

~fAt Sa{ Sa(BAY) (Buuvy + £I%) - (3..23)

w

At Ro ' (p/pod) 6.46..469)6-46%7F4 )} - Rot 6;“(¥')“( §.6.-8(psu) }/ps = E

Equation (3.23) contains a variable coefiicient elliptic operator on
oy ancg (3.22) containe an eiliptic operator on a(psu ). There are
also coupling terms between the equatioms. The omiscsion of the

remaining terme in (3.11) from (3.14) and in (3.10) from (3.1%)

B

¥es equation (3.23) more strongly elliptic than if all the terms
were included. The analytic ellipticity condition on the full
systen takes the form

CQua/dx + £ H8/780 - (Jv,/80)88/4x 2 0 (3.24)

while that for the reduced egystem (3.23) is

(1]
~

dva/dx + £ 2 0; 3B8/4ce 2 0; (3.2

a much weaker condition. The effect is to stabilise the iteration
and ailow it to reach discontinuous solutions of the governing
ecuations. However more iterations are needed to satisfy (3.2) anc
(3.3) to a given tolerance. It is necessary to ensure that the
condition (3.25) is satisfied by the data beiore soiving (3.22) and
(3.23). if necessary, the data must be modified.An appropriate
method is described later. The finite difference equation (3.23)
contains the five point approximation to the Laplacian operator.
If more averaging were uced in the finite difference approximations
to (3.14) and (3.15), which are used to gemerate (3.23), a nine
point Lapiacian would be obtained. This is well known to be
susceptible to checkerboard instabilities. It is necessary to use
the same approximations in (3.8) and (3.9) as in (3.14) and (3.15
to ensure efiective removal ofi the residuval E in a small number oi
iterations.

After solving (3.22) and (3.23), an estimate of the values of &,

v, and p« at time t+4t are obtained from:

- 15-




a .

Bleet = 8% - At( AUS. 6 + A0 62,8 )% (3.26)
vyt tet = oy = At Aus (v, + ) + A0 S.vg O 3.27)
Pat Ot = pat = At{A(piud); (3.282

where $ refers to an average of the intermediate value at # and that

O

at t-at.Ihe correction step is then iterated a: much as necessary.
Tne final correction (3.26)-(3.26) can be combined with the
predictor step at time t+aAt.

Wnen solving a prodlex witn significant variations in

terrain height, the simplified equationz (3.14) to (3.21) ar

(1)

"
A

v

longer suilicient to give a solution in a emall number of iterztionz

because 1inite differences taken along o surfacec include vertical

as weil az horizontal variations. Equationsz (3.14) and (3.21) can
be written
g = 6" - at{ 6.(AY)iab62.6% ) (3.29)
f6ovy® = Ko '6. T¢I, (3.302

1f the x derivative of ay in (3.29) is taken at constant p rather
than constant o it is found that a faster and more reliable
convergence to the solution of the system (3.2) - (3.9) is obtained.
The elliptic equation (3.23) now includes the term 6. (6.4y) 1.,
leading to a 7 peint stencil for the Laplacian operator on Ay as
iliustrated in Fig. 2.

In orcer to capture discontinuous solutions successfully it is
usually neceszary to include some disszipation. In the model we use
for iront formation the discontinuity is a contact discontinuity ana
is not associated with any energy dissipation. Smoothing is only
required to prevent the growtih of numerical errors. In the
mourtain flow problem, as discussed in [13], energy is discipated
when fluid jumps discontinuously from the mountain top to a new
position on the lee side. In this situation the condition (3.25)
is likely to be violated with (6. v,+f) negative at come grid

oints.The data bave tnen to be modiiied to rectore monotonicity oif
¥
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v.4 ix ac a function of x while not changing the global mean value
of v., . It ic decirabie to do this in a way waick is consistent witn

(3.2) and (3.3). Thbic ic done by moaifying the potential function

deiincg by

by
4
n
N—
G
<
J
3§
(=
s
v
~
L
k]
-~
w)
(&N
'
~

co tnat it saticfiez @ P/dx- » 0, and then calculating new v, valiies
irom the mociiied functiom. This procedure corresponds to tae
discontinuous jump of fiuid. Care ic needed in interpreting tne

values of y caiculated from (3.22) anc (3.235) wien this correcticr

O

nas 1o be invoked since y no ionger represenis the tctal fluia
veiocity.

In addition to thig procedure Ior dealing with ciscontinuous
jumps, it is founc necessary 1o smdotln the y fiela between timesieps

co that the cmall scale detail in y calculated at time t ic not used

in the first guess for y at the next timestep.

e o
R:n') Lio

The governing equations are (2.13) - (2.23). The domain is
compressed laterally with the deformation rate a . The initial
data used is shown in Fig. 3. It is similar to that used in (4]
except for the choice of the basic state vertical gradient oi 6.
Fronts tend to form initially at the upper and lower boundariec and
penetrate into the interior of the fluid. This penetration is
clearly seen in the Lagrangian mocel by comparing Figs. 3(a) ana
4(a). The solutions using the Lagrangian method descrived in (7
are cshown in Fig. 4 after a non-dimencional time t = 0.5 when the
domain hac shrunk by a factor of approximately 0.6. Since € is
concerved following parcels, by (2.16), and X changes according to
(2.23); the constraints (2.13), (2.14) require the slope of the
isentropes to become shailower with time. The frontal positiones at

the upper and lower boundaries thue stay almost fixea during the

..17_




time integration, as can be seen in Fige. 3(a’ and 4 (a). The
es

strength of the front increacses, ac do the geostrophic wind v,
near the boundaries. The cross frontal circulation shown in Figs
4(c) and (d) shows that the vertical motion reaches its maximum
value very close to the boundaries. Note that this is the actual
vertical motion, not the pseudo vertical motion o that appears in
equatieons (2.19) - (£.22)

he resulte from the finite difierence model, ucing a uniform 3V

&

3

x 12 grid to cover the whole domain, are shown in Fig. 5. Thn
poundary conditions are moved in with time, so that only the
sclution on tae innmer 30 x 12 gridpointe is shown in Fig. 5.

There is good general agreement with the Lagrangian
solutions. There is some smoothing of the potential temperature
gradient at tne boundaries. This ie partly because the staggerea
gria only holds values of 6 a full grid length in from the
boundary.A stretched grid near the boundary might give a sharper
front.The maximum values of v, are well captured. Fig.5(c) ckows the
horizontal cross-front wind with the bacic deformation removed.The
maximum values are reached in shallow layers near the upper and
lower boundaries, and agree to within 0.5 ms ' with those from the
Lagrangian model.The largest difference is the underestimation of
the maximum at the lower boundary in the finite diiference model.
The vertical velocity reaches its maximum values closer to the upper
than the lower boundary.The largest values are within 0.5 cm s ' of
those predicted by the Lagrangian model. In the finite difference
model there is an enhanced maximum and an extra minimum near the
upper boundary, suggestive of a weak computational instability. The
maximum near the lower boundary is underestimated.

A second case is illustrated in Fig. 6. The data used have a
much ctronger temperature stratification.This means that the fronts
do not penetrate so far into the fluid and the vertical velocity
will be smaller.The Lagrangian solution shown in Fig. 6(a)
illustrates that no elements actually separate irom the boundary.
The potential temperature fields agree closely and there is little
evidence of numerical smoothing. The vertical velocity fields alisc

agree well, the maximum upward motion is the same in both sclutiong,

- 18_




though ite position is ciightly dispiaced between the twd. The
finite diiference model produces an extra maximum of downward motion ¥
near the upper boundary, which appearz to be a numerical error.

In order to tect the ctability of the numerical method, anc its
abiiity to foliow an inviscic discontinuous soiution for a long
period, the problem wsz solved using the initial data in Fig. 3 and
& aqetormation rate proportional to coscat) . The maximum recuction
in cross secticn was a factor of 0.9, and the equations were
integrated througn iive periods. The exact soiution will oscillate
in time with the strength of tbe discontinuity varying periodicaily.
Tnis behaviour ic exactly reproduced oy the Lagrangian mogei. Tae
resuitc aiter one ané five cycies ucing the finite cifference model
are compared in Fig. 7. The cifierences are very small, despite
the various smoothing devices usea in the calculations and tae
gifficuity of impoeing the correct poundary conditions which causez

the €light drift in the mean values.



The governing equations are (2.25) - (2.32). Thie probiem was
soived using a Lagrangian method by Cullen, Chynoweth and rurser,
iz It was only poscible to use a low recolution description of
the ilow because of tne diificult computer iogic and therefore
guantitative details of this solution snould not be compared with a
high resolution finite diiference calculation.

The main features of the soiution are illustrazted in Figz. &(ay

and ¢¥(a). Fluigc ic fliowing at ilms ' over a barrier 2000r hign and
120 gEm wiaqe. The eiemenis are numberec. As fluid crosses the

parrier the element tangent to the top of the barrier is eplit and
its area gradually trancierred from an upsiream to a downst
position. The two parts of such elements are denoted A and B.
The divicion into elements corresponds to centours of ¢

0
d 32-36 represent layers of

=

Elements 4-10, 11-17, 16-24, 25-31 a
constant 6. Ac time proceeds, fluid is blocked upstream far a

period and then jumps to & new downstream pocition. The slopes of

e
gl

the lines of constant 6 at low levels upstream are reduced. There
a hydrostatic prescure difference of 8 pascals across the barrier.
Elemcnt 28 is brought cown to the surface behind the barrier,

implying the descent of lecs dcnse and therefore warmer air. There

is very little effect on the fluid higher up than the barrier

height. There is a net displacement of lower level fluid from leit
to right. Equation (2.26) shows that this will be compensated by a
reduction in the values of vy . The efiect is much smalier at

upper levels.

The initial data for the finite diiference model is shown in
Fige.8(b) and (c). It is chosen so that the 8 and v,
distributions are similar to the Lagrangian data and the barrier nas
the same height and cross sectional area. The output uses paysical
height rather than pressure as a vertical coorainate and extends up
to 12km, though the model itseif extends higher than this. Tae
irregularities in the © field over the mountain top result from the
interpolation. The data is similar to that used in [10] except that

the lower boundary condition is different. The values of v, are



tberefore not directly comparable with those in that paper. A

uniform 60 x 10 grid is used, with a horizontal grid length of 3i
Km.

The finite difference solution after 12 hourc is chown in Figs.
9(o) - (e). The 6 field above the mountain top has correctly been
transiated with little change. Cold air is trapped to the lefr oI
tne mountain and the change of slope of the upstream isentropes ic
predictea. The coid air croscing the mountain top loses its

identity due to numerical mixing and there is no dewnetream colc air

corresponding to element 30OB. The dragging of warmer air down cn
the lee cide is correctly predicted. There are numericai error< at
the gridpoint directly over the mountain top. The v, iiela, Fig.

G«c), chows the advection of the main maximum towards the mountain

parrier. The results at low levels for the u and w fielce, Figs.

(1}

9(a) and (e), show the attempt of the finite diiference mocei tc
mocdel the singular behaviour of the Lagrangian solution. At the
lowest layer of gridpointe upstream the flow is blocked and v,
increases according to equation (2.26). At the second levei the
flow 1is accelerated to bring fluia across the barrier and vy
decreases. Above the second level there is little effect on the &
field but there are some oscillations in the vy field. Downstrean
o the barrier at low levels there is a ‘'start vortex', causec Dby
the vertical expansion of the coiumn of air directly above the
mountain top at the initial time.The upstream barrier jet reaches a
peak of 9ms ' compared with 15ms"' deduced at the left hand
boundary of eiement 36 in the Lagrangian solution. The u field
does not deviate from its basic value of 1lims"' by more than lmc''!
except near the barrier, where it reaches 50ms ', and at some
gridpoints at the top of the model, not shown in Fig. 9(d). The
vertical velocity shown is the true paysical vertical motion, not
the pseudo-vertical velocity o that appears in the equations in the
transiormed coordinates. There are values up to 6cms ! above
the barrier extending up to the top of the model which are caused by
numericai: errors. Values near the barrier reach ims™',

The prezzure difference across the mountain at the surface ic

2.5 pascals. This ic less than that deduced from the Lagrangian
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modzl, but the latter value may be increazed by the simple biock
used to represent the barrier and the low resolution of the rest of

the calculation.
SUMKMARY

Thece results suggest that a carefuvlily decigned implicit finite
giiference algorithm can converge to discontinuouc Lagrangian
eolutions reprecenting atmospheric fronte, and can foliow a €olution
in which fronts are formed and discipated ceveral times. It is
also poscible 1o approximate a highly singuiar solution describing
flow over a mountain barrier. It ig not ciear in what cence
"convergence" is meaningiul in this case. It would be highly
desirable to establich theoretically under what conditions the
iteration strategy, which had to be developed empirically, does in
fact converge to the decired solutions. The theoretical tecols

necessary to 4o this are some way off.
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Arrangement of variables on grié in (x,z) plane.
Cecnstruction oi approximation to eguation (3.23) over variable
terrain height.

Initial data for front formulation, 2°C temperature difference
in vertical.

) Element cistributicn for Lagrangian method, (b) potentiail

temperature (°C), (c¢) Geostrophic winé (ms ').

Soiutions at t = 0.5 using Lagrangian mocel
(a) Eiement distribution,

(b) Potential temperature (*K), (c) Geoztroprhic wind (ms '),
(d) Horizontal cross-front velocity (ms '),

(e) Vertical velocity (cms '),

Solutions at t = 0.5 uecing finite diiference model,

(a) Potential temperature (‘K), (b) geostrophic wina (ms '),

(c) Horizontal cross front velocity (ms '), (d) vertical

Soiutions at t= 0.5 for front formation, 10°C temperature

gizierence in vertical,

(a) Erement distribution ior Lagrangian methoq; (b) potential
temperature (°‘C), Lagrangian metkod; (c) Potential temperature

(*C), finite acifference method; (d) verticai velocity (cms '),

Lagrangian method; (e) vertical velocity (cms ') finite

difiference method.

Solutions for periodic frontai deformation. (a) Fotential

temperature (°C), lst cycle solid lines, 5th cycle dashed lines,

maximum compression; (b) Fotential temperature ('C) !st cycle

solid lines, Sth cycle dashed lines, maximum expansion.

Solutions for flow over mountain ridge. Initial data :

(a) Eiement distribution for lagrangian method; (b) potential

temperature(°K); (c) geostrophic wina (ms '), |
Solutions for ilow over mountain ridge after iz hours.

(a) Element distribution for lagrangian method; (b) potential

temperature (°K), finite difierence method; (c) geostrophic wirna




(mz *); (d) croce mountain velocity (me ');

veiocity (cmg ).
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