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Fibonacci Grids: a novel approach to Global Modelling 

Richard Swinbank, Met Office, Exeter, U.K. 

R. James Purser1, National Centers for Environmental Prediction, Camp Springs, 
Maryland, U.S.A. 

 

Summary 

 Recent years have seen a resurgence of interest in a variety of non-standard 
computational grids for global numerical prediction. The motivation has been to 
reduce problems associated with the converging meridians and the polar singularities 
of conventional regular latitude-longitude grids. A further impetus has come from the 
adoption of massively parallel computers, for which it is necessary to distribute work 
equitably across the processors; this is more practicable for some non-standard grids.  
Desirable attributes of a grid for high-order spatial finite differencing are: (i) 
geometrical regularity; (ii) a homogeneous and approximately isotropic spatial 
resolution; (iii) a low proportion of the grid points where the numerical procedures 
require special customization (such as near coordinate singularities or grid edges); (iv) 
ease of parallelization.  

 One family of grid arrangements which, to our knowledge, has never before 
been applied to numerical weather prediction, but which appears to offer several 
technical advantages, are what we shall refer to as “Fibonacci grids”.  These grids 
possess virtually uniform and highly isotropic resolution, with an equal area for each 
grid point. There are only two compact singular regions on a sphere that require 
customized numerics.  We demonstrate the practicality of this type of grid in shallow 
water simulations, and discuss the prospects for efficiently using these frameworks in 
three-dimensional weather prediction or climate models. 

 

KEYWORDS: Global grids   Atmospheric modelling 

                                                 
1 Additional Affiliation: Science Applications International Corporation, Beltsville, 
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1.  Introduction 

 Global grid point atmospheric models generally use a standard framework, in 
which locally quadrilateral grids are aligned with the latitude and longitude coordinate 
system.  While this approach is superficially simple, it suffers from some fundamental 
problems that are associated with converging meridians at high latitudes, and 
singularities at the poles.  Recent years have seen a resurgence of interest in a variety 
of non-standard computational grids for global numerical prediction, to alleviate these 
problems. A further impetus has come from the adoption of massively parallel 
computers, for which it is necessary to distribute work equitably across the 
processors; this is more practicable for some non-standard grids. Desirable attributes 
of a grid for high-order spatial finite differencing are: (i) geometrical regularity; (ii) a 
homogeneous and approximately isotropic spatial resolution; (iii) a low proportion of 
the grid points where the numerical procedures require special customization (such as 
near coordinate singularities or grid edges); (iv) ease of parallelization. 

 Two early attempts to alleviate the difficulties of the standard latitude-
longitude grid framework are the “skipped grid” introduced by Gates and Riegel 
[1962] and the “reduced grid” proposed by Kurihara [1965]. Such solutions preserve 
approximately constant spatial resolution at all latitudes, but at the additional 
computational cost and inconvenience associated with the zonal interpolations 
required to “fill the gaps” pole-ward of each of the latitudes where the grid’s zonal 
resolution is made to change. 

 An alternative approach is to map the globe onto the faces of an appropriate 
polyhedron, the faces of which are subdivided to make up the grid cells.  Purser 
[1999] has reviewed a range of alternative polyhedral grid frameworks that have been 
used for global numerical modeling.  One example is the use of grid frameworks 
based on a cube [e.g. Sadourny, 1972, Rančić et al., 1996 and Ronchi et al., 1996].  A 
more popular approach is the use of grid frameworks based on a regular icosahedron 
[e.g. Sadourny et al., 1968, Williamson, 1968, Cullen, 1974, Thuburn, 1997 and 
Majewski et al., 2002].  Generally speaking, the polyhedral grids reduce both the 
problem of converging meridians, and the severity of the “polar” singularities (at the 
cost of introducing a greater number of locations where customized numerics are 
required, at the vertices of the underlying polyhedron).  In cases where the grids lack 
smooth continuity across the edges of the polyhedron, special numerical treatment is 
also required at those locations. 

 Overset grids, such as the “Yin-Yang” Grid [Kageyama and Sato 2004, 
Takahashi et al., 2005], have also been proposed for global modeling. Such 
arrangements, in which the globe is covered by two (or more) overlapping grids, 
preserve grid regularity, avoid singularities, and achieve fairly uniform resolution.  
However, interpolations have to be done at least once every timestep in the overlap 
regions.  

 One family of grid arrangements which, to our knowledge, has never before 
been applied to numerical weather prediction, but which appears to offer several 
technical advantages, are what we shall refer to as “Fibonacci grids”.  They can be 
thought of as mathematically ideal generalizations of the patterns occurring naturally 
in the spiral arrangements of seeds and fruit found in sunflower heads and pineapples 
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(to give two of the many botanical examples).  These grids possess virtually uniform 
and highly isotropic resolution.  There are only two compact singular regions on a 
sphere that require customized numerics.   

 Saff and Kuijlaars [1997] give a very readable review of general approaches to 
the problem of distributing many points evenly over the surface of a sphere.  They 
describe approaches which correspond to the “reduced grid” and the icosahedral grid 
already mentioned. Their construction of a “generalized spiral set” of points is 
somewhat similar to our spherical Fibonacci Grid, although they do not identify the 
benefits of using a generation angle based on the golden ratio, which we outline 
below. The Fibonacci grids are also superficially similar to the spherical spiral grids 
proposed by Chukkapalli et al. [1999], and share some of the same computational 
advantages. However, the algorithm which defines the Fibonacci grid framework is 
simpler, and produces a more even distribution of grid-points.  The Fibonacci grid 
combines uniform resolution with a lack of artificial symmetries.  More recently, 
Hannay and Nye [2004] proposed the use of a Fibonacci lattice that is essentially 
identical to our grid, for elementary numerical integration on a sphere. 

 This paper extends the preliminary work of Swinbank & Purser, [1999].  In 
this paper we describe the Fibonacci grid frameworks, first in 2 dimensions, and later 
for the surface of a sphere.  We describe the implementation of a shallow water model 
using the spherical Fibonacci grid, and show results produced using that model.  
Lastly, we discuss the prospects for efficiently using this approach for three-
dimensional numerical weather prediction or climate models.  Although we anticipate 
that Fibonacci grid models should be relatively straightforward to implement on 
massively parallel computers, we do not address that issue directly in the current 
paper; instead the reader is referred to the paper by Michalakes et al. [1999].  

2.  The Fibonacci Grids 

 Perhaps the greatest European mathematician of the Middle Ages was 
Leonardo of Pisa, better known as Fibonacci.  While he was largely responsible for 
the introduction of the Hindu-Arabic notation system for numbers, he is probably 
better known as the inventor of the Fibonacci sequence of numbers.  In the Fibonacci 
sequence (0, 1, 1, 2, 3, 5, 8, 13,…) each number is the sum of the two numbers that 
precede it.  For many years, it has been realized that patterns seen in many plants and 
flowers can be characterized by Fibonacci numbers; see, for example, the recent 
reviews by Conway and Guy [1996] and Stewart [1998].  Perhaps the most well-
known botanical example of such a pattern is the arrangement of the seeds in a 
sunflower head.  The most conspicuous features of this pattern are the successive 
families of spiral arcs, alternating between right-handed (clockwise) and left-handed 
(anti-clockwise) curvature. In general the number of spirals in, say, a clockwise 
family is a Fibonacci number Fk, while the number of anti-clockwise spirals is an 
adjacent number in the sequence (Fk+1 or Fk-1). (By convention, we index the 
Fibonacci sequence such that F0 = 0.) As the distance from the centre increases, the 
spacing of points along a particular spiral first decreases to a minimum, then it starts 
to increase.  The spirals which are most obvious to the eye at any particular radius are 
those along which the spacing between the points is least; we refer to them as the 
“dominant” set of spirals.  As the radius increases, the order (k) of the dominant 
spirals also increases.   
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 Bravais and Bravais [1837] were the first to show that such patterns resulted 
from elements on a unique tightly wound spiral, known as the generative spiral.  
Measurements on plants showed that the angular spacing between successive 
elements on the generative spiral are close to 137.5°, or 2π(1-Φ-1), where Φ is the 
golden ratio (1+√5)/2, defined by the relationship Φ = 1 + Φ−1.  Douady and Couder 
[1992] showed that this special angular separation can arise automatically from a 
system’s tendency to avoid periodic organization; each new element fits into the 
largest gap between the previous set of elements, leading to an even distribution of 
points over all possible angles.  In order to obtain an even distribution of the elements 
over a disk, Vogel [1979] pointed out that the radius of the generative spiral must be 
proportional to the square root of the angle along the spiral; this type of spiral is 
sometimes referred to as a Fermat (or cyclotron) spiral.  Thus, a mathematical 
idealization of the “sunflower” pattern can be generated using a simple pair of 
formulae for the polar radial and azimuthal coordinates r and λ of each point i: 

 12i iλ π −= Φ , (1) 

 0 1 2ir r i= − . (2) 

The angular displacement between successive points is 2πΦ−1, (or about 222.5° = 
360° - 137.5°; Eq. 1). The radial distribution (Eq. 2) ensures that there is one point in 
each ring of area πr0

2 centred on the origin, so that the points are evenly spaced in 2 
dimensions.  The offset of '1/2' in Eq. (2) leads to the most uniform distribution of 
points in the immediate vicinity of the pole. 

 We use these formulae to define a planar “Fibonacci Grid”; see Figure 1.  This 
planar Fibonacci grid is a simple way of covering a disk with a virtually uniform set 
of points.  While more efficient arrangements may be attainable for a particular 
number of points, these formulae are valid for an arbitrary number of points (i.e. an 
arbitrary range of the index i).   

 The spherical Fibonacci grid (Figure 2) is obtained by wrapping the planar 
grid around a sphere in such way as to preserve the equal-area property.  The points 
are arranged at different longitudes λ, in a similar manner to Eq.1.  In order to obtain 
an equal-area grid on the sphere, the points are spaced evenly in sinθ, where θ is 
latitude (i.e. every point is at a different latitude).  By convention, we index points 
from -N to +N, so that the point indexed 0 is at 0°N, 0°E  

 12i iλ π −= Φ , (3) 

 2sin 2
i

Nθ = +1. (4) 

Once again, the polar-most points (i=-N and +N) are offset from the poles: the points 
are placed in the centre of bands of equal width in sinθ that cover the whole globe. By 
contrast, Hannay and Nye [2004] omit this offset and therefore have the pole as the 
first point of their grid.  Whether the equator belongs to, or is staggered with respect 
to, the sequence of grid points is an arbitrary choice; our choice here to include the 
equator is made merely for indexing convenience. 
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 For convenience, one can consider the Fibonacci grid points arranged on a 
cartesian coordinates, with the x-coordinate representing λ and the y-coordinate sinθ, 
as shown in Fig. 3; this corresponds to a Lambert equal-area cylindrical projection of 
the globe [e.g., Pearson, 1990]).  We can define a set of basis vectors bk, which are 
unit vectors corresponding to grid intervals along the spirals (or along the diagonal 
rows on the cartesian coordinates).  The basis vectors bk correspond to the 
displacement between two points whose indices differ by Fk.  It follows that the basis 
vectors obey a similar recurrence relationship to the Fibonacci numbers themselves: 

 . (5) k+1 k k-1b = b + b

From Figure 3, it is clear that the components of the basis vectors can be written in 
terms of the “circumference” in λ (C=2π), and the y-interval (δ=A/2π, where A is the 
area per grid-point): 

 ( ){ }2 , 2k k
kF Aπ π−= − Φkb . (6) 

 Equation (6) may be rewritten to give the basis vectors in terms of local 
cartesian coordinates on the surface of the unit sphere (recalling that A=4π/(2N+1)): 

 ( ) 22 cos ,
(2 1)cos

k k kF
N

π θ
θ

−⎧ ⎫
= − Φ⎨ +⎩ ⎭

kb ⎬ . (7) 

One can apply a similar technique to determine the basis vectors for the planar 
“sunflower” grid.  In that case the vertical axis of Figure 3 corresponds to the square 
of the radial coordinate r and the horizontal axis corresponds to the azimuthal 
coordinate λ.  It follows that the basis vectors on the planar grid are given by:  

 ( )
2

02 ,
2

k k kF rr
r

π −⎧ ⎫
= − Φ⎨

⎩ ⎭
kb ⎬ . (8) 

 On the spherical grid, as on the planar grid, different spirals dominate at 
different latitudes. Using the relationship Fk ≈ Φk/√5 when k » 1, to a good approx-
imation, bk can be written in the form  

 ( ){ },k z k k zd − −= − Φ Φkb , (9) 

where the “zone number” z is defined by 

 ( )2 22 1 5 cosz N π θΦ = +  (10) 

and the length scale d is given by 

 2 4
5(2 1) 5

Ad
N
π

=
+

= . (11) 
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The zone number is equal to k at the latitude at which |bk| is minimum; here the 
dominant spiral is of order k and the minimum grid-length, along that spiral, is √2.d.  
The next most dominant spirals (k-1 and k+1) each have grid lengths √3.d.   Where 
the zone number is k+½, spirals k and k+1 are equally dominant and the points form a 

square grid, of grid-length 
1
45 d , or √Α. (For the planar sunflower grid, Eq. 9 also 

holds, and equivalent expressions to Eqs 10 and 11 may be derived for z and d.) 

 In order to identify the nearest neighbours of every grid point, we perform a 
Delaunay triangulation on the points of the spherical Fibonacci grid.  As discussed in 
[e.g.] Chynoweth and Sewell [1990], a Delaunay triangulation can be constructed 
from an arbitrary set of points by joining the points to form a set of triangles, such 
that, if a circle is drawn through the vertices of each triangle, there are no other points 
within that circle.  Figure 4a shows the Delaunay triangulation for the points 
illustrated in Figure 2.  The triangulation highlights the zone structure of the 
Fibonacci grid; at zone numbers of the form k+1/2 (where the grid is square), there is 
a transition from one set of approximately 45° isosceles triangles to a set oriented in 
the opposite sense. A Voronoi mesh (e.g., Augenbaum and Peskin, [1985]) is the dual 
of the Delaunay triangulation, and delineates cells centred on the grid points.  Figure 
4b shows the Voronoi mesh for the same grid as Figs 4a and 2.  In most cases, each 
grid-point has 6 neighbours (defined as the other points linked to it by the edges of the 
triangles), so the Voronoi cells are irregular hexagons.  However, in some cases there 
are 5 or 7 neighbouring points, leading to pentagonal and heptagonal cells.   

 In each case the Delaunay triangles are formed by a triple of basis vectors bk-1, 
bk and bk+1.  On the equal area cylindrical projection, it is simple to show that each of 
these small triangles has exactly the same area (= A/2).  However, on the surface of 
the sphere, the areas are not identical, because the edges of the spherical triangles are 
formed by great circles, rather than the straight lines from the cylindrical equal area 
projection.  To illustrate the equal-area nature of the Fibonacci grid, it is best to 
consider the areas of the Voronoi cells, since they can be considered to be the areas 
represented by each grid point.  Figure 5 shows histograms of the areas of the Voronoi 
cells for three different resolutions of the Fibonacci grid.  The cells with areas most 
different from the average occur close to the poles.  As the grid resolution is improved 
(N is increased), areas of the cells away from the poles become closer and closer to 
the average and the absolute number of cells with areas different from average hardly 
changes.  In this sense, the Fibonacci Grid is a very close approximation to an equal-
area grid. 

 Finally, we note that there are a number of variations of the basic Fibonacci 
grid.  First, the grid exists in two chiral forms (i.e., right- and left-hand forms), 
obtained by changing the sign of the angular increment in Eq. 3).  Secondly, a degree 
of rotational symmetry can be introduced by having several points spaced evenly 
around each latitude circle.  Thirdly, the latitudinal spacing can be varied, while 
retaining the quasi-isotropic properties of the grid.  This framework might be useful 
for a global ocean model, in which resolution is increased in the tropics (Fig. 6).  

3.  Shallow water model 

 The spherical Fibonacci grid has several attributes that make it suitable for 
numerical modelling, notably its geometric regularity, its almost homogeneous and 
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isotropic resolution, and lack of artificial symmetries.  A major advantage over the 
usual regular latitude-longitude grid is that it does not suffer from converging 
meridians, for which the resulting small grid-lengths near the poles necessitate the use 
of techniques such as Fourier filtering to remove small-scale instabilities.  The extra 
resolution near the poles also means that a disproportionate amount of work needs to 
be spent on physical parametrizations at high latitudes.  The strong inhomogeneity in 
grid sizes may itself lead to difficulties in determining the degree to which sub grid-
scale effects need to be parametrized.  The advantages of the Fibonacci grid are 
achieved without the introduction of the multiplicity of singular points which occur 
when using polyhedral grid frameworks.  However, computations on the Fibonacci 
grid still require special numerical treatment of the polar caps. 

 In order to demonstrate the feasibility of using the Fibonacci grid for global 
numerical modelling, we have written a model to solve the Eulerian shallow water 
equations on that grid.  One disadvantage of the Fibonacci grid is that there is not a 
natural way to stagger the grid points.  However, by using the combination of high 
order differencing with low-pass filtering to combat the tendency towards nonlinear 
computational instability, we anticipate that we can overcome the inherent 
disadvantages of an unstaggered grid. 

 Over most of the globe, we solve the shallow water equations written in terms 
of the equal-area cylindrical mapping; in this mapping, the “spirals” are straight lines, 
as shown in Figure 3.  In the neighbourhood of the poles, where the spirals lose their 
identity, we use a set of equations written using the azimuthal equal area mapping; 
this is equivalent to using the planar grid illustrated in Fig. 1. Appendix A shows how 
the shallow water equations can be written in both equal-area coordinate systems.   

 For the equal-area cylindrical projection, Eqs (A14) and (A18) can be 
expanded to give equations for the contravariant westerly and southerly wind 
components (  and ) and the height h: x& y&

 2 2 2

2sin 1
cos cos cos

x x x gx y xy f y
t x y

h
x

∂ ∂ ∂ θ ∂
∂ ∂ ∂ θ θ θ ∂

= − − + + −
& & &

& & && & , (12) 

 2 2 2 2 2
2

sinsin cos cos cos
cos

y y yx y x y f x g
t x y

h
y

∂ ∂ ∂ θ ∂θ θ θ θ
∂ ∂ ∂ θ ∂

= − − − − − −
& & &

& & & & & , (13) 

 h h h xx y h
t x y x

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

⎧
= − − − +⎨

⎩ ⎭

& &
& &

y
y

⎫
⎬ . (14) 

For each grid point, high-order derivatives are calculated along each of the three 
locally dominant basis vectors (i.e., along the dominant spirals).  The x- and y- 
components of the gradients are calculated by linearly combining those derivatives.  
The x- and y- derivatives of a scalar a are related to the along-spiral gradients by:  
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 1

1

1

,
, ,

,

k k

k k

k k

dx dx
dS dSda da a a
dy dydS dS x y
dS dS

+

+

+

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤∂ ∂ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦⎣ ⎦
⎢ ⎥
⎣ ⎦

, (15) 

where the components of the basis vector bk in the cylindrical coordinate system are 
denoted by [dx/dSk, dy/dSk].  The matrix in this equation has determinant (-)kA, so this 
result may be inverted to get: 

 1

1

,
( ), ,

,

k
k

k k

k k

dy dx
dS dSa a da da

dy dxx y A dS dS
dS dS

+

+

1k +

⎡ ⎤−⎢ ⎥⎡ ⎤⎡ ⎤∂ ∂ − ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦ −⎢ ⎥
⎣ ⎦

 (16) 

 Only one pair of basis vectors (in this case bk and bk+1) is strictly necessary for 
gradient computations. But more smoothly varying gradient calculations can be 
obtained by combining the high-order derivatives along each of the three locally-
dominant basis vectors. At the latitude corresponding to zone number k+½ the 
gradients are calculated using Eq. (16), and at the latitude corresponding to zone 
number k-½ a similar expression is used, but based on the pair of basis vectors bk-1 
and bk. For latitudes between zone numbers k+½ and k-½, a linear combination of the 
two expressions is used, with a weighting that varies smoothly with latitude. 

 The regular approach described above cannot be applied to the polar caps, 
where the points are effectively configured amorphously, and we are forced to adopt 
customized differencing stencils and coefficients to achieve high order accuracy.  The 
schemes are more costly (per target) to apply, but are required only at a small 
minority of the points of the whole model, so the burden is tolerable.  Regardless of 
the resolution, the polar equal-area mapping of the grid (i.e., from the spherical grid to 
the planar grid) leads to the same geometrical configuration on the plane, except for a 
trivial constant scaling and rotation.  Thus, the customized differencing coefficients 
need to be worked out only once for each intended order of accuracy.  

 The approach we take to compute the stencil coefficients here is the planar 
analogue of the collocation method discussed by Swarztrauber et al. [1997].  It is 
explained in detail in Appendix B.  At point j the x- and y- derivatives of a field a, in 
polar coordinates, are given by  

 
0

n
X

ij i
ij

a C a
x =

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠
∑ , (17) 

 
0

n
Y
ij i

ij

a C a
y =

⎛ ⎞∂
=⎜ ⎟∂⎝ ⎠

∑ , (18) 

where CX
ij and CY

ij are stencil coefficients; each stencil comprises the target point 
(i=0), and n neighbours (the number of neighbours depends on the required order of 
accuracy of the derivatives). 
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 A similar method, but using low order numerics, provides the unstructured 
stencil coefficients for the Laplacian operator, which is the basis for constructing low-
pass filters. (Those low-pass filters are analogous to the diffusion normally applied in 
NWP models; for brevity we will often refer to this filtering as “diffusion”).  In the 
results presented here, we apply the Laplacian filter twice, in such a way as to 
produce  filtering. The set of stencil points used for the Laplacian operator at each 
grid point consists of the point itself together with the neighbouring points from the 
Delaunay triangulation.  The expression for the Laplacian operator is: 

4

a

∇

 , (19) ( )2

0

n
L
ij ij

i

a C
=

∇ = ∑

where CL
ij are the stencil coefficients for neighbour i of point j, and n is the number of 

neighbours (in the range 5 to 7).  Higher order diffusion is obtained by applying the 
Laplacian operator several times.  This method could also be used for the construction 
of relaxation operators to solve the Helmholtz equations associated with the solution 
procedures required for possible future semi-implicit versions of this model.  

 In practice, it was found that a substantial amount of diffusion was required to 
maintain computational stability.  The shallow water model is somewhat more prone 
to computational instability at high latitudes.  This may reflect greater inaccuracies 
associated with the regular differencing at high latitudes, and perhaps also difficulties 
with determining tendencies for the amorphously distributed points in the polar cap.  
Accordingly, we included the facility to vary the diffusive filtering coefficient as a 
function of latitude.  However, for the results presented in this paper, we found it 
simpler to filter the model fields with the same strength filter over the whole globe.  

 The shallow-water model at present uses a fourth-order Runge-Kutta time 
integration scheme (e.g. Press et al, [1996], chapter 16). Although it would be 
possible to use a more efficient time integration scheme, we have focused primarily 
on spatial aspects in this paper, since we are concerned with a novel spatial grid. The 
order of accuracy of the spatial derivative calculations may be varied.  For the results 
presented here, the along-spiral derivatives are calculated using 4th order accurate 
finite differences.  4th order accurate derivatives are also used for the polar parts of the 
model solution.  

4.  Results 

 In order to make an assessment of the model performance, we have carried out 
some of the standard tests defined by Williamson et al. [1992]. First, we have tested 
the advection scheme of the model in isolation, by advecting a cosine bell pattern with 
a constant, specified wind field.  Second, we have used the full shallow-water model 
to calculate the evolution of a Rossby-Haurwitz wave.  For initial studies, as reported 
by Swinbank and Purser [1999], we used a low resolution with N=1000 [2001 grid 
points, with a nominal grid-length (√A) of approximately 500 km].  For this paper, we 
present results produced at medium resolution (N=5000, grid-length approximately 
225 km) and at high resolution (N=20000, grid-length approximately 112 km).  The 
results presented here are all produced using fourth-order accurate horizontal 
differencing both for the normal zone-differencing and over the polar caps. 
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a) Advection tests 

 In these tests a cosine bell is advected once around the sphere, using a 
specified wind field that corresponds to sold body rotation.  The magnitude of the 
wind is chosen so that after 12 days the solution should exactly overlay the initial 
data. Several orientations of the advecting wind are specified: around the equator, 
directly over the poles and minor shifts from these two orientations.  The orientations 
are specified using a parameter α, which is that angle between the axis of solid body 
rotation and the polar axis.  We have run tests with α=0.0, -0.05, +0.05, π/2, π/2-0.05, 
π/2+0.05.  The values of α which are additional to those specified by Williamson et al. 
(α=-0.05, π/2+0.05) were included because the chirality of the Fibonacci grid means 
that those solutions are not just reflections of the solutions for α=+0.05 and α= π/2-
0.05.  Plots of the advection results for the six different orientations were found to be 
essentially indistinguishable, so results are only plotted for the over-the-pole case (α= 
π/2). 

 Figure 7(a) shows the results of advecting the cosine bell over the pole using a 
grid resolution of N=5000 (grid-length approximately 225 km), with the diffusion set 
close to the minimum value required for stability.  All the model results are plotted by 
interpolating from the model grid to a one-degree resolution latitude-longitude grid.  
Since that resolution is finer than the model resolutions we have used, any structures 
on the model grid-scale will be visible in the plotted maps. The final position of the 
cosine bell pattern is very close to its initial position, as it should be.  The main 
difference is a slight spreading of the pattern, which results from the numerical 
diffusion.   

 However, in order to run the full shallow-water model, it proved necessary to 
run with rather higher diffusion settings.  Figure 7(b) shows the advection tests with 
diffusion settings as required by the full model.  In that case, the diffusion has 
smoothed out the cosine bell much more strongly, although its position is still in very 
good agreement with its starting location. Figure 7(c) shows the advection results with 
N=20000 (112 km), again with diffusion setting used in the full model.  In that case 
the finer grid means that the diffusion is having much less effect, and results are 
essentially the same as for N=5000, with low diffusion, 

 Figure 8 shows statistical comparisons of the advection results with the true 
solution. We plot time series of the mean, root mean square and maximum 
differences, in terms of the L1, L2 and L∞ diagnostics defined by Williamson et al.  
These statistics are calculated from the output fields on the original model grid, 
assuming that each grid point represents the same area, i.e. there is no area-weighting 
in the calculations.  Figure 8 shows that L2 and L∞ grow quickly from the beginning of 
the integrations, as one would anticipate from errors dominated by diffusion.  The 
mean differences L1 highlight when the cosine bell is advected over the pole (at days 
3 and 9), showing that the grid is not quite equal-area close to the pole.   

 In summary, the results show that the advective processes are treated well on 
the Fibonacci Grid.  However, the steep gradients in the cosine bell pattern make it 
particularly susceptible to the diffusive filtering.   
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b) Rossby-Haurwitz wave 

 Another test commonly applied to shallow-water models is the simulation of 
Rossby-Haurwitz waves.  The initial height and velocity fields are defined by analytic 
functions of latitude, longitude and various wave parameters.  In a non-divergent 
barotropic model the wave pattern moves eastward without changing shape.  While 
the Rossby-Haurwitz waves are not analytic solutions of the shallow-water equations, 
they evolve in a somewhat similar manner, progressing eastward with some change of 
shape. 

 Simulations of the Rossby-Haurwitz wave have been performed using both 2nd 
order and 4th order accurate spatial differencing.  Experiments showed that the 2nd 
order accurate version of the model was more numerically stable than the 4th order 
version.  However, the 4th order solutions were more realistic, and we only show those 
results in this paper.  As noted in the previous section, it was found that it was 
necessary to increase the diffusion from the levels necessary for the advection tests.   

 The Rossby-Hauwitz wave tests have been run at both medium (N=5000) and 
high (N=20000) resolution, each for a 14-day period.  Figure 9 shows the starting 
conditions (day 0) and results at day 14 from the two Fibonacci shallow-water model 
runs, along with the day 14 reference solution from Williamson et al. [1992].  It is 
worth noting that, for this test, the true solution is not known, and the reference 
solution is obtained from an independent high resolution model.  The medium-
resolution results (Fig 9c) are essentially in phase with the reference solution (Fig 9b), 
but the shape of the waves has changed significantly.  The troughs have become more 
intense and the ridges have become narrower, coupled with an increase in heights at 
high latitudes.  The waves have acquired a noticeable poleward-westward tilt. This tilt 
is evidence of vacillations in wave structure that have also been found in solutions 
from other numerical models (see Thuburn and Li, [2000]). There is a degree of 
asymmetry between the solutions in the two hemispheres that results from the 
chirality of the model grid.    There are other small asymmetries between individual 
waves within a hemisphere, which result from the asymmetric nature of the grid.  At 
high resolution (N=20000, Fig 9d), the overall shape of the wave is closer to the 
reference solution, and the initial conditions, indicating the improved accuracy 
resulting from better resolution.   

 Figure 10 quantifies the errors from the two model runs.  In this case, the 
errors grow relatively slowly at the start, as the solutions gradually diverge. This 
indicates that, for this test, the errors are not so dominated by the diffusion. The L1 
error confirms that the total mass is not conserved; while the conservation of total 
mass is not enforced in the model, the statistics indicate that it is not a major problem. 
The normalized errors L2, L∞ errors are much smaller than in the advection test, and 
probably more indicative of values obtainable in real-life situations.  

5.  Discussion 

 The results shown in section 4 demonstrate that it is feasible to build a 
shallow-water model using the Fibonacci Grid framework.  The experiments show 
that the Fibonacci Grid framework allows accurate advection results.  However, the 
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high diffusion required to run the Eulerian shallow-water model for the Rossby-
Haurwitz wave tests show that the model has limitations.   

 As noted above, the integration scheme does not enforce the conservation of 
mass.  The initial wind fields for the Rossby-Haurwitz wave test case are exactly non-
divergent.  However, examination of individual terms in the model equations shows 
that the calculated divergence is non-zero.  The errors in the calculated divergence are 
largest at high latitudes, where the spirals become more curved, and the gradients 
calculated from along-spiral differences are less accurate.  Inaccuracies in the 
calculation also vary depending on which set of spirals are used for the gradient 
calculations.  This can introduce small-scale “noise” into the tendencies where the 
zone number changes rapidly (again, at high latitudes), which is one reason why 
strong diffusion is required to keep the model integration stable.   

 Thuburn and Li [2000] have shown that the simulation of Rossby-Haurwitz 
waves is a problem that is particularly sensitive to numerical instabilities. Hoskins 
[1973] showed that Rossby-Haurwitz waves with wavenumber less than or equal to 5 
are stable, but Thuburn and Li showed that the solution of the Rossby-Haurwitz wave 
in shallow water models involves a cascade of energy to smaller scales.  Depending 
on the details of the model grid, the small scale features may project onto unstable 
modes of the model.  This may be a further reason why strong diffusion is required in 
the Fibonacci Grid shallow-water model. 

 Difficulties with the accurate calculation of divergences indicate that it may be 
difficult to enforce conservation properties in the model equations.  We do not, either 
explicitly or implicitly, have a grid-cell structure which we could use to define fluxes 
of mass or other quantities. One option might be to base a model on a set of triangular 
grid cells defined using the Delaunay triangulation of a Fibonacci Grid. That would 
facilitate the enforcement of conservation in the model, but it would make it much 
harder to implement high-order accurate numerics. Another option would be to 
formulate a model using the Voronoi cells.  Most of the cells would be irregular 
hexagons, but with some pentagons and heptagons.  While this might allow a more 
accurate calculation of fluxes and divergence, it may be so much more complex as to 
be impractical – certainly less practical than the geodesic grid with icosahedral 
symmetry.  

 In the polar caps, the divergence is captured better, but the pressure gradient 
term is more of a problem.  The Coriolis term acts at right angles to the wind, and is, 
to a good approximation, balanced by the pressure gradient term.  However, in the 
polar equal-area projection the angles get distorted away from the pole, and the 
apparent angle between the pressure gradient and the wind direction can be very 
different.  Small inaccuracies in the calculation in polar coordinates can transform 
back into larger inaccuracies in the local cartesian coordinates.   

6.  Conclusions 

 We have described a novel approach to constructing a global model grid, 
which we refer to as a “Fibonacci Grid”.  This approach offers a number of significant 
advantages over previous model grids, notably its virtually uniform and isotropic 
resolution.  It avoids the converging meridians of the standard latitude-longitude grid, 
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and the consequent need for Fourier filtering.  However, the treatment of the polar 
caps is rather complex.   

 This paper has demonstrated the feasibility of using this grid for a high-order 
accurate Eulerian finite-difference model of the shallow-water equations. However, 
we have identified some problems with this version of the model, which are made 
evident through some inaccuracies in the calculation of some of the terms in the 
model tendencies.  In this paper, we have concentrated on spatial rather than temporal 
issues, since our aim has been to demonstrate the use of the innovative Fibonacci 
Grid.  For this grid to be used for an efficient, accurate and practical numerical 
weather prediction model, a semi-implicit treatment would be required.  This would 
require a Helmholtz solver to be written for a spherical Fibonacci grid.  Another 
possible area for future work would be to demonstrate the feasibility of using the grid 
for semi-Lagrangian integration schemes.  In addition, a Fibonacci grid could be used 
as a test-bed for amorphous grid techniques, since it does not impose artificial 
symmetries on the solutions. 

 Finally, we remark that, although we have focused on the use of Fibonacci 
grids for global numerical modelling, we anticipate that they could have a range of 
other applications.  The use of the grid for numerical integration, as proposed by 
Hannay and Nye [2004], is just one example.  In this context Purser and Swinbank 
[2006] show that, owing to certain fortuitous geometrical properties of the Fibonacci 
grids, whether staggered or unstaggered with respect to the poles, both these grids 
admit arbitrarily high-order global integration formulae whose weights are constant 
except for a handful of the most northerly and the most southerly grid points. The 
problem of distributing a large number of points uniformly over the surface of a 
sphere has not only inspired mathematicians, but also scientists working in many 
diverse fields.  While the set of points generated by the Fibonacci grid algorithm may 
not be quite optimal, it is a very simple method of generating an “almost uniformly” 
distributed set of an arbitrary number of points over the surface of a sphere.   
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Appendix A 

Shallow water equations in equal-area coordinates 

 We adopt tensor notation (e.g. Synge and Schild [1978]) and the methods of 
variational mechanics, which provide succinct derivations of the equations for 
shallow water dynamics in a variety of coordinate systems based on the stationarity of 
the action integral, 

 L  (A1) 
2

1

t
Ldtt= ∫

with respect to independent variations of the generalized position and momentum 
variables.  We express Hamilton’s principle for the dynamics of shallow water in a 
rotating frame with equal-area map coordinates x ≡ (x1,x2) and, following Salmon 
[1983, 1985], we shall use τ to denote the Lagrangian time coordinate and α ≡ (α,β) 
to denote a pair of Lagrangian particle coordinate labels such that the depth of the 
flow has the form 
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To simplify matters, we assume the map coordinates are scaled to give unity for the 
determinant of the (covariant) metric tensor, qij. Then the “Levi-Civita” tensor 
operator that rotates a horizontal vector 90 degrees clockwise (viewed from above) 
will be denoted E and, in right-handed equal area coordinates, has the identical 
contravariant and covariant representations: 
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The (scalar) cross product of horizontal vectors A and B is given in tensor notation by 
AxB = AiBjEij while the (scalar) curl of a horizontal vector field A is given by 
curl(A)=∂(EijAj)/∂xi.  Salmon [1983] shows that the effect of a Coriolis parameter in 
geophysical fluid motion can be introduced through the use of a vector field whose 
curl is the local Coriolis parameter. Let Ai henceforth denote the covariant 
representation of such a field, i.e., 
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∂
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With used as a shorthand for the Lagrangian partial time derivative, ∂xix& i/∂τ , the 
Lagrangian, L of (A1) then has the form for shallow water:  

 ( ) i
i iL u A x d d Hα β= + −∫∫ & , (A5) 

where the Hamiltonian, H, is the sum of kinetic and potential energies: 
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 ( ) ( )1( ), ( )
2

ij
i jH u u q gh d dα β= +∫∫u α x α . (A6) 

We identify conditions of stationarity with respect to variations of ui and of xi as 
follows. 

 iuδ : , (A7) 0=− j
iji uqx&

which shows that the quantities ui conjugate to xi are indeed the proper momentum 
variables consistent with the kinematic motion. 
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The final term of (A8) comes about because 
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Then, integrating by parts, this becomes: 
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The term of (A8) involving A can be simplified: 
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where, by virtue of (A4), the new “Coriolis tensor” is just fij=Eijf.  

It becomes inconvenient to retain both representations ui and  of the velocity field, 
but (A7) allows us to eliminate one of these. Keeping , we obtain: 

ix&
ix&
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where {jk,i} denotes the Christoffel symbol of the first kind: 
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In terms of the local time derivative of , we therefore obtain: ix&

 15



 0=
∂
∂

+−Γ+
∂
∂

+
∂
∂

j
ijji

j
kji

jk
j

j

ii

x
hgqxfxxx

x
x

t
x

&&&&
&&

, (A14) 

where  

 , (A15) },{ ljkqili
jk =Γ

is the Christoffel symbol of the second kind and the Coriolis mixed-tensor, 
. fEqf kjj = iki

Applying the identity, 

 ⎟
⎠
⎞

⎜
⎝
⎛= −

ττ d
dtrace

d
d NNN 1)log(det , (A16) 

to the definition of h-1 we obtain: 
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or, in terms of the Eulerian time derivative,  
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Two equal area mappings, the polar azimuthal and the cylindrical, are natural 
frameworks for the expression of dynamics on a Fibonacci grid, so we briefly 
summarize their metrical properties. 

 

(i) Cylindrical mapping 

In this case, the appropriate map coordinates preserving correct areas of the unit 
sphere are 

 ( )( , ) ,sinx y λ θ≡ =x , (A19) 

and the metric tensor representations are diagonal with 

 , (A20a) 21 yqq yy
xx −==

 ( )21 1xx
yyq q y= = − . (A20b) 
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The components of  are found to be: i
jkΓ

 , (A21a) 0=Γ−=Γ y
xy

x
xx

 2(1 )y x
yy xy y yΓ = −Γ = − , (A21b) 

 , (A21c) 0=Γ x
yy

 . (A21d) )1( 2yyy
xx −=Γ

 

(ii) Polar azimuthal mapping 

 In order that the centered circle of radius r in the map domain encloses the 
correct area of the corresponding polar cap of the unit sphere we require: 
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where θc is the colatitude for this pole. The local metrical properties are determined 
by the measure of distortion: 
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which, in terms of the map coordinates, is defined by: 
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Adopting cartesian map coordinates, 

 ( )( , ) cos , sinx y r rλ λ≡ ≡x  (A25) 

where λ is the azimuth (±longitude) about the pole, and the convenient substitution, 
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the components of the representations of the metric tensor are found to be: 
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Then, with outer subscripts denoting partial differentiation in the following set of 
formulae: 
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 , (A28a) 2 2( ) (2 2xx xq x T x T= + )
 2 2( ) ( ) (1 4 2 )yx x xy xq q y T x T= = + + , (A28b) 

 2 2( ) ( 1 2 2 )yy xq x y T= − + , (A28c) 

 2 2( ) ( 1 2 2 )xx yq y x T= − + , (A28d) 

 2 2( ) ( ) (1 4 2 )yx y xy yq q x T y T= = + + , (A28e) 

 , (A28f) 2 2( ) (2 2yy yq y T y T= + )

we may use these to obtain, by (A13), the components of the Christoffel symbol, 
{jk,i}: 

 { } ( )2 2,xx x x T x T= + ,  (A29a) 

 { } { } ( )2 2, , 1 4yx x xy x y x T= = − + ,  (A29b) 

 { } ( )2 2, 1 2yy x x T y T= + + ,  (A29c) 

 { } ( )2 2, 1 2xx y y T x T= + + ,  (A29d) 

 { } { } ( )2 2, , 1 4yx y xy y x y T= = − + ,  (A29e) 

 { } ( )2 2,yy y y T y T= + .  (A29f) 

Hence, by applying (A15) and collecting terms, we get the coefficients of the 
Christoffel symbol, : i

jkΓ

 ( )2 21 10 8x y
xx xy xT y r⎡Γ = −Γ = − −⎣ ⎤⎦ , (A30a) 

 ( )2 21 10 8y x
yy xy yT x r⎡Γ = −Γ = − −⎣ ⎤⎦ , (A30b) 

 ( )2 23 10x
yy xT x r⎡Γ = − −⎣ 8⎤⎦ , (A30c) 

 ( )2 23 10y
xx yT y r⎡Γ = − −⎣ 8⎤⎦ . (A30d) 

 

Appendix B 

Polar numerics 

Near the poles the grid must be taken to be essentially amorphous. The method we 
describe here for obtaining accurate numerical operators resembles proposals by 
Swarztrauber et al. [1997] for obtaining differencing coefficients on an icosahedral 
spherical grid, except we identify the robust stencils without recourse to methods 
involving singular value decompositions. We rely primarily on the construction of 
polynomial interpolation schemes, from which each derivative operator is deduced by 
differentiating the interpolating polynomial. The interpolating polynomial satisfies the 
“collocation condition”, meaning that it exactly fits the given values at the stencil 
points that specify it. We choose the degree of this polynomial to be greater, by one, 
than the order of accuracy of the intended gradients. But, for reasons of numerical 
robustness, we keep the number of stencil points intermediate between the number, 
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(m+1)(m+2)/2, of independent coefficients of the degree-m interpolating polynomial 
in x and y and the number, m(m+1)/2, of coefficients of a polynomial of degree one 
less. For example, for fourth-order gradients, our interpolating polynomial is of 
degree m=5 and requires 21 coefficients; the stencil of 18 points underspecifies these 
coefficients but would overspecify the 15 coefficients of a polynomial of only fourth 
degree. 

 The additional principle required to make the problem of determining the 
polynomial coefficients unique is one of parsimony: we require that the m+1 
coefficients of terms with maximum degree, i.e. degree m, are kept as “small” as 
possible (in a sense to be defined below), subject to satisfying the collocation 
condition. 
 

 Let c' be the subvector of terms of total degree m taken from the full vector c 
of Taylor coefficients up to and including this degree. Apart from a common scaling 
factor, there is essentially a unique choice for the quadratic norm ||c'|| that remains 
invariant to rotations of the spatial coordinates x and y. It is this norm we choose to 
measure the “size” of the terms of highest degree. Defining 
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with symmetric kernel N', we obtain N' by observing that, if a(x) were a realization of 
a homogeneous random process with a spatially isotropic autocovariance, 
<a(x'),a(x'+x)>=B(x), then the corresponding autocovariance of coefficients c' would 
define the inverse-kernel, N'-1: 
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within a constant of proportionality. But since the terms of degree 2m in the 
expansion of an isotropic function B(x) are those of the summation: 
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it follows that 
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where k = i+j and where (k-1)!!=1 . 3… (k-1) for k even. 
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 Centre the coordinates x and y on the target grid point of the stencil of N points 
xj for j=1,…,N and let the elements Pij of matrix P be the products of powers of the xj 
and yj that combine with expansion coefficients c to give the truncated Taylor series 
of function a(x) at this stencil point. Thus, denoting the values of the expansion at the 
stencil points by the vector a,  

 . (B6)  cPa T=

The collocation condition requires there to be no distinction between the vector a 
interpreted as the given general function a(x) at the stencil points and the vector of 
values of the reconstructed interpolating polynomial at those points.  Introducing a 
vector Λ of Lagrange multipliers, we find the “smallest” expansion coefficients 
consistent with collocation by extremizing, with respect to c and Λ, the quantity, 
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whose solution, in block matrix form, is: 
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By inverting the matrix on the left, we may express the result, 

 . (B9) aWc T=

Then, for a generic point, x, with powers of x and y arranged in a vector p(x), like 
each column of P, we obtain the stencil of interpolation weights as the vector, 

 , (B10) Wp(x)w(x) =

such that the interpolated estimate of a at generic point x is given by: 

 (x)aw(x) T=a . (B11) 

The gradient stencils are obtained: 
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 The combinations of possible stencils with desired number N of points are 
virtually unlimited. The obvious choice of the nearest set of N points, which works 
well enough for low-order numerics with small stencils, is often far from optimal at 
high orders of accuracy. However, it is reasonable to expect to find the “best” stencils 
to comprise only points not very distant from the target. Therefore, we adopt a search 
algorithm which begins with the nearest N points and progressively examines more 
dispersed combinations of N neighbouring grid points. To begin, we rank the points 
by distance from the target grid point, forming the list, n1, n2,…etc., in which n1 
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designates the target itself.  We define a “monotonic sum-L” sequence of N 
nonnegative integers, di,, = 1,…,N to satisfy Σ di = L and di ≥ dj whenever i ≥ j. For N 
≥ L ≥ 0 the set of such sequences numbers p(L), the number of partitions of L without 
regard to order, as defined in Abramowitz and Stegun [1965, p825], and the individual 
sequences within the set for a given L can be arranged or generated in lexicographic 
order. Thus, for L=4 the p(4)=5 sequences of size N=6 would be: 

 (0, 0, 0, 0, 0, 4),  
 (0, 0, 0, 0, 1, 3),  
 (0, 0, 0, 0, 2, 2), 
 (0, 0, 0, 1, 1, 2),  
 (0, 0, 1, 1, 1, 1). 

To each sequence of this type we associate a unique stencil of neighbours, (s1, s2, …, 
sN), arranged in order of distance from the target, according to: 

 ,  k=1,…,N. (B13) 
kdkk ns +=

By generating sets of sequences for L = 0, 1, … etc., using the lexicographic ordering 
defined above, we may systematically examine the possible stencils in a way that 
enhances the prospect of having located the optimal stencil at any  stage of search.  

 The relative merits of contending stencils are compared using a quadratic 
norm combining the errors of interpolation of Fourier waves at targets in a small disc 
centred on the nominal target point of the stencil. These Fourier waves, 
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produce corresponding errors, 
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=
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The quantity, ε2(k,x) = ε2
C(k,x) + ε2

S(k,x)  is integrated simultaneously over the disc 
of generic targets, x, surrounding the central stencil point and over a corresponding 
disc of the resolvable wave vectors k, but weighted by 1/|k| in order to enhance the 
importance of the larger (smoother) scales. This integral defines the squared error 
norm we require. These integrations are carried out numerically by sampling the 
respective discs at uniform intervals of azimuth and using Chebyshev quadrature 
radially. Adverse stencil configurations can lead to large errors of interpolation at 
some combinations of target and wave orientation, but the present method ensures 
that such cases do not go undetected.  From a pool typically of several hundred 
contending stencils, the stencil possessing the smallest error norm is the one chosen 
for high-order numerical operations.  
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Figure Captions 

Figure 1: A planar “Fibonacci Grid”, in which a disk is covered uniformly with 700 
points.  Every 34th and 55th point is marked with an open circle, to highlight the spiral 
structure of the grid.  

Figure 2: A spherical Fibonacci grid, at resolution N=1000 (2001 grid points).  As in 
Fig. 1, the spiral structure is highlighted by marking every 34th and 55th grid point. 

Figure 3: Arrangement of Fibonacci grid points on a cartesian coordinate system, with 
the x-coordinate representing λ and the y-coordinate sinθ. This shows how a set of 
basis vectors is constructed, based on the spiral grid structure.  The components of the 
basis vectors can be written in terms of the circumference C and the y-interval 
between successive grid-points, δ. 

Figure 4: The a) Delaunay triangulation and b) Voronoi mesh for the grid points 
illustrated in Fig. 2. 

Figure 5: Histograms of the areas of the Voronoi cells at a) N=1000, as shown in Fig. 
4, b) N=10000 and c) N=100000.  The x-coordinate shows the area, as a ratio to the 
average value and the y-coordinate shows the number of cells with area more extreme 
than the given value.  The y-axis is truncated for the higher resolutions, where most 
areas are very close to the average.  

Figure 6: An example of a variable-resolution Fibonacci grid (N=1000), in which the 
density of points is three times greater at the equator than at high latitudes.  

Figure 7: Results of polar advection test at a) N=5000 and low diffusion, b) N=5000, 
c) N=20000. The dashed lines show the initial location of the cosine bell, and the full 
lines the final location, which should coincide exactly. 

Figure 8: Statistical comparisons between polar advection test results and the true 
solution.  Statistics L1, L2 and L∞ are plotted daily from day 0 to day 12, through a 
complete revolution. 

Figure 9: Height fields from simulations of the Rossby-Haurwitz wave: a) initial 
conditions, day0; b) day14 from the reference solution; c) day14, simulation using 
N=5000; d) day 14, simulation using N=20000.  

Figure 10: Statistics L1, L2 and L∞ for Rossby-Haurwitz wave simulations at resolution 
N=5000 and N=20000, compared with the reference solution  
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Figure 1: A planar “Fibonacci Grid”, in which a disk is covered uniformly with 700 
points.  Every 34th and 55th point is marked with an open circle, to highlight the spiral 

structure of the grid.  

 

Figure 2: A spherical Fibonacci grid, at resolution N=1000 (2001 grid points).  As in 
Fig. 1, the spiral structure is highlighted by marking every 34th and 55th grid point. 
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Figure 3: Arrangement of Fibonacci grid points on a cartesian coordinate system, with 
the x-coordinate representing λ and the y-coordinate sinθ. This shows how a set of 

basis vectors is constructed, based on the spiral grid structure.  The components of the 
basis vectors can be written in terms of the circumference C and the y-interval 

between successive grid-points, δ. 
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Figure 4: The a) Delaunay triangulation and b) Voronoi mesh for the grid points 
illustrated in Fig. 2. 
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Figure 5: Histograms of the areas of the Voronoi cells at a) N=1000, as shown in Fig. 
4, b) N=10000 and c) N=100000.  The x-coordinate shows the area, as a ratio to the 

average value and the y-coordinate shows the number of cells with area more extreme 
than the given value.  The y-axis is truncated for the higher resolutions, where most 

areas are very close to the average.  



 

Figure 6: An example of a variable-resolution Fibonacci grid (N=1000), in which the 
density of points is three times greater at the equator than at high latitudes.  

                                                                                
NJ=5000, Pole, low diffusion                                                    

                                                                                
NJ=5000, diffusion as full model                                                

                                                                                
NJ=20000, diffusion as full model                            

 

Figure 7: Results of polar advection test at a) N=5000 and low diffusion, b) N=5000, 
c) N=20000. The dashed lines show the initial location of the cosine bell, and the full 

lines the final location, which should coincide exactly. 
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Figure 8: Statistical comparisons between polar advection test results and the true 
solution.  Statistics L1, L2 and L∞ are plotted daily from day 0 to day 12, through a 

complete revolution. Solid line – N=5000, low diffusion; dotted line – N=5000, with 
diffusion as in full model; dashed line – N=20000, with diffusion as in full model. 
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Figure 9: Height fields from simulations of the Rossby-Haurwitz wave: a) initial 
conditions, day0; b) day14 from the reference solution; c) day14, simulation using 

N=5000; d) day 14, simulation using N=20000.  
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Figure 10: Statistics L1, L2 and L∞ for Rossby-Haurwitz wave simulations at resolution 
N=5000 (dotted line) and N=20000 (dashed line), compared with the reference 

solution  

 


