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: P INTRODUCTION

A semi-implicit formulation of the ten leve: model octagon has been writtcn
using a centred leap-frog time step, and thie note discusses aspects of the

computational procedure and stability of the scheme.

The model is based on the Bushy-Timpson model (see Benwell et al (1971)) as

reformulated by Burridge (1975) with the two step Lax-Wendroff scheme replaced by

R ——

the single step leap-frog scheme. Unlike Burridge's scheme the present model is
not split, the operators for the non-linear advection step and the linear gravity
wave step being additive rather than multiplicative.

Only the first two gravity waves are dealt with implicitly, the others being

treated by the centred leap-frog scheme. (In Burridge's split model a forward

time step is used for all but the first two gravity waves). As with the split scheme,
in the h equation only the ICAO value of the/3|&> term is dealt with implicitly,
the departure from ICAO being dcne explicitly. In the current scheme the coriolis
terms are dealt with explicitly.

Diffusion is applied using a2 forward double time step.

The grid is staggered in space, but not in time.



2.  BASIC PQUATIONS

The equations are as described in Burridge (1975).
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(U, Vv ) are the velocities (W, ¥ ) = o (l#, V> of Burridge,
T 2 .
where m is the map factor, and /u. =M. (m = I+SU\¢ E Sec:(%‘_ —%’_ )
|
where ¢ is the latitude). h ) h.o, | and W are the thickness, 1000 mb

height, humidity and vertical velocity respectively. Pressure r is used as the
vertical co-ordinate.

The right hand sides of all the equations (the "physics"), though here set to
zero, are not neglected but are treated exactly as in the split scheme. (See
Burridge and Gadd (1975)).

The continuity equation is
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3. GRID AND TIME STEPPING FROCEDURL

The grid shown in fig (1) is used at eacnh time level n.
The time step (single time step) AL is the time advanced during one

leap-frog step of the forecast (ie from n to n+l). The double time step is

2aks

It is necessary to know the fields at time levels n-l1 and n to compute those
at n+l, To start a forecast, a forward time step from t‘-‘— O to t = At

is applied to all fields,
For the simple equation é:l (x,t) = f (x» t)
ot

the finite difference scheme takes the form
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4. INTEGRATION PROCEDURE

The integration is carried out in two steps

(i) Advection step

To the fields at time level n~l add an advective term computed at time
level n to obtain preliminary fields at time level n+l.

& & iy ~
Denoting these preliminary fields by W, V, " L‘no) g one has
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(ii) Semi-Implicit Step

There remain the gravity wave terms to be taken into account.

Equations (1) to (4) can now be written
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It is convenient to introduce vectors e ) Mooy w3 E: whose
elements are the 10 values of W, vs W, F\ at each of the levels,

The Tinite Qifference form of Eq (5) is then
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and Equations (12a) and (12b) can be combined and written as a vector equation
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Equations (10) and (11) can similarly be written in vector form
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The matrices é\ ? ‘r‘I ) -]_:_) and §_‘I are introduced in Burridge

and are given in the Appendix.(P.Hg,)
To compute the adjustment necessary for the first two gravity waves, decompose

U , Vv and
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a diagonal matrix, whose diagonal
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where E éI
- z.

elements (all real and positive definite) are the squares of the gravity

T
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wave speeds (arranged in descending order) of the ICAO atmosphere. (The <y

)
are the eigenvalues of the matrix GI y and the columns of E. are the right

hand eigen functionsof §I ¥
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Equétions (16), (17) and (15) then become
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The first two modes (ie the first two components of the vectors X E_: :-6.)
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are treated implicitly ie derivative =T 1is approximated by 2 S .
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and similarly 'ég . The other eight modes are treated explicitly ie
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the explicit contributions to the gravity wave terms are now taken into account.

(Computationally, these terms can be evaluated at the advection stage and

Ak n—\

w etc obtained directly from W etc without the need to compute
A :

W etc).

One finds for the first two modes (’L =1, 2)
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Introducing the matrix H = diag (1,1,0,0,0,0,0,0,0,0,)

the above two sets of equations may be combined back into vector form
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Now eliminate olL and IGL by substituting (24) and (25)

into (26) to get a second order differential equation for the quantity
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This is a set of uncoupled Helmholtz equations for the \F

and the right hand sides R.:
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are given by the expression
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: s0 _e_T E is the vih row of E-.
and Ei = _e:; _‘é_

Note that the left hand sides of equation (%6) are the same as in Burridge's
split schemsz, except that L Ot is replaced by At .
o
One can therefore use ‘he same ADI paraneters, for example, for a 15 minute

timestep in the centred model as for a 30 minute time step in the split model.
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Fra ntl : A+l !
After obtaining VL and hence 8; the complete solution

for \A‘Ml‘ '\_/.m' . b_m' is obtained from the following relations.
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(a)

(b)

(c)

(d)
(e)

To summarise, the order of computation to solve equations (1) to (4) is
evaluate the right hand sides of equations (6) to (9) at time level n,
and obtain G. etce

.

add on the explicit contribution to the gravity wave terms (see equations
(10) to (13) ) to obtain  &™ etc. -
evaluate the rignt hand sides of the Helmholtz equations (36a)

and the quantities \TJ;“ (é=hha ) | |
solve the Helmholtz equations tovobtain '\]’LM‘ (Col,an )

Add on the implicit contributions to the gravity wave terms (see equations

(37) to (39)) to obtain T etc.




APPENDIX

The matrices é , f and

o

are as defined by

Burridge.
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e STABILITY ANALYSIS

A stability analysis of the linearised two dimensional shallow water wave

equations
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has been done for both the explicit and the implicit cases on the space

staggered, time unstaggered grid of fig (3).
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Using the finite fourier expansions

t(njde+ mhdy)

wlx,y,t)s W le)e etc

with l:crcfl: o 'JDC :hd- n and m being the wave numbers
it ] - e

in the x end y directions respectively and furtner assuming W,E)s W WUg

where w is the (complex) anplification factor, one has the following

expressions for the derivatives.
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The two cases under consideration are

(i) Explicit. case where all space derivatives.in equations (40), (41) and (&42)

are taken at time level r.

» L3 % ®
(ii) Implicit case where the gravity wave terus :? .
x
and the ICAC contribution to c‘(h_u, -+ AN are treated implicitly
\dx. ey/

while the advection terms and the departure from ICAC are treated explicitly.



Where ¢z ¢ *(1+¢€)




On substituting the finite difference approximation for a single fourier

mode and eliminating U, Ve, cnd ¢. one obtains in both

cases a quartic for W

Case (i) (explicit case)
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Now the roots of eq (L3) are WE=LhY =N
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which gatisfy the condition lu)l &) if and only if /\z' £ )

(in fact jw| =2 if this conditicn holds)



The strongest inequality is obtained by taking the postive sign if u
and \V4 are both positive, and the negative sign if W ond V  are
both negative.

The stability criterion is thus |/\' \‘( I

Taking w=Vv and JB s Jx gives
A = gt LL[St'n(nd'x)-rsdr\Cm&d)j
dx

+ e/ ndx) + sin*(Emdy)

It is easily seen that a sufficient condition for \)\\ 4 l

is that
it < RN DR
Sx L+l ¢

and detailed computation shows that this can be relaxed by about 10%.

with W = 100 m sec.,| and &x = 300 km the maximum time step possible

s 3 p = - ‘ 3 «l

is about 5 minutes if c = 300 m sec'or about 16 mins if Cc = 50 m sec.
Inclusion of the map factor results in a lower limit for &t .

Y2
(Replace dt by/"' dt throughout the above analysis.)

Case (ii) (implicit case)
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Comfzutation shows that provided =1& €& +I the roots of this equation

satisfy lu)l « | ie the scheme is unconditionally stable, but for

\ﬁ‘ > one root has |w]| » | 50 the scheme is uncoﬁditionally unstable. l
In practice ‘(c"- C,,‘)/C: l v ’El is small for the high speed gravity |

modes, but can become greater than unity (¢* >9.C.') for the |

slow moving modes. Thus one should _rg_t_ consider all the modes implicitly

in the centred leap~frog scheme.

E<-| (i,e. C.z(O) corresponds to static instability.
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6. PROGRAMMING CONSIDERATIONS

Buffer Arrangement

The buffers are arranged as in fig (4). Three lines of the octagon are
required for the calculation of-the advection step, and one line for the
calculation of the implicit adjustment.

Some preliminary remarks are necessary :

. (1) Register 6 contains the address of a list of constants which can
be referred to either by their individual labels eg MID88S or as a
displacement on from register 6 eg 888(6). The contents of register
6 is never changed (except in OCTHH where the MID list is not
referred to)

(2) 888(6) contains the line number of the octagon row currently being
read into the buffer. On entry to OLDMAIN, register 10 contains
this value.

g (3) 656(6) contains the number of time stepscompleted. On entry to
OLDMAIN, register 11 contains this value.

(4) The li'ne buffers in fig (4)are referenced by their addresses, which .
are stored in the MID list. The addresses are cycled when a new
line of the octagon is read in. The displacementsof the three
working lines (TOP,MID,BOT) are also stored in the MID list.

With reference to fig (4), for example, 44(6) contains the address of

the buffer currently containing the TOP line of n-1 time step. 892(6), 896(6)
and 900(6) contain the displacements in bytes from the beginning of the buffer
of the (first point -1), (last point -1) and (last point -2) of the TOP line
of n-1, n or n+1 time step.

There follows a brief description of éach CSECT
ONMAIN is the contrblling program for the forecast (mainly OMIGOP)

and also controls all the I,/0 (using KVDATA,RHDATA,OCTFW,CFWRITE)
Briefly as follows :

(1) Reads start data set {thic includes the time step DI}

Lo




(2)

(3)

(10)

(1)

(12)

(12)

(14)

(15)

Sets up the MID constants eg line lengths, line displacements,
initial addresses of line buffers

Reads initial data set line by line into store and transfersto
fixed head disk (FHD). For a start (as opposed to a restart) each
line is written twice. For a restart, two initial data sets are
required (at time levels n-1 and n) and both are transferred
together as line pairs onto fixed head disk.

All subsequent reads and writes from and to FHD transfer a line pair
of data.

Reads line 1 of octagon from FHD into store

Reads line 2

Reads line 3, sets 888(6) = 3

Calls OLDMAIN which cycles buffer addresses - Now line 1 is in BOT.
Reads line &, sets 888(67 = 4

Calis OLDMAI! which cycies buffer addresses - Now lines1, 2 are in
MiD,BOT respectively.

Reads line 5, sets 888(6) = 5

Calls OLDMAIN Which cycles buffer addresses. Now lines 1,2,3 are
in TOP,MID,BOT

Reads line 6 sets 888(6) = 6 ¥ > . »
Calls OLDMAIN which cycles buffer addresses - Now lines 2,3,4 are in
TOP,MID,BOT

Enters OMLOOP,writes line 1, reads line 7, sets 888(6) = 7,

calls OLDMAIN which cycles buffer addresses - Now lines 3,4,5, are
in TOP,MID,BOT

Continues to cycle OMLOOP until end of forecast.

Write ups are done line by line from OFWRITE to two data sets VDATAMnn

(time level n) and VDATAMXi (time level n-1)

nn is a datea set reference number calculated from NUMDD given in the start

data set.



OLDMAIN

OCTEM

ADDTHU
ADDTHV
EVENU
EVENV
EVENR
EVENTH
EVNH1000

OCTEW

OCTREP

EXPADJ

iis alternativély O or 1 at succesive write up times.

The bufferswhich are written up are those containing BOT and OFWRITE is
called after all the computation has been completed for that line.

The start data set is updated in OFWRITE after the laét line of the octagon
has been written.

cycles buffer addresses, sets up displacments in locations 892(6) to 924(6)
and controls calls to all subroutines including OFWRITE.

is the controlling subroutine for computation of the advection step. Uses
TOP,MID,BOT rows of n time step and puts result in MID row n+1 time step.
This routine is not called when MID contains line 1 or line 61 of octagon.
OCTEM calls ADDTHU and ADDTHV once for each point of the row, and calls
EVENU, EVENV, EVENTH, EVENR and EVNH1000 separately for each level at

each point.

computes heights from thickness for MID(n) and stores in sigma work space.
computes heights from thickness for BOT(n) and stores in sigma work space.

computes advection increment in w for all terms in eq(1) including 9 %?
%

n " n "n v " " " n 2 " éb_
eq(2) 9 55

n " 1 L (A e " " " " eq(#)

" n ] " k‘ 1" " n n eq(8a)

" 1" " ‘n \'\., " " 1" " eq(8b)

computes W from eq (14). It is called twice, firstly using MID,BOT(n) to
compute W" for BOT, and secondly using TOP,MID(n+1) to compute @ for
MID. W cannot be computed for line 1or line 61 of octagon.

moves the complete 80 word column from MID(n-1) to MID(n+1). It also S
point smoothes the surface exchange increments in the n-1 time step and
puts the result in the n+1 time step columns.

computes the right hand sides . R.‘. (L= l,&) : of the Helmholtz equations
and stores the results in EXPBUFF. Tt also computes.:qdr (ie1,2)

(needed in IMPHTS) and stores in words 73, 74 of the column. It uses MID

®
(n-1, n, ™ ) and is called for all lines of the octagon. It replaces

SAOT




IMPMAST

IMPU

IMPV

IMPHTS

IMPTH

thickness in the column by heights and adds on the explicit part of the
term,ﬁswn(see equations (3), (8) and (23)) and also the surface exchange
thickness increment.

is the controlling routine for the computation of the implicit terms.

It uses BOT(n), and is called for all lines of the octagon.

IMPMAST calls IMPU, IMPV, IMPHTS, IMPTH.

the adjustment term (see eq (36)) to obtain w™!

adds to

&u

A % el
" " Vv " " ] (see eq (39)) n " v

A

hﬂ

nel
" 1"

" ] 1" (see eq (37)) " 1" h

replaces heights in column by thickness

TMEAN1, THEAN2 are time smoothing routines.u.,v“-\',h.o,w,r are all smoothed like

e OCTPH

OCTSURF

OCIDF

G = ¢4 (Brr-agn+ 97
in two stages }
TMEAN2 does ¢"‘ = ¢"+ ot ( gn-l - a¢")
TIEANT does @' ¢'“"+o( @"
X = 0.005 is used.
NSHT, EWHT, MOVEH are boundary smoothing routines.
stores the thickness (after adding an ICAO values) in sigma work space,
calls CONDEVAP and CONVECT, and restores the new thickness (less ICAO
values) back in column. It uses BOT(n).
computes the surface exchange thickness and humidty increments and
stores them in the 80 ward column. It uses BOT(n-1)
computes the diffusion (for w,v,\n,¥ ) and surface friction (for\U,gee,Vicee
It uses TOP,MID,BOT(n-1) to compute increments which are added to MID(A ¥

and is not called for the boundary points.
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