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Summary

This article gives an account of many of the sets of equations used by theorists and numerical
modellers working in meteorological dynamics. It has been written for mathematicians and
physicists who want a compact introduction to the subject rather than the more extensive
treatments to be found in good contemporary textbooks on meteorology. Attention is also paid
to various recent developments that have received little exposure outside the research literature
yet. The main areas covered are: fluid kinematics, the relevant equations of fluid dynamics and
thermodynamics, and the approximate versions that are the basis of many weather forecasting and
climate simulation models and of a wide range of associated theoretical studies. The approximate
models include the hydrostatic primitive equations, the shallow water equations, the barotropic
vorticity equation, several approximately-geostrophic models and some acoustically-filtered
models that permit buoyancy modes. Conservation properties and frame invariance are given
emphasis, but Hamiltonian methods of derivation are noted only in verbal summary. Elementary
discussions of the hydrostatic and geostrophic approximations and their repercussions are
included, as well as brief accounts of various vertical coordinate systems and local approximations
to the quasi-spherical form of the Earth. A straightforward problem of small-amplitude wave
motion in a rotating, stratified, compressible atmosphere is addressed in detail, with particular
attention to the occurrence or non-occurrence of acoustic, buoyancy and planetary modes in the
approximate models. The concluding section contains a short discussion of basic issues in
numerical model construction.




1. Introduction

One of the attractions of meteorology is its many-faceted character. It invites study by
mathematicians and statisticians as well as by physicists of either practical or theoretical
disposition. Amongst other fields, its concerns border or overlap those of oceanography,
geophysics, environmental science, biological science, agriculture and human physiology, and
impinge on those of economics, politics and psychology. (Climatology, for present purposes, is
counted as part of meteorology.) Its breadth can lead to a perception that meteorology is a 'soft'
science. This article focuses on part of the subject’s 'hard' core: the equations governing
atmospheric flow, and the approximate forms used by many numerical modellers and theorists.

A discussion (in section 3) of the basic equations of meteorological dynamics is preceded by a
glance at a pre-Newtonian but fundamental subject: fluid kinematics (section 2). Some of the
conservation laws which the basic equations express or imply are examined in section 4.
Subsequent sections deal with approximate versions of the basic equations. Consistent
approximation is one of the mathematical challenges of meteorology, and the sheer range of
possible (and permissible?) approximations can be a bewildering feature. The hydrostatic
approximation, the hydrostatic primitive equations (HPEs) and the shallow water equations
(SWEs) are considered in section 5. The HPEs are the basis of many of the numerical models
used worldwide in weather forecasting and for climate simulation, and the SWEs are widely
studied as a testbed for further approximations and for numerical schemes.

We pause in section 6 to discuss various vertical coordinate systems, and various approximations
of Coriolis effects and the Earth's sphericity beyond those associated with the HPEs. The
geostrophic approximation is considered in a diagnostic (non-evolutionary) sense in section 7.
Atmospheric wave motion is discussed in linear analytical terms in section 8 — we identify
acoustic, gravity (buoyancy) and Rossby (planetary) waves and note the existence of special
tropical modes.

Approximations of the HPEs which result in the removal of gravity waves as well as acoustic
waves are considered in section 9; the shallow water equations are a convenient vehicle for most
of this discussion. The quasi-geostrophic model, QG is singled out for particular attention in
section 10. QG is one of the coarsest of those models that allow time-evolution of synoptic-
scale weather systems (the “Lows” and “Highs” of the weather forecaster’s chart), but it succeeds
in representing most of the physical content of more quantitatively accurate models. Its
importance in the conceptual development of meteorological dynamics can hardly be over-stated.

In section 11 are discussed various models (other than the HPEs) which allow gravity waves but
not acoustic waves. Section 12 gives a brief survey of issues in numerical modelling for weather
forecasting and climate simulation, and offers some concluding remarks.

The article is based on three lectures given during various phases of the Isaac Newton Institute
programme on "Mathematics of Atmosphere and Ocean Dynamics" (December 1994, July 1996,
December 1997). Its approach is elementary in so far as Hamiltonian methods are noted only in
brief verbal summary; they are treated at proper length elsewhere in this volume. Much of the
material is mainstream, and is covered in greater depth in the texts by Lorenz (1967), Phillips
(1973), Haltiner and Williams (1981), Gill (1982), Pedlosky (1987), Lindzen (1990), Carlson
(1991), Daley (1991), Holton (1992), Bluestein (1992), James (1994), Dutton (1995) and Green
(1999), amongst others. Some new interpretations are presented, however, and later sections deal
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increasingly with developments which have not yet reverberated outside the research literature.
Results that are thought to be new include: a bisection theorem relating the principal directions of
curvature of the height field and the dilatation axis in geostrophic flow; a geometric solution of
an acoustic/gravity wave dispersion relation; and a fresh perspective on the aptly-named “omega
equation” of QG1. Sections 5.5 and 8.2 contain material covered in unpublished course notes by
R W Riddaway and J S A Green — notes to which I have been fortunate to have had access both
as student and lecturer.

In mathematical respects, meteorological and oceanographic dynamics have much in common,
and the atmosphere and oceans are closely-interacting systems, especially on climatological time-
scales, but — in the interests of brevity — this article will refer only incidentally to oceanography
and the oceans.

2. Fluid kinematics

Deformability is a key feature of a fluid: except in certain very simple flows, particles do not
retain the fixed relative spatial relationships that are characteristic of a rigid body in motion. Our
discussion in this section draws on the treatments given by Batchelor (1967), Wiin-Nielsen
(1973), Ottino (1990) and Bluestein (1992).

Consider the motion of a fluid in two spatial dimensions relative to Cartesian axes Oxy; see

Fig 1(a). Suppose that the velocity field v = v(x y,7) = (u(x,1), v(xy,f)) varies smoothly in

space and time, so that the derivatives u., u,, v,, v, are well defined, at least in the neighbourhood
of a chosen point 7 = (xo, yo) and time #,. If a particle which is at point O = (xo + &, yo + ) at 1,
is at (xo + Ax, yo + Ay) a short time At later, then it follows (from the definition of velocity as rate
of change of position) that: :

(i;] = (Z) + @At + (i‘ :y)(gjm. (2.1)

Here u, v and their first derivatives are evaluated at (x, yo, ), and higher order terms in the
Taylor expansion of v about (x, yo, f), have been neglected. The second term on the right side of
(2.1) represents translation with the flow at point P = (xo, yy). Measuring position (dx', @)’) in a
Cartesian system O’x’y’ (Fig 1(a)) moving with this translation velocity (i.e. &' = Ax —uAt,

oy’ = Ay —vAtL ) gives

&' = A&
where
1+u At uAr
A = ' 2.2
v, Al l+vyAt) &
and
& = (&), & = (&,8).
Define divergence 6, vorticity ¢ and deformation components D, ,D, as
S N VS
: 2 (2.3)

D=u-v,: D,=v.+u

X s
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From (2.2) and (2.3):
A=1+(R+S+D)At (2.4)

where I is the unit diagonal matrix, and

2R (0 ~¢) 98 =45 D = (D' DZ) (2.5)
g 0/ - ’ Rl rnie o '
Also, to first order in At, A can be expressed as the product of three matrices:
A = (1+RAXTI+SA)I+DA7)+O(Ar*) = RSD +O(A7)
with
] —lg’At 1+lD At iD At
- 2 2 T

R = | . § = (l+%()‘Aljl; D = 1 1 (2.6)
— (AL ] DI | 1-—D,At
24 ;e g

Consider particles which formed a circle centred on (xo, yo) at time £ ; see Fig 1(b). It is readily
shown that the matrices R, S and D correspond respectively to (infinitesimal) rotation, scaling
and deformation of the circle of particles over the time interval [#, 7o + Af].

The rotation ( R ) is associated with vorticity (¢), and corresponds to a turning of the initial circle
through an angle "2¢At counterclockwise. The scaling (é) is associated with divergence (0); it
represents an isotropic change of size (a uniform magnification or minification) in which the radius
of the circle changes by a factor (1 + Y20A1).

The deformation (13) corresponds to a change of shape: the initial circle becomes an ellipse. The
major axis of the ellipse (the stretching or dilatation axis) is inclined to the x axis at an angle

Yatan~'(D,/D,). If the initial radius of the circle is chosen as the unit of distance, the semi-major

axis of the ellipse is 1 + Y2 DAt, where D* = D> + D, is the square of the total deformation; and
the semi-minor axis of the ellipse, the contraction axis of the initial circle, is (1 — Y2 DAf). The
magnitudes and directions of the major and minor axes are given by the eigenvalues and
eigenvectors of D. (The eigenvalues of D are +/2 DAt Its eigenvectors too are parallel to the
axes of stretching and contraction.) Area is preserved, to order At, during the deformation.

As illustrated in Fig 1(b), the evolution of the initial circle of particles is (for small A7) a
combination of (i) translation, (ii) rotation, (iii) scaling, and (iv) deformation (to an ellipse).

In analytical terms, particle locations in the neighbourhood of (xo, yo) are transformed into
locations in the neighbourhood of (xy + uAt, y, + vAf) according to an infinitesimal general (non-
conformal, non-isometric) mapping; see Klein (1938), p 105. The details of the mapping are
determined by the first derivatives of # and v in the neighbourhood of (xo, yo).

The matrices R, S and D defined by (2.3) and (2.5) together constitute a decomposition of the 2D
velocity gradient tensor T:



Vv y

x v

T = (“"' “"} (= grad,v) (23

R (sometimes called the body spin matrix) is the skew-symmetric part of T; S + D is the
symmetric part of T (the Eulerian rate of strain matrix). Vorticity (associated with R) is seen to
be essentially a rigid body property. Deformation (associated with D) is essentially a non-rigid
body property; the same statement could be made about the divergence (associated with S), and
some authors treat divergence as a special kind of deformation.

For 3-dimensional flow u = u(x,y,z,7) = (u(xy,z,1), v(x,3,2,1), w(x,,z,1)), the treatment may be
repeated for an initial sphere of particles and 3-D velocity gradient tensor T :

o= a9 (= gradu) (2.8)'

The results are similar to those of the 2-D case, though more complicated in analytical terms. The
sphere undergoes a translation, a rotation, a scaling and a deformation to an ellipsoid. The
Z| At about the direction of Z = curlu (the vorticity vector), and the

rotation is through an angle 2

scaling is 1 + “2Ardivu. The deformation is specified by the orientation and magnitude of the
principal axes of the ellipsoid. In general, there is a stretching axis, a contraction axis and an
intermediate axis, which may be an axis of contraction or stretching; degenerate cases may occur.
The components of the deformation (not given here) determine the orientation and size of the
principal axes and the extents of the stretching and contraction. The spatial relationship of the
velocity and vorticity vectors to the principal axes of the deformation ellipsoid will be of general
kinematic and dynamic importance.

Tensor considerations obviously enter fluid dynamics at a pre-Newtonian level. The tensorial

- character of flow kinematics is evident also on direct physical grounds from a consideration of the
effect of a deformation on a pre-existing gradient of some conserved scalar field. Figure 1(c)
(representing a 2-D case) shows that a pre-existing gradient perpendicular to the stretching axis
increases as a consequence of the deformation, whereas a gradient parallel to the stretching axis

decreases. A pre-existing gradient at 45” to the stretching axis remains unchanged in magnitude.
These effects are important in the formation of fronts - regions of large horizontal gradients of
temperature and other properties — in the atmosphere and uceans [see Hoskins (1982) and
Hewson (1998)]. Tensor considerations also play an important role in the proper representation
of viscous effects, in the analysis of interactions between eddies and mean flows, and in the
parametrization of subgridscale Reynolds stresses in numerical models; see Williams (1972),
Hoskins ez al. (1983) and Adcroft and Marshall (1998). It turns out, however, that vorticity — a
vector quantity — figures more prominently than deformation in the dynamics of meteorological
flows. Although we shall refer again in this article to deformation, the bulk of the treatment will
involve nothing more complicated than vector analysis and the manipulation of vector differential
operators.



3. FLUID DYNAMICS AND THERMODYNAMICS

This section gives an elementary account of those equations of thermodynamics and fluid
dynamics from which the future state of the atmosphere may be forecast, given its present state.

3.1 Local and total time derivatives; advection
Consider some meteorological field 3. 3 might be a scalar quantity, such as temperature, or a
vector, such as the flow velocity u. Assume that 3 is a function of time 7 and position r in some
chosen coordinate frame:

J =3

Assume also that 3(r, 7) is differentiable with respect to each argument. Then first-order Taylor
expansion of 3 about 3(r, 7) gives

83 = I(r+drt+d) - 3(r,f) = (Srgrad)I + (B3/0)& (.1)

Equation (3.1) applies to any (infinitesimal) choice of dr, & Choose dr to be the displacement
in time 87 corresponding to the velocity u of the air currently at position r. Then &r/d =u, and

(3.1) becomes
% = % = (u.grad)3 + ?— (3.2)

D3/Dt is the rate of change of 3 following a parcel of air; it is known as the total (or material,
or substantial, or individual, or Lagrangian) time derivative of 3. &3/ is the local (or Eulerian)
time derivative of J; it is the rate of change of 3 at a point fixed in the chosen coordinate frame.

Some important physical laws (such as Newton's second law of motion) give information about
material time derivatives. The users of weather forecasts are usually — not always — interested in
the consequences of the local rate of change of 3. A Grampian farmer may wish to know what
the temperature of the air in the neighbourhood of the farm will be tomorrow, but is unlikely to
want to know what the temperature of the air which is at the farm now will be tomorrow; that
body of air may be over the North Sea by then. Hence the trivial re-expression of (3.2) as

3 D3 5
= = 5 (u.grad)\) (3.3)

is of fundamental importance in meteorology. Within its generality, (3.3) expresses the key
physical notion that when 3 is conserved on fluid particles (D3/Dt = 0) the value of 3 at a

fixed point in our coordinate frame will nevertheless be changing (93/0t # 0) if fluid having a
different value of J is being brought in, or advected, by the flow (—(u.grad)3 # 0). The term
—(u.grad)3 represents the (rate of) advection of 3. A vexed issue of terminology will be side-
stepped in this article by using the expression “advection term” to describe both ~(u.grad)3 (as
in (3.3)) and +(u.grad)3 (asin (3.2)).

We now consider how various choices of 3, and the application of various physical laws, lead to
expressions for the local rates of change of meteorological fields. With the needs of our

Grampian farmer in mind, we begin by choosing 3 = 7" = temperature.



3.2 First law of thermodynamics

Suppose that a parcel of air having unit mass, temperature 7"and (specific) volume a undergoes a
change of (specific) entropy &. According to the first law of thermodynamics, the concomitant
changes o7 and da of 7 and « are related by ;

¢, T + péa = Tds (3.4)

Here ¢, is the specific heat at constant volume and p is the pressure of the parcel of air. Since the
first law of thermodynamics applies to the parcel of air as it moves, it follows from (3.4) that
ey Da 7 Ds

e TR St = 0 35
- Dt P Dt Dt ¢ 8:3)

In meteorology, O = 7 Ds/Dt is usually thought of as the total heating rate per unit mass;
strictly, it is the heating rate that would achieve, by reversible processes, the same rates of
change of 7'and « as those occurring in the actual irreversible system (Lorenz 1967, pl14).
Equation (3.5) can be written in terms of density p (= 1/a) as

DT p Dp

cC,— - —— = 3.6
T e (3.6)

In either form, however, the first law of thermodynamics gives only a relationship between the
material derivatives of 7 and a density variable.

3.3 Mass continuity

Information about the material derivative of density, Dp/Dt (see (3.6)), may be obtained from
mass conservation. The mass within a volume 7 (fixed relative to the chosen coordinate frame)
changes only to the extent that there is net inflow or outflow of mass at the boundary § of the
volume. Hence

gj’pdf = —[puds = - [divpuds (3.7)

S

by the divergence theorem. Equation (3.7) applies to any volume 7, so the local equality

-’;‘7’ + divou = 0 (3.8)

|
\
must hold. Equation (3.8) is a form of the (mass) continuity equation. By using (3.3), we may |
deduce an alternative form: ‘

Dp .
— + ivu = 0 3.9
Dr pd (3.9)
3.4 Perfect gas law
If taken together with (3.3) in the form
or DT
— = — — (u.grad)l ,
2. D grad)

(3.6) and (3.9) enable us to evaluate the local rate of change 27/a so long as we know the
current values of O, p, p and the flow vector u . The current value of p can be found from
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observations of p and 7" by using the perfect gas law in the form
p = oRE (3.10)

where R is the gas constant per unit mass. Eq (3.10) has no time derivatives. In meteorological
parlance, it is a diagnostic equation; equations involving time derivatives are called prognostic.
We have now set up the apparatus to evaluate J/'/A , and hence (knowing the current values of 7,

p and u) to calculate 7'at our chosen location at a later time 7 +d. If we were content to take of =
24 hours, we could calculate an expected value of 7" at the chosen location tomorrow. The
calculated value would probably be very inaccurate, and for this reason (and others) the
calculation of a 24-hour temperature forecast proceeds in practice by performing a number of
time steps & which are much shorter than 24 hours. (Typically, the time steps are of the order of
10 minutes). This process requires values of O, p, pand u at each time step. Hence we require a
prognostic equation for the flow u; in general, we cannot forecast the temperature accurately for
more than (say) an hour ahead without forecasting the flow too. In any case, many users of
weather forecasts — including our Scottish farmer, if there are new lambs on the hill — will want
to know what tomorrow's wind speed and direction are likely to be.

3.5 Newton's second law

Newton's second law of motion relates the inertial acceleration of an element of air to the net
force acting on it. Contributory forces include the pressure gradient force, gravity, and friction.
If (as is usually convenient) velocities and accelerations are measured relative to the rotating
frame of the solid Earth, Coriolis and centrifugal 'forces' must be introduced to allow for the
transformation from inertial to accelerating (rotating) frame; see Stommel and Moore (1989)
and Persson (1998) for discussion.

The Lagrangian rate of change of the velocity u of an element of air, relative to the rotating
Earth, is then given by

Du

v = —20xu - agradp - grad® + F (3:11)
Coriolis Pressure Apparent Friction and
gradient gravity all other forces

Eq (3.11) is the Navier-Stokes equation for motion and acceleration relative to the Earth, whose
rotation vector is . "Apparent gravity", with potential function ®, consists of the contribution
(dominant in the atmosphere) of true Newtonian gravity and the contribution of the centrifugal
force —Qx(Qxr) ; here r is position vector relative to a frame rotating with the Earth, and
having its origin at the centre of the Earth — see Fig 2. In (3.11) all forces are expressed per unit
mass of air.

Equation (3.11) may be used in conjunction with

a Du

— = — — (u.grad 312
= = 3 ~ (vgradu (3.12)
(the appropriate form of (3.3)) to give an expression for the local rate of change of u, i.e. du/ct.
The advection term —(u.grad)u is nonlinear in u ; the pressure gradient term, & grad p, is also in
a certain sense nonlinear (as are the advection terms which arise from the first law of
thermodynamics and the continuity equation).



3.6 The full set of forecasting equations

An audit of (3.6), (3.9), (3.10) and (3.11), together with appropriate forms of (3.3), shows that
we have six equations from which p, p, T'and the three components of u may be forecast by
repeated time-stepping, so long as friction F and heating rate Q are known. For convenience and
future reference we gather together the relevant equations:

9;— = —(u.grad)u - 2Qxu — agradp — grad® + F (3.13)
e
1o
i G P e o (3.14)
a P
%p_ = —(ugrad)p - pdivu (3.15)
p = pRT (3.16)

To obtain (3.14) we have used the continuity equation (3.15) for Dp/Dt.

Numerical techniques are needed for the practical time integration of (3.13) — (3.16). Hence only
finite spatial and temporal resolution is possible. This means that Q) and F include the effects of
unresolved motions as well as physical processes such as radiative flux convergence, latent heat
release/uptake and friction. The difficulties thus introduced are various and profound; see
section 12 and Cullen (2000) for further discussion.

In addition to (3.14) — (3.16) and approximations to the components of (3.13), climate simulation
models and many weather prediction models include prognostic equations for the local
concentration of water substance in some or all of its phases. Water substance is a key quantity
in practice — not only because humidity, cloud and precipitation are important meteorologically
and climatologically — but because its distribution has a central effect on the distribution of the
heating rate 0. We shall not discuss water conservation equations further. Neither shall we treat
the variations in gas constant & and principal specific heats ¢, and ¢, which accompany

variations in the amount of water substance present; Gill (1982) gives a concise account.

The equations (3.13) - (3-16) may be written in many alternative forms by using either other
equations of the set, or various thermodynamic relations. One of the most important is an
alternative form of the thermodynamic equation involving the potential temperature & defined by

6~ 1lp, ol (3.17)

Here p,,, is a reference pressure (conventionally 1000hPa) and c, is the specific heat at

constant pressure. @ is the temperature that an element of air would have if it were to be brought
adiabatically and reversibly to pressure p,,,.. Interms of 6, (3.14) takes the simpler form

Do 0
e 3.18
Dt LTCJQ S
(upon use of (3.15), (3.16) and the relation ¢, - ¢, =R ). From (3.18) it is clear that @ remains

constant following an element of air if the motion is adiabatic (Q = 0). € is related to the
specific entropy s by In@ = s/c, .



Potential temperature, a thermodynamic quantity, is conserved in adiabatic flow. A dynamic/
thermodynamic quantity that is conserved in adiabatic, frictionless flow is potential vorticity,
which is of central importance in meteorology. We discuss potential vorticity in the next section.

A useful alternative form of (3.17) arises if (3.16) is used to eliminate 7"

Dre
Iné@ [:ln T+£ln[[—"l—):| = ilnp—lnp+constant (3.19)
¢ 4 4

P
Here y =c, /c, , and the relation ¢, —¢, = R has again been used.

Eq (3.13) provides 3 prognostic equations (for the three components of u). It is usual to define
the vertical direction by V@, the gradient of apparent geopotential; this direction, which is
known as apparent vertical, is the direction indicated by a plumb line hanging at rest relative to
the Earth. [Since both apparent gravity and the direction of apparent vertical depend on the
rotation rate of the coordinate frame, which we have chosen to be that of the Earth, they are both
frame-dependent quantities.] Also, the slightly spheroidal geopotential surfaces are customarily.
represented by spheres — an approximation which is amply justified by the smallness (for
terrestrial parameter values) of the centrifugal contribution to apparent gravity; see Gill (1982)
and White (1982). Convenient horizontal coordinates are then latitude ¢ and longitude 4 ; see
Fig 2. Isolating the three components of (3.13) is not straightforward because the unit vectors
change direction over the sphere and so metric (curvature) terms arise. The results are well-
known (see Phillips 1973), but we postpone presentation of them until section 4, where
conservation properties will be used to provide a rationalisation.

4. CONSERVATION PROPERTIES

Eqs (3.13), (3.14) and (3.15) express conservation of momentum, thermodynamic energy and
mass. Other quantities obey other conservation laws, and all such laws appear in various forms
expressing, for example, the budget of a quantity in a fixed finite or infinitesimal volume
(Eulerian form) or in an identifiable mass of fluid (Lagrangian form). When approximate
versions of the governing equations are being set up, the fate of the conservation properties is
naturally of interest and importance.

In this section we consider mass, total energy and axial angular momentum conservation, and
obtain the components of (3.13) by using conservation arguments. We then derive the material _
conservation law for potential vorticity — which is implied by (3.13) - (3.16) but is by no means
obvious. A Hamiltonian treatment which unifies the conservation laws is noted in conclusion.

4.1 Mass conservation

Eq (3.8) is a mass conservation law of Eulerian form. Eq (3.9) is of Lagrangian form, relating
the material derivative of density to the divergence of the flow u; it can be obtained directly by
considering conservation of the mass pd7 of a parcel of air, upon noting that D(57)/Dt = divu.

A global mass conservation law can be obtained from (3.7) by taking 7 to be the entire volume of
the atmosphere:

74

Ejpdr = —jpu.ds = 0 4.1
whole boundaries

atmosphere

(The second equality assumes there is no net mass transfer into or out of the atmosphere.)
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4.2 Total energy conservation
By taking the scalar product of u with (3.13), and by using (3.14), one readily obtains a
Lagrangian conservation law for the total energy £ per unit mass (£ = You? + ® + ¢, T isthe

sum of the specific kinetic, potential and internal energy):

p% = —div(pu) + p(@ + u.F) . (4.2)
Hence
(o) = ~divl(pE+ pu] + plQ + wF) . 43)

which is the Eulerian version of (4.2). Since it acts at right angles to u, the Coriolis force in
(3.13) does not figure directly in the energetics. Equation (4.3) may be regarded as a statement
of the conservation of energy; for the case F =0, Holton (1992) derives (3.6) from (4.3).

Atmospheric energetics is a large subject; White (1978a) gives an elementary account. An
important issue is the extent to which potential and internal energy may be converted into flow
kinetic energy (“au’ per unit mass). Availability in this sense is the subject of continuing study —
see Shepherd (1993), Marquet (1993), Kucharski (1997) and references in these papers.

4.3 Axial angular momentum conservation
The components of (3.13) in the zonal, meridional and vertical directions may be derived by
considering the rates of change of unit vectors over the sphere. One finds (see Phillips (1973))

L e el e B a (4.4)
Dt 7 r prcosg oA
2
L —2Qusin ¢ sl W L o by (4.5)
Dt r r prop
u® +v?

Ll = + 2Qucos ¢ o g—)— L g it g (4.6)
Dt r pa

The arrangement of the terms has a purpose, as will be seen in section 4.4. By multiplying (4.4)
by 7 cos ¢, and noting that w=rcosg DA/Dt , v=r 12/t and w=Dr/Dt , it follows that

'071)1, (Qrcos¢+u)rcos¢] Bl % + pl,rcosg 4.7

Eq (4.7) relates the rate of change of the axial component of absolute angular momentum (per
unit mass of air) to the axial components of the torques acting (see Fig 3(a)); it is a Lagrangian
conservation law for axial angular momentum. Local and global versions are readily derived.
The total axial angular momentum of the atmosphere is by no means constant. Changes of day-
length of milliseconds over a few days are detectable by astronomical methods and reflect
exchange of axial angular momentum between atmosphere and solid Earth — see Hide et al
(1997). Small changes of the direction of the Earth's rotation vector also occur; Barnes ef al
(1983) give an account of the vectorial angular momentum dynamics involved. A notable aspect
of angular momentum conservation is that it determines the frame invariance of the energy
conservation laws (White 1989a).
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4.4 Spherical polar components of the equation of motion — a derivation via conservation
Perhaps the most direct way of obtaining the three spherical polar components of (3.13) reverses
the above argument by using (4.7) to derive (4.4), and then notes that the Coriolis and metric
terms in the components of (3.13) must disappear when a kinetic energy equation is formed (see
(4.2)). We outline the reasoning. By expanding the material derivative on the left side of (4.7)
and multiplying by 1/ pr cos¢ , one readily obtains (4.4). Multiplication by u then gives

: 2 2
u& = 2Quvsing — 2Quwcos¢g + Apep oo - 2 Uk, (4.8)
Dt r r prcosg oA

Eq.(4.8) contains two Coriolis and two metric terms which must cancel with corresponding terms
in the expressions for vDv/Dt and w Dw/Dt. Hence the meridional (¢) component of (3.13)
must contain a Coriolis term — 2Qusin¢ and the radial (#) component a Coriolis term

+ 2Qucos ¢ ; also, the meridional component must contain a metric term — (uz/r)tan ¢ to

ensure cancellation with + (#?v/r)tan ¢ in (4.8). The remaining metric term in (4.8), — 212w/r,
must cancel with a term in the expression for w Dw/Dt | so the radial component must contain a

term +u° /r. To ensure isotropy with respect to horizontal flow direction, a term + v /r must

accompany + u° /r in the radial component. A term — vw/r must then appear in the meridional
component. This reasoning reproduces all the Coriolis and metric terms seen in (4.4) — (4.6).

4.5 Potential vorticity conservation

Eqs (4.2) and (4.7) show that neither the total energy nor the axial angular momentum is
generally conserved following the flow, even if it is frictionless and adiabatic. Axial angular
momentum is conserved in this sense in frictionless flow if the pressure field is independent of
longitude, but such axisymmetric flow is rather special. (It can be engineered in laboratory
systems — see Hide and Mason (1975).) Even for axial angular momentum, then, the Lagrangian
conservation law might more accurately be called a non-conservation law.

Since (3.13) contains two gradient terms (albeit one of them multiplied by @) a reasonable
strategy for deriving a Lagrangian conserved quantity is to take the curl of (3.13). By using

(wgradju = grad(u®/2) - uxcurlu (4.9)

and various other vector differential identities, one obtains from (3.13):

D ;

E{Z+ZQ} = —(z+2Q)divu + [(Z+29).grad]u + Lz gradpx gradp + curlF  (4.10)
: P

Here Z = curl u is the relative vorticity, and (Z + 2€) is the absolute vorticity. Eq (4.10) is the

vorticity equation. In spite of its complexity, it is an inportant equation, and we have not space
to do it justice here; see Batchelor (1967) and Pedlosky (:987) for detailed treatments.

Suppose there is no motion (u = 0 everywhere) at some instant. If curl F vanishes when u = 0,
which will be the case if F consists entirely of the contribution of (Newtonian) friction, then
(4.10) shows that motion will develop (DZ/Dt # 0 ) if the surfaces of constant density and
constant pressure do not coincide. Fluids having p = p (p) are called barotropic; their surfaces
of constant density and constant pressure coincide. Fluids not having p = p (p) are called
baroclinic; their constant density and constant pressure surfaces intersect. We deduce Jeffreys'
theorem (see Hide (1977)): motion must develop, or already be present, in a baroclinic fluid.
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From our perspective of wishing to derive a Lagrangian conserved quantity, (4.10) might seem to
represent several steps backwards. However, if we:

i) multiply (4.10) by 1/p and apply the continuity equation in the form (3.9);

ii) use the vector identity, valid for any vector A and scalar S,

A.g(gradb') - A.grad(%;) - gradS.[A.grad]u :

iii) note that p can be expressed (via (3.10) and (3.17)) as a function of p and & ;

then we find that

Dt
Hence if (but not only if) the motion is frictionless (F = 0) and adiabatic (D&Dt = 0) then

> D [(Z +2Q).gradg } = div|:(Z i 20)%‘12 + ﬂcurlF} (4.11)

DP/Dt = 0, where P = [(Z+29Q)gradd]/p (4.12)

The quantity P, which is called Ertel's potential vorticity (Ertel 1942) or simply EPV, is
materially conserved in frictionless, adiabatic flow The form of (4.11) implies that any local
creation of EPV by heating and friction will tend to be balanced by destruction elsewhere.
Eq.(4.11) is a central result in fluid dynamics, especially rotating fluid dynamics; see Hoskins ef
al (1985), Haynes and Mclntyre (1987), Hoskins (1991), Lait (1995) and Viadez (1999).

Result (4.12) may be obtained by applying Kelvin’s circulation theorem in isentropic surfaces
(surfaces of constant potential temperature, ). Kelvin's theorem takes the form

%g[u +Qxrldl (= g}-icurl[u +QxrldS = %f[cuth 2Q1.dS) = _;f%g 4 ;fF.dl (4.13)

Here ( is any closed loop of material particles and S is any surface bounded by C. If C lies in an
isentropic surface, then pis a function of p on C. Hence, if the motion is frictionless and
adiabatic, one can apply (4.13) to a small material area &S within an isentrope € = 6, to obtain

% {{curlu + 2Q] grad 6)as/ |grad0|} =10 (4.14)
Also, the quantity M =paS56 /|gradf| — which is the mass within a right cylinder having bases

&S on isentropes 6, and 6, + 50 (see Fig 3(b)) — remains constant. So &M /56 may be taken
outside the material derivative in (4.14), and (4.12) is revealed.

4.6 Lagrangian symmetries and conservation properties

In the analytical dynamics of rigid-bodies it is well known that conservation laws correspond to
symmetries of the Hamiltonian functional that appears in the variational formulation (Noether’s
theorem). For example, conservation of energy corresponds to time-parametrization invariance.
Fluid dynamics is a more complicated problem, partly because of the choice between Eulerian
and Lagrangian descriptions, but the theoretical position is now understood. Potential vorticity
conservation (see (4.12)) corresponds to the symmetry whereby the Hamiltonian is invariant to
the coordinates used to label particles (Ripa 1981, Salmon 1982). Noether’s theorem offers a
systematic method for deriving consistent approximate models: one approximates the
Hamiltonian (whilst preserving its symmetries) and is then assured that the implied evolution
equations reproduce the various conservation laws. See Salmon (1983), (1988) and Shepherd
(1990). Some applications of the method are noted in section 9.5. Mobbs (1982), Wang (1984)
and Sewell (1990) discuss other key aspects of variational formulations of fluid dynamics.
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De THE HYDROSTATIC APPROXIMATION, THE HYDROSTATIC PRIMITIVE
EQUATIONS AND THE SHALLOW WATER EQUATIONS

Jeffreys' theorem (see section 4.6) shows that motion must occur if the pressure and density
surfaces in a fluid are not parallel, and the occurrence of motion in the atmosphere is evident
even to the most casual observer. Nevertheless, on a wide range of time and space scales, the
vertical component of the momentum equation is dominated by the contributions of gravity and
the pressure gradient force; the atmosphere is close to Aydrostatic balance. [The adjective
aerostatic would seem more appropriate than hydrostatic, but the latter is irreversibly established
in meteorological usage.] We begin this section by examining the relationships which exist
between the thermodynamic fields when hydrostatic balance is precise. Having noted
elementary static stability criteria, we then consider how, and under what conditions, we may
construct equations describing the motion of an atmosphere that is close to hydrostatic balance.
We present and discuss the hydrostatic primitive equations (HPEs), which are widely used in
numerical weather prediction and climate simulation, and note the shallow water equations
(SWEs), which are widely used as a testbed in both theory and numerical practice.

5.1 Hydrostatic atmospheres
In the absence of motion and of forcing, the governing equations (3.14) - (3.16) and (4.4) — (4.6)
are satisfied so long as

g + i =0 (5.1)

and there are no horizontal variations of pressure. Here z is height above mean sea level; see
section 5.4. Eq (5.1) is the hydrostatic equation. Integration with respect to height gives (since

p—>0asz— o)

pa) = [ peee (5.2)

The pressure at height z is equal to the "weight" of the air above unit area. By using the perfect
gas law (3.16) it also follows from (5.1) that

pe) = p)es| [ (g/RT)E 53)

where z, is the height of the Earth's surface above mean sea level. In a hydrostatic atmosphere,

the pressure field is determined by the variation of temperature with height, and temperature
must vary only with height. (Spatial variations of g are neglected in this simple treatment.)

Knowing 7(z), one can find p(z) from (5.3), p(z) from the perfect gas equation (3.16), and &z)
from (3.17). For illustration and later reference we list the results obtained in the special case of
an isothermal atmosphere (7" = 7;), assuming z,= 0, uniform g and p(0) = P (see (3.17)):

pz) = p@exp{-z/H,} ; H, = RL/g (5.4)

pz) = p(0)exp{-z/H,} ; p(0) = p(O)/RT; (5.5)
0z) = 60)exp{+gz/c, Lh e = f (5.6)
> N [=(g/0)db/dz] = g*/e,T, (5.7)
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The quantity H, = R7, /g is called the scale height of the isothermal atmosphere; it is the height

over which the pressure and density decrease by a factor of e. If temperature varies with height -
as it does, of course, in the real atmosphere (see Fig 4(a)) - then (5.4) - (5.7) are not valid.
Nevertheless, substituting an appropriate mean temperature gives a useful measure of the rate of
decrease of pressure and density with height: taking 7, = 250K gives H, = 7.4km.

5.2 Static stability and the buoyancy frequency

If a parcel of air is displaced vertically (see Fig 5) it will experience a change of hydrostatic
pressure, with consequent (adiabatic) changes of temperature and density. From the first law of
thermodynamics in the form (3.4), the perfect gas law (3.16) and the relation ¢, — ¢, = R, it

follows that the changes 67 and &p in temperature and pressure of the parcel will be

related by
c,0l -~ adp =0 (5.8)

in adiabatic displacement. Assuming that ¢p is equal to the change in hydrostatic pressure of the
surrounding air over the distance oz (i.e. adp = -gdz ), (5.8) becomes

¢,6T + g& =70 (5.9)

The rate (with respect to height) at which the temperature of a parcel of air decreases on upward
displacement or increases on downward displacement is therefore g/c, (a quantity known as the
dry adiabatic lapse rate). An atmosphere at rest will be stable to vertical displacements of
parcels if its temperature 7(z) decreases less rapidly with respect to height than g/c,, i.e. if
dl/dz = —g/c, . (A parcel of air displaced upwards will then become cooler than, and hence

more dense than, its environment; and a parcel of air displaced downwards will become warmer
than, and hence less dense than, its environment.) An atmosphere at rest will be unstable to
vertical displacements if its temperature decreases more rapidly than g/c,, i.e. if d7/dz <-g/c, .

Air saturated with water vapour suffers a decrease of temperature smaller than géz/c, upon
upward displacement because the inevitable cooling brings about condensation and the release of
latent heat (so long as condensation nuclei are present and prevent supersaturation). We shall not
discuss further this important effect, which is one of the major complications and fascinations of
meteorology; see Gill (1982) and Emanuel (1994) for clear discussion.

The conditions for stability to vertical displacement of unsaturated air are most easily expressed
in terms of the vertical gradient of potential temperature. Use of (3.17), (5.1) and (5.9) shows
that: if 06/0z > 0, unsaturated air is stable to vertical displacement; if 66/0z <0 it is unstable;

if d9/¢z = 0, it is neutrally stable. Large positive values of d8/¢Z tend to inhibit vertical motion.

In the Earth’s atmosphere, well away from the surface, the vertical gradient of potential
temperature is generally much greater numerically than the horizontal gradient; the atmosphere
is said to be stratified. (Horizontal gradients are not, of course, negligible; the difference of
potential temperature between different horizontal locations is a key driving agency of the
circulation, as Jeffreys’ theorem suggests.) Well away from the Earth’s surface, values of 06/0z

are typically 4x10°K m™ in the troposphere, and about a factor of 4 greater in the stratosphere;
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see the schematic climatological section shown in Fig 4(b). Considerable spatial and temporal
variations occur, however, especially in the troposphere. The transition region between the
troposphere and the stratosphere — the tropopause — across which 06/0z and potential vorticity
both change markedly (see Thuburn and Craig (2000)) tends to act as a quasi-horizontal lid to
motions beneath. Locally, the tropopause exhibits major variations in height associated with the
passage of weather systems (see Keyser and Shapiro (1986) and Browning and Reynolds (1994))
and a general decrease with latitude is evident in Fig 4(b), but a typical value is 10km.

The physical significance of the quantity 08¢z is further illuminated by considering the vertical
displacement of a parcel of air in dynamic terms (Fig ). Upon neglecting the (small) metric and
Coriolis terms in (4.6) (terms which vanish if the motion is purely vertical), and assuming again
that the displaced parcel experiences the pressure field p(z)of its surroundings, we find

Y e N (5.10)

Dt pdz
Since dp/dz = — pg, the second and third terms in (5.10) combine to give (p - p)g/p. Given
p = p(z) and small displacements ¢z, we have (from (3.16) and (3.17)):

ol el ) ldE (5.11)
P T 7 6 dz
But w = D/Di(¢z), so (5.10) becomes
D? o
—& + N = 0 5.12
Dr? )

where N? = (g/ 5) dB/dz is the buoyancy frequency (also known as the Brunt-Viisilla

frequency). The period of small vertical oscillations in a stable atmosphere is thus 27z/N .
If N’ < 0, small vertical displacements amplify with time as exp(Nf); this is consistent with our
earlier identification of d@/dz < 0 as the condition for instability to vertical displacements.

5.3 The hydrostatic approximation for an atmosphere in motion

Vertical accelerations in air motions are typically much less than g. Even in the most violent
cumulonimbus circulations one might find ascent rates of at most 10 ms™ being attained in times
of order 1000s; then Dw/Dt ~ 10 ms™, compared with g ~ 10 ms™. In a diagnostic sense,
therefore, the hydrostatic approximation - of assuming hvdrostatic balance - is very good indeed.

But this is a naive view. Our deduced hydrostatic balance mainly reflects the contributions of
pressure and density fields varying only with height, which are not associated with motion; our
analysis in section 5.1 considered the behaviour of such precisely hydrostatic states. We enquire
to what extent and under what conditions the hydrostatic approximation applies to the deviations
of all fields from a state of precise static balance: is the hydrostatic approximation valid when
we have subtracted out some background static balance? To achieve this we write

P=p(B)tpAdel) .. dpy
p = p,(2) + p'(Agz1) dz
(The “background” state could be defined by horizontal and temporal averages of density p at

=i P& (5.13)
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each height and of mean sea level pressure.) Given the decomposition (5.13), the horizontal
components (4.4), (4.5) of the momentum equation change only in that p’ replaces p. The
vertical component (4.6) becomes

Dw u® +v? L I '

— — 2Qucos¢ —
Dt / r P D

Our criterion for the validity of the hydrostatic approximation is therefore that Dw/Dt be small
compared with gp’/p or (1/p)@’'/é (we neglect the other terms in this simple treatment;
see section 11.3 for a formulation that includes them). This is a much more testing condition
than we had earlier, since typically ]p'/p{ << | . Supposing the motion to be adiabatic, the
thermodynamic equation gives

Do’ dé,
+ w
Dt dz

= 0

Here 6, = 0,(z) is the potential temperature variation implied by p,(z) and p,(z), and
0’ =6-6,. Since, to order of magnitude, (0'/6) ~ (p'/p) we obtain the criterion

r- s HN? (5.14)

if we assume D/Dt~1/r, where ris a Lagrangian time scale. Perhaps not surprisingly, our
condition (5.14) is that the time-scale of the motion should be much longer than that of vertical
buoyancy oscillations (which are essentially non-hydrostatic). The hydrostatic approximation is
clearly not dynamically appropriate for an atmosphere that is neutrally stratified (N=0).

The argument leading to (5.12) is readily repeated for parcel oscillations constrained to lie in a
plane making an angle « to the horizontal; the resulting frequency is N sina . Small values of &

are characteristic of motion having its horizontal space scale L much larger than its vertical space
scale /. The often-quoted condition H<<L for the applicability of the hydrostatic approximation
is thus consistent with condition (5.14). However, @ may be small even when L and H are
comparable (see Hide and Mason 1975); (5.14) is considered to be the more fundamental
condition for the applicability of the hydrostatic approximation.

5.4  The traditional approximation, the shallow atmosphere approximation and the
hydrostatic primitive equations
Compared to the dimensions of the Earth (mean radius 6360km) the atmosphere is shallow:
consistent with our conclusions in section 5.1, 90% of its mass lies below 17km. Shallow in this
sense it is, but two caveats should be noted. First, nearly every field varies with height as well as
with horizontal location. For example, winds at 10km are usually markedly different from those
found near the surface, as regards both speed and direction. Second, the atmosphere is generally
not shallow in relation to the Earth’s topography. Mountains locally attain heights of about 8km
above mean sea level, and they certainly influence the motion and behaviour of the atmosphere
to an important extent, but there is little tendency for the atmosphere to be divided up into
"basins" in the way that the continents divide the Earth's seas into ocean basins, or in the way
that high mountains effectively divide the Martian atmosphere (see Hide 1976). [Some local
phenomena, for example the East African Jet (Findlater 1969) and coastal lows in Southern
Africa (Gill 1977), do depend on mountain ranges acting as lateral "walls". The effects of



mountains on air flow generally depend on the stratification of the air — as measured by 06/0z —
as well as on the flow itself and the elevation of the mountains. See Baines (1995).]

With these caveats in mind, it is reasonable to seek a simplification of the equations of motion
which exploits the fact that the atmosphere's depth is a small fraction of the Earth’s radius — a
shallow atmosphere approximation. We aim to replace the variable radius 7 by a mean value a,
whilst retaining differentiations with respect to height as &¢z, where z is height above mean sea
level. Animplication of this strategy is clear if we re-consider the derivation of the components.
of the momentum equation given in section 4.4. The Coriolis and metric terms —2Qw cos¢ and

—uw/r in (4.4) are lost if we re-define absolute axial angular momentum per unit mass as
(u+Qacosg Jacosg .15)

and the material derivative as

35 )
. & + o 4 + nL + w—é,— (5.16)

Dt a acos¢§ 22—5 074

Pursuit of the argument given in section 4.4 shows that the terms 2Qu cos¢ and (uz+ vz)/r in
the vertical component (4.6) and — vw/r in the meridional component (4.5) must then be
neglected for consistent energetics. The neglect of the cos¢ Coriolis terms — known as the
traditional approximation (Eckart 1960) — is less comfortable than neglect of the quadratic
metric terms not involving tang, although for many purposes it turns out to be a good
approximation; we shall return to this issue in section 11.3 during a discussion of acoustically-
filtered global models. Accepting that the stated omissions should accompany the shallow
atmosphere approximation, we obtain the hydrostatic primitive equations as

. e P (5.17)
Dt a pacos g oA
2
e YUY P (5.18)
Dt a o P
L (5.19)
p &

The thermodynamic and continuity equations remain

DO (7

—_—= | — 5.20

Dt (cpT)Q ( )
and

Dp

— = —pV. 5:21

Dr pV.u (5.21)

but, as in (5.17) - (5.19), D/Dt is defined by (5.16), and
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Va = l i + i(vcosqﬁ) - ol (5:22)
acosg| oA 174

In (5.19), g is properly considered constant. The quantity 2Qsing that appears in (5.17) and
(5.18) is usually referred to as the Coriolis parameter and accredited the symbol /. The other
Coriolis parameter, 2Qcosp, which is absent from the HPEs, has no universally accepted title.

The axial angular momentum conservation law of the HPEs, readily derived from (5.17), is

p—[[—));{(u + Qacos¢)acos¢} = pF,acos¢ - ;—é; (5.23)
The energy conservation law (Lagrangian form) is
pg?[%vzwt gz + c‘,'l':, = —V.pu) + p(Q + v.F,) (5.24)

Here v is the horizontal flow (the "wind"). Eq (5.24) shows that the vertical motion w does not
contribute to the kinetic energy in the HPEs, but it appears in the pressure-work convergence
term — V.(pu) and in the definition of D/Dt (see (5.16)). We consider in 5.5 what determines w.

The HPEs’ analogue of potential vorticity conservation is

pﬂ{ﬂ} = &.V(D—gj + V6.V xF, (5.25)
Dl o Dt
where Vo = L lﬁ : 2 E(Vﬁ, %] (5.26)
acosp oA a dp < 0z :
and £ = 2Qksing + Vxv (5.27)
Here k = unit vector in the (upward) vertical direction, and
Vxv = —Qi—l— Q—i(ucos@ (5.28)
& & acosg\oL P
The horizontal component equations (5.17), (5.18) of the HPEs may be written in vector form as
% + V,(v3/2) + kxv + w—;a‘l ko Y apd (5.29)
Oz P

HereV , is the horizontal part of V, as defined in (5.26), { = k.V x v is the vertical component
of the relative vorticity, and F, = (F sl ¢). From (5.29) may be derived prognostic equations for

¢ and V,.v, the divergence of the horizontal flow. Such vorticity, divergence forms are used in

some HPE numerical models, particularly Eulerian spectral models (see Hoskins and Simmons
(1975)). The second and third terms on the left side of (5.29) are not precisely equivalent to
(v.V. )v, which contains a small vertical component when V. is defined as in (5.26); see Coté"

(1988), Ritchie (1988) and Bates et al. (1990).

18



5:9 Richardson's Equation

A by-product of the hydrostatic approximation is that the prognostic equation for w is lost. The
implication is not that w = 0, or that w does not vary with time; rather, w takes that spatial form
which maintains hydrostatic equilibrium as the thermodynamic and horizontal flow fields evolve.
A diagnostic equation for w may be derived in several ways. We use a route which gives
physical insight and an explicit expression for éw/¢z, and then note a second order differential
equation that w obeys. Our treatment follows that of unpublished Meteorological Office College
lecture notes (1981) by R W Riddaway; see also Wiin-Nielsen (1968) and Dutton (1995).

By writing the HPE continuity equation (5.21) in terms of dp/ot and using the hydrostatic
approximation (5.1) one obtains the important relation

Dy
V.(ov) + [%(pv gdj 0 (5.30)

Here, once again, the flow u has been separated into its hoiizontal part v and vertical part wk;
V .. indicates the horizontal part of the divergence:

L adon) . d
V. ov) = acos¢[ P + ﬁ¢(pvcos¢)} (5.31)

Integrating (5.30) over the interval [z, o] gives

P

e e gf v, {ov)i’ (5.32)

Eq (5.32) states simply that the time rate of change of pressure at height z is equal to (gx) the rate
of convergence of mass into the column (of unit horizontal cross-section) above z.

In addition to (5.32) we have another equation for g/a. Using (5.21) and (3.10), the
thermodynamic equation (3.14) can be written as

Dp PRO
—— = —wV.au+ 3,33
Dt : e o
Hence (using (5.19))
% = -vwWV.p+ pwg - pVau + PRO (5.34)
¢

v

The right sides of (5.32) and (5.34) must be equal; we find that

w0 :
;p—éz— = ”{Ep— ™ V:.v} o VY Pt ng,.(pv)dz (5:35)

Eq (5.35) determines dw/cz at height z in terms of p, p, v and Q at z and p, v at greater heights;
w(z) itself may be obtained by integrating (5.35) from z =z, upwards, assuming a reasonable

lower boundary condition (such as w = 0 at a flat lower boundary). The explicit expression for
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w(z) so obtained is known as Richardson's equation from its use in the first numerical weather
prediction experiment (Richardson 1922). A different treatment is necessary if an upper
boundary condition is applied at a finite height (Kasahara and Washington 1967).

Differentiation of (5.35) leads to a form that does not contain a vertical integral:

| | ow 0 op N
—pl—+V,v-—=— = =—V v - —V, 5.36
7(2’{1{(32 S TCJ} B ol 6

[Tapp and White (1976) give an equivalent form in the case Q = 0.] Eq (5.36), which is
unchanged if any upper boundary condition is applied at a finite height, can be obtained more

directly by writing (5.19) as pg + dp/dz = 0, differentiating locally with respect to 7, then
using (5.21) and (5.33) to substitute for dp/ot and dp /ot , and finally applying (5.19) for p .

5.6 The shallow water equations

The HPEs describe the motion of a compressible atmosphere, and allow height variation of all
fields (within the shallow atmosphere approximation, and criterion (5.14)). For both theoretical
and numerical testing it is often convenient to have recourse to a set of equations which does not
involve height variations or compressibility. The shallow water equations (SWEs) are such a set.

Waves on the surface of a non-rotating, incompressible, homogeneous liquid of mean depth d
under the influence of gravity behave differently in the long and short wave limits (see, for

example, Lighthill (1978)). If the wavelength A of the surface waves obeys A << d, then we are

close to the deep limit: the waves are dispersive, particle paths are circles (of exponentially
decreasing radius as one goes deeper into the fluid) and the motion is essentially non-hydrostatic.
But if A >>d , then we are close to the shallow limit: the waves are non-dispersive, particle

paths are horizontal, amplitude is independent of depth, and the motion is essentially hydrostatic.

With this background, consider how the HPE momentum and continuity equations may be
applied to a rotating incompressible, homogeneous fluid of density p bounded by a rigid
horizontal surface at z = 0 and having a free surface at z = (A, ¢, ). In the shallow limit, the
pressure is (plausibly) hydrostatic, its horizontal gradient is pg multiplied by the free surface
gradient, and (5.17), (5.18) become

W e e G F, (5.37)
Dt a acos¢ oA
2
L e L 50 (5.38)
Dt a a o
A A ) A
s G S (5.39)
Dt Ot  acos¢ O a o¢

If the horizontal velocity components u, v are initially independent of depth, they will remain so,
since the pressure gradient is independent of depth. The time evolution of # may then be
obtained by integrating the continuity equation (5.21) over the depth 4 and noting that

w(h) = Dh/Dt (and p = p = constant):
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[V,vaz+w(t) = 0 = 7))- PhY w0 (5.40)
( % o

Eqs (5.37) — (5.40) are the shallow water equations (SWEs); we shall use them in our review of
approximately geostrophic models (section 9). [To avoid ambiguity, we retain the symbol V,
for the horizontal part of the V operator — see (5.26) and (5.31) — although for the SWEs

V reduces to V_ anyway, since no height variations of u, v or 4 are involved. ]

The SWEs are closed for #, v and A, and have the following conservation properties (see Salmon
(1983) for a Hamiltonian treatment):

Axial angular momentum: BDI-{(unLQa cosglacosp) = F,acosg — g;—ﬂ; (5.41)
Energy: hﬂ(lvzj = —ghvV. h + hv.F, (5.42)
Dty 2

Potential vorticity: hl—)(g—ﬂmj = kY. ¥, (5.43)

Dt h ;
HereF, = (F,L,F¢), and ¢ is the SWE relative vorticity:
. f—(u cosg) (5.44)
acosgp\ oL P

An important limiting case of the SWEs occurs when variations of the depth 4 are negligible (we
examine in section 8 the conditions under which this occurs). Then (5.40) becomes

V.v=20 : (5.45)
and (5.43) reduces to

g—’(g +2Qsing) = kV, xF, (5.46)

which is the barotropic vorticity equation. The material derivative in (5.46) is given by (5.39),
with v = (u, v) satisfying the non-divergence condition (5.45). A streamfunction y may be

introduced for v, whereupon (5.46) becomes a prognostic equation for ¢ = szy/ in terms of the
advection of the absolute vorticity V_,zy/ +2Qsin g by the flow v=kxV _y:

%(ij) = —(kxV_p)V.(V 'y +2Qsing) + KV, xF, (5.47)

Eq (5.47) determines the time evolution of y/, given appropriate boundary conditions and a

specification of F,. Studies of (5.47) and close variants (some of them Cartesian — see section

6.3) have given insight into Rossby waves (section 8.3), steady flow structures and geostrophic
turbulence in rotating fluids; see, for example, Platzman (1968), Hoskins (1973), Rhines (1975),
Baines (1976), Held (1983), Shutts (1983a), McWilliams (1984), Marshall (1984), White (1990)
and Verkley (1993).



6. VERTICAL COORDINATE SYSTEMS; THE “f~PLANE” AND THE “APLANE”

This section deals with some further aspects of formulation and approximation that are
characteristic of meteorological dynamics. The use of pressure as vertical coordinate is first
discussed, and other choices are noted. The use of Cartesian geometry and approximate
treatments of the spatial variation of the Coriolis parameter are then briefly considered.

6.1 Use of pressure as vertical coordinate
Any quantity that bears a 1:1 relation to height z may be used as a vertical coordinate. If the

hydrostatic approximation is made, then pressure is certainly such a quantity, since p> 0 ensures
that gp/cz = —pg is everywhere negative. In "pressure coordinates" the independent variables are
(4, @, p, 1) instead of (4, ¢, z, f), and z becomes a dependent variable. The material derivative is
u 0o v o 17
S e L s e (6.1)
acos¢ oA a op 17

D

o
..___+
Dt a

Here w= Dp/Dt. The horizontal and local time derivatives in (6.1) are taken at constant pressure
(but with distances measured on constant height surfaces); u, v are the velocity components in
constant height surfaces (nof the components in constant pressure surfaces); and /dp is taken

at constant A,¢,7. Eq (6.1) may be derived either from first principles, or from (5.21) by using
the following rules, valid for any well-behaved O = O(4, ¢, z,1), with X =1, A, ¢ and then Q =p:

e ool o) D _ D e o
07 4 Z P 17 : x|, &K|, o, :
See Fig 6. The quantity w= Dp/Dt is often referred to as the pressure-coordinate "vertical
velocity", although, as the material derivative of a scalar, it is frame-invariant.
The hydrostatic relation (5.19) may be written as
174 1 RT
P p P
The pressure-coordinate versions of (5.17) and (5.18) are
D -
e Y b, 82 g (6.4)
Dt acos¢ acos¢ A
D
L by e 8 F, (6.5)
Dt acosg a op 5

in which the nonlinear pressure gradient terms in (5.17), (5.18) have become linear in the
horizontal gradient components (on pressure surfaces) of z.

The thermodynamic equation remains as (5.20), but the material derivative is expressed as (6.1).
A major simplification occurs in the continuity equation (5.21) [see Sutcliffe (1947) and Eliassen
(1949)]. The form (5.29) shows that hydrostatic balance reduces the continuity equation to non-
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divergence even in height coordinates (accepting a suitably redefined vertical velocity). Use of

Dz 074 HEsl V & L 074

WE = = — — —— — (6.6)
Dt a acos¢ oA a o p
in (5.29), along with (6.2) and the hydrostatic relation, shows that (5.21) becomes simply
VsVt il =0 (6.7)
P
in which Fave Lo L C Gy (6.8)
acosp\ oA O

Eqs (6.3) - (6.7) [with (5.20)] are exact transforms of the height coordinate HPEs. Pressure-
coordinate forms of the various conservation laws are readily derived, but will not be given here.

Similar transformations of the height coordinate HPEs may be made using any suitable function
of pressure as vertical coordinate. Frequent choices include pR/ “ (see Hoskins and Bretherton
1972) and In p (see Holton (1975)); these coordinates are often given the symbols z or Z, and so
it is easy to lose sight of the fact that they are pressured-based coordinates.

6.2  Other choices of vertical coordinate

Given the hydrostatic approximation, pressure coordinates offer at once a simplification and a
complication. From the continuity equation (6.7) one can readily derive a diagnostic equation
for the “vertical velocity”, @, in the pressure system:

olp) = -[V,vdp (6.9)

Eq (6.9) is simpler than Richardson’s equation for the usual height-coordinate vertical velocity,
w= Dz/Dt ; see section 5.5. The complication is that the Earth’s surface is generally not a
coordinate surface in the pressure system — even in the absence of topography. The local rate
of change of surface pressure p. = p.(4,4.¢) can be calculated from (6.9) with p = p_:

@, . Dp, i 2
= E—-v.pr = —J; V xvdp ~v:Np, (6.10)

The quantity dp, /0t is known as the surface pressure tendency.

The boundary condition w = 0 at a horizontal surface (z = 0, say) becomes (from (6.3) and (6.6))

Lami e (6.11)

a acos¢ a a op o 4
onp = p.. Intheoretical analyses, approximations to (6.11) are often resorted to, and should be

carefully justified in each case (see, for example, Haynes and Shepherd (1989)). A common
procedure is to apply @ =0 onp = p,, where p, is a horizontal average surface pressure; a
more accurate approximation under certain conditions (see section 10.1) is to retain the local
time derivative in (6.11) and to apply @ = —pgc/ct atp = p,.
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In numerical weather forecasting and climate simulation models it is usual to adopt a vertical
coordinate for which the Earth's surface is a coordinate surface. The prototype choice is the
sigma coordinate ¢ = p/p, (Phillips 1957), for which o= 1 at the Earth's surface whether or

not topography is present. The continuity equation (6.8) becomes

3 56
oy Vi) 2o (6.12)
ot : oo

where 6 = Do /Dt is the o-coordinate “vertical velocity”. Thus (sincec =0at o =0 and o =1):
@ [V, (p,vHo (6.13)
o VoA, . ;
The quantity & may be found by eliminating Jp, /ot from (6.12), (6.13), and integrating over o

g = —J:VG.([)XV)LI'O" ~ UJ:ZVU.(psv)a'O" (6.14)

Haltiner and Williams (1981) give further details.

A vertical coordinate that has particular manipulative and conceptual advantages is potential
temperature, & (Starr 1945; see also Eliassen 1987). It is a permissible choice so long as
no regions of neutrality or static instability exist (i.e. so long as 96/0z > 0). The material

derivative in @-coordinates is

e el e (6.15)
Dt a acos¢ oA a ap 12

(with the 7, A and ¢ derivatives taken at constant ). In the case of adiabatic motion (6= 0) the
8/06 contribution to (6.15) vanishes and advection is purely 2-dimensional (on surfaces of
constant #). The continuity equation also takes a quasi-2-dimensional form, and (whether or not
the motion is adiabatic) the pressure gradient terms in (5.18) and (5.19) become linear in the
horizontal gradients of the quantity M = gz +c, 7" (known as the Montgomery potential). A
partial similarity to the shallow water equations may be noted, although the fields described by
the SWEs have no vertical variation — see section 5.7. Against these (and other) considerable
advantages must be weighed the disadvantage that the Earth's surface is not a constant @ surface.
The difficulty is not insuperable, however; see Bleck (1984) and Hsu and Arakawa (1990).

Kasahara (1974) derived forms of the HPEs using a generalised vertical coordinate s (such that
|E)s/ azl # 0), and some numerical weather prediction and climate simulation models use so-called
hybrid coordinates which behave like o near the Earth's surface but like pressure at high levels
(Simmons and Burridge 1981, Simmons and Strifing 1983). Hybrid coordinates have been used

that behave like o near the Earth's surface, like @ at intermediate levels and like p at high levels
(Zhu et al. 1992, Thuburn 1993).

As we shall see in section 11, the use of pressure and sigma coordinates is not limited to models
in which the hydrostatic approximation is applied. Also, a vertical coordinate equivalent to
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hydrostatic pressure has been successfully used in fully non-hydrostatic models; see Laprise
(1992), Bubnova et al. (1995) and Geleyn and Bubnova (1997).

6.3 Further geometric and Coriolis approximations
Geometric and Coriolis approximations beyond the shallow atmosphere and “traditional”
approximations of section 5.4 are common in meteorology, especially in theoretical treatments.

For accurate modelling of the global atmosphere it is essential to represent the sphericity of the
Earth and the latitude variation of the Coriolis parameter f = 2Qsin ¢ . In the study of sub-
planetary scale phenomena, especially when quantitatively accurate conclusions are not required,
the use of simplified geometries and coarse treatment of the Coriolis parameter are convenient
and justifiable. For example, if one wishes to model the circulation of a cumulus cloud, for
which time-scales are typically tens of minutes and space scales a few kilometres, the use of
local Cartesian geometry and neglect of Coriolis effects are entirely reasonable simplifications.

For weather systems having a horizontal space scale of 1000 kmand a time-scale of a few days —
the so-called synoptic scale — the Coriolis force must be accounted for, but the latitude variation
of £, and spherical geometry, may be considered unimportant. The use of Cartesian geometry
with a constant Coriolis parameter is a scheme known as the "f-plane”. Often, Cartesian
geometry is used, but in differentiated terms the Coriolis parameter is allowed a linear variation
f=/.+ By, where £, and f3 are constants and y is northward distance from the latitude at which
f=f.. This scheme is known as a "f-plane": iff, = + 10* s, it is a "mid-latitude S-plane"; if
£,=0, it is an “equatorial B-plane”. [The latitude variation of the Coriolis parameter is itself
often referred to as “the S-effect”.] These approximations are often introduced in a rather ad hoc
fashion in theoretical analyses (though with due regard to the latitudinal scale of the motion
being studied); for critical discussion see Pedlosky (1987), and for a Hamiltonian approach to
the issue, Ripa (1997) and Graef (1998). We shall treat a particular case in section 8.3.

For illustration and later use (see sections 7-10) we note here how the height-cooordinate HPEs
(5.17) - (5.22) are modified in Cartesian “f-plane” form. The material derivative becomes

L e e (6.16).

Dt ot ox oy 0z
Eqs (5.17) and (5.18) are written in vector form as

D
- R v E (6.17)
Dt Yo,
with V, = (8/ox, 8/dy), F, = (F;., Fy) and implied neglect of the metric terms in (5.17), (5.18).
The 3-dimensional divergence term in the continuity equation (5.21) is expressed as
ou ov ow
Vu= — + — + —
ox oy 0z
The Cartesian coordinates x and y may be regarded as x =alcosg,, y = a(¢ ~¢,), where ¢, is
the central latitude of the “/-plane”; we also have f = f, + fy = 2Qsin ¢+ (2Q/a)y cosd, .

On an “f-plane”, #= 0 and the orientation of Oxy in the horizontal is immaterial.

(6.18)
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7. THE GEOSTROPHIC APPROXIMATION

During our discussion of hydrostatic balance, the buoyancy frequency Nz((g/49)(79/(72)"'2
emerged in section 5.2 as a key inverse time-scale in a stratified atmosphere. Another important
inverse time-scale, but one having a much more systematic spatial variation, is the inertial
frequency f =2Qsing. This is the frequency with which parcels of air may circulate in the
horizontal under the action only of the horizontal component of the Coriolis force. If friction and
horizontal pressure gradients are absent, and the tang metric terms and the latitude variation of f
are neglected, then (5.18) and (5.19) give

The period of these inertial oscillations, 277/ f (= 7/Qsin ¢) , is half the local pendulum day — i'e.

half the period with which a Foucault pendulum will circulate about the local vertical at latitude ¢.
See Paldor and Killworth (1988) and Stommel and Moore (1989) for detailed discussion.

Large-scale motion in the extra-tropical atmosphere, on length scales of 1000km and more and
time scales of a day and more (the “synoptic scale” — as noted in section 6.3), is typified by a quite
different balance: the sing part of the Coriolis force is nearly balanced by the horizontal pressure
gradient force. In geostrophic flow, this balance is precise (see (Fig 7(a)), and (6.1 7) becomes

—fkxv - —IV__p =0 (7.1)
P
Consistent with (7.1), the geostrophic wind v ;, is defined as
1
Vo = [—j—ka:p (7.2)

Other definitions of geostrophic wind are sometimes useful (Blackburn 1985), and one of them
will be used extensively in sections 9 and 10. A definition which combines geostrophic and

hydrostatic balance, and involves the cos¢ parts of the Coriolis force as well as the sing parts, has
been used by Hide (1971) and others; see also Shutts (1989).

In (7.1) and (7.2) (as in section 5) k is unit vector in the upward vertical direction. The criterion
for validity of the geostrophic approximation, v ~ v, . is that the acceleration term Dv/Dt in
(6.17) should be negligible compared with the Coriolis term — fk x v. Assuming a horizontal
space scale of variation L, and a horizontal velocity scale J/ (i.e. the horizontal flow varies by V/
over horizontal distance L), then v ~ v, according to a simple scale analysis if

Ro=V/fL << 1

Here Ro is a Rossby number, and it has been assumed that /Dt ~ V/L. Putting V'~ 10 ms’,
f~10%" and L ~ 10°m gives Ro ~10""; this is a typical value for synoptic-scale weather systems
in middle and high latitudes.

We consider in this section various aspects of the geostrophic wind, and the interesting
consequences of combining the geostrophic and hydrostatic approximations — which together
account in a diagnostic sense for many synoptic-scale features of the extra-tropical atmosphere.

-
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7.1 Pressure and height signatures
A third possible balance in the horizontal components of the momentum equation is between the
acceleration and the pressure gradient force:

)
Dv _ _Lv_/, (7.3)
D1 7 e

This balance may be achieved in motion systems having a much shorter time scale than the
pendulum day. By applying a scale analysis to (7.3), and assuming again that /Dt ~ V/L, we find

that such systems will be characterised by horizontal pressure fluctuations Ap of magnitude pV*
(independent of horizontal scale). On the other hand, geostrophically balanced flow, according to
(7.2), will be characterised by pressure fluctuations Ap; of magnitude pfV’L. Hence

% e de s (7.4)

The Rossby number, Ro, therefore measures the magnitude of pressure fluctuations due to
circulations characterised by (7.3) compared with pressure fluctuations due to geostrophically-
balanced circulations characterised by (7.1) and similar flow speeds V. In other words, the
pressure signature of nearly-geostrophic flows is an order of magnitude greater than that of flows
(of similar strength) characterised by (7.3). To the extent that Ro << 1, a map of (say) pressure at
sea-level, will be dominated by the contributions of geostrophically balanced flows. Taking

p ~1kgm”and V'~ 10 ms”, we find Ap ~ 10°Pa = 1hPa for short time-scale circulations. Taking
L ~ 10° m for synoptic-scale flow gives Ap, ~ 10°Pa = 10hPa. Maps of sea-level pressure are
therefore expected to show fluctuations of order 10hPa about a spatial mean, and such fluctuations
are indeed observed: see Fig 7(b), which shows a typical sea-level pressure map.

By use of (6.2), and assuming hydrostatic balance, the definition (7.2) of geostrophic wind can be
written in terms of the gradient of the height /4 of pressure surfaces as

v, = %kxvph (7.5)

G

Height variations Ah of a pressure surface associated with geostrophic flow V, are thus of order

fLV, /g ~10*m (given g ~ 10 ms™ and other values as quoted earlier). Maps of the height of a

pressure surface are widely used in meteorology. Fig 7(c) shows a typical map of the height of the
300hPa (= 300mb) surface. This surface is roughly 9 km above the Earth's surface, and Fig 7(c)
shows variations of about +5x 10%> m in its local height; the flow at 300hPa attains values
substantially greater than 10 ms™. Even with height fluctuations of this magnitude, the 300hPa

surface is very gently sloping: A#/L <107

The geostrophic wind v ; is horizontally divergent or nressure surfaces only to the extent that the
latitude variation of the Coriolis parameter f contributes:

_ P
i

where (as in section 6.3) ff = (ZQ/a) cos ¢ is the rate at which fincreases with distance northward.

Vp.v(,-
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V,.v,; is thus much smaller than its two constituent terms if SL/f << 1. In middle and high

latitudes this condition reduces to L/a < 1, which is reasonably well satisfied by motion having a
horizontal space scale of 10° m. In extra-tropical latitudes, the geostrophic wind is therefore
nearly non-divergent on pressure surfaces (given L/a -~ 1).

7.2 The differential geometry of the height field

According to (7.5), v; is directed parallel to the heigiti contours 4 = constant and has
magnitude (g/f)'Vph
other properties of the geostrophic wind field. The vertical component of the vorticity of v; is

. Other differential geometric properties of the height field are related to

KV, xvg = Evip 4 P
7 S
which is dominated by the Vf,h term so long as L/a << 1. Thus (g/f)Vf,h is a good
approximation to the vertical component of the vorticity of the geostrophic wind if L/a < 1.

A less well-known property of the height field is a relationship between its principal directions of
curvature and the stretching and contraction axes of the geostrophic flow. Because the height field

typically has a slope much less than 10~ (see section 7.1) classical expressions for the principal
directions of curvature may be simplified, to a very good approximation.

Consider the height of a pressure surface as a function of horizontal Cartesian coordinates on an f-
plane: z = h(x,y), with f = f, = constant. Assume that 4 and its first and second derivatives
ool

of curvature of a surface specified in Monge form z = A(x, y)are lines having dy/dx given by

(‘%J {1 +82)-h hh}- (%]{ b (+h2)-h (1482 N+ hohh, —h (1+h2) = 0; (7.6)

o h,, are continuous. The projections on the (x, y) plane of the principal directions

(see, for example, Bell (1912), p338). If the second derivatives A, hly, h», are of similar order of

magnitude and the slopes 4, h, are very small (<<1), then (7.6) reduces to
dy dy
—|h, - |—\h,-h.4 - h 5.0 T.7
( dx] ( dx]{ e (7.7

In this approximation of small slope, the horizontal projections of the principal directions are
perpendicular to one another. For 2-D flow, the angle € between the dilatation axis and the x axis
is given (see section 2) by

tan20 = e (@+Q‘:]/(QIL—@) (7.8)
D, ox dy)f \ox oy

In geostrophic flow on an f-plane, u = u, = - (g/ ﬁ.\h.,, and v = v, = (g/f0 )hx ,and (7.8)

becomes

tan2¢ = tan20, = —(n.-h )2h, (7.9)
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Choose the the axes Oxy such that x lies along the dilatation axis. In this system 6, =0, and

(from (7.9)) h,. = h
the height field is characterised by very small slopes) the dilatation axes and contraction axes
of the geostrophic flow on an f-plane bisect the principal directions of curvature of

the corresponding height field.

substitution into (7.7) now shows that (dy/dx)’ = 1. Hence (given that

2

7.3 The thermal wind equation
An important result follows by combining the geostrophic relation (7.5) with the hydrostatic
relation (6.3):

A _—kxv,(ij = Ay g (7.10)
P f P\ep) p
Hence
N (_PRFs)| _ £ kxv, 1 [=£kxV,6 (7.11)
& & S : N

Thus the vertical shear of the geostrophic wind is at right angles to the temperature gradient on
pressure surfaces; see Fig 8(a). Eq.(7.10) is the differential form of the thermal wind equation.
Hydrostatic and geostrophic balance tie the wind and thermodynamic fields together in a specific
way that is one of the key features of synoptic-scale meteorology.

A useful height-integrated form of (7.10) is readily obtainable in terms of the vertical distance
Az,, between two pressure surfaces p,and p, (p,>p,). From the hydrostatic approximation
(5.1) and the perfect gas law (3.16):

P
Az, = BJTd(lnp). (7.12)
g

P
The quantity Az,, is known as the "thickness" of the layer between pressures p,and p, .
Eq.(7.12) shows that the thickness is a measure of the mean temperature of the layer. Charts of
thickness, often of the layer between 1000 and 500hPa, are part of the stock-in-trade of the
synoptic meteorologist. Along with appropriate height charts, they show at a glance where warm
and cold air are being advected by the geostrophic wind. From (7.10) and (7.12) we find

vo(p) - vo(p,)= %kwiu) (7.13)

Thus the vector difference in the geostrophic flow between two pressure surfaces (at the same |
horizontal location) bears the same relation to the thickness contours as the geostrophic wind does |
to the pressure or height field. This is readily understood in physical terms; see Fig 8(b).

It is worth noting that the geostrophic wind generally changes its direction as well as its magnitude
with height. From (7.5) and (7.11),

Mo} . &
k.(va XT;) - fz,l,k.(vph xV,T) (7.14)

Hence the geostrophic wind shear dv, /0z is parallel or anti-parallel to the geostrophic wind v,
only if the height gradient V A is parallel or anti-parallel to the temperature gradient V 7"
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In this brief account we have been able to mention only a few of the diagnostic results which may
be obtained by combining the hydrostatic and geostrophic relations. This is currently a rather
underplayed area of meteorology, but it is well described in older textbooks (see Saucier (1955)).
For forecasting or for the elucidation of forecasts generated numerically (using, say, the HPEs), a
time-dependent picture is required; we consider in section 9 some models which answer this need.

7.4 Other steady, balanced flows

In strictly geostrophic flow, particle accelerations and friction are absent; Coriolis and pressure-
gradient forces are in precise balance and the flow is rectilinear. Balanced circular motion under
the influence of the Coriolis and pressure gradient forces is readily analysed, and gives what is
known as gradient flow. The balanced circular flow around a centre of low pressure is weaker
than the geostrophic flow implied by the pressure or height field (the contours of which are
circular in this case): the excess of the pressure gradient force over the Coriolis force supplies the
acceleration that is necessary to maintain circular motion. The balanced circular flow around a
centre of high pressure is larger than the geostrophic flow implied by the pressure or height field:
the excess of the Coriolis force over the pressure gradient force now supplies the acceleration
necessary to maintain circular motion. A possibly less expected aspect of the problem is that the
supergeostrophic flow around a centre of high pressure has an upper bound. In plausibility terms,

one may argue that the required acceleration in circular motion of radius 7 is |v| /r, but the

Coriolis force varies only as |v| . hence it is reasonable that a limit exists to the extent to which the
acceleration can be supplied by the Coriolis force. See Holton (1992).

Straight flow in the presence of friction may be analysed by assuming a tractable relation between
the flow and the friction. The customary example is Ekman's classical treatment of the case in

which F = k5*v/&? ; this is covered in textbooks such as Holton (1992) and Gill (1982). [The

assumed force balance between frictional, pressure-gradient and Coriolis forces is sometimes
referred to as geotriptic, see Bannon (1998) and references therein.] The essential physics may be
exposed by considering the case in which friction is assumed to oppose the flow according to a
simple linear law (first used, according to Eliassen (1984), by Guldberg and Mohn in 1876) :

fkxv = fkxv, = =Cv (L)
Hence
fExv,; = =Cy (7.16)

where v ,; = v - v, is the ageostrophic wind, and v ,, is perpendicular to v. If v, is plotted

along the diameter of a circle, v (the actual horizontal wind) and v ,; will meet one another on the

circle (see Fig 9); also, |v| < |v,| and |v ;| < |v,| (given C>0). A simple calculation gives

Vi = — —— and tana = : (7.17)

g
:

where « is the angle between v, and v. Carrying the analysis through for a quadratic friction

bl [

law is straightforward. In physical terms, friction reduces the flow below the geostrophic value
(which is not a general property of the Ekman solution) and directs it towards lower pressure.
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8. ATMOSPHERIC WAVES

The nonlinearity of the advection terms in the equations of motion cannot safely be ignored in
quantitative forecasting or simulation of the atmosphere's motion. Nevertheless, a knowledge of
the small amplitude oscillations and waves that are possible in a compressible, stratified, rotating
atmosphere is fundamental to an appreciation of meteorological dynamics. The nonlinear terms
sometimes turn out to be less important than a crude analysis might suggest (see, for example,
White (1990)) and they can in any case be regarded as a forcing agency for the linearised
dynamics and thermodynamics (along with diabatic and frictional sources and sinks). The
properties of the possible wave motions determine how, and how quickly, local disturbances may
influence distant regions (Lighthill 1978). Their properties also affect the application of numerical
schemes in weather forecasting and climate simulation models (Haltiner and Williams 1981).
Perhaps most important in our context, an appreciation of the possible wave motions illuminates
the various approximate formulations — which do not support all modes of oscillation.

In this section we consider small oscillations of a frictionless, adiabatic, perfect gas atmosphere
about an isothermal state of rest relative to the rotating Earth. Analytical results are readily
obtained by use of the f~plane and S-plane approximations (see section 6.3). Only neutral waves
are found because there is no energy available apart from that initially present in the perturbations.
Cases in which the initial state has available energy because of velocity or horizontal temperature
gradients will not be addressed, although they have played a key role in setting up the conceptual
furniture of meteorological dynamics. For discussion of relevant instability problems see Drazin
and Reid (1981), Gill (1982), Held (1985), Farrell (1989) and Holton (1992), for example.

The profiles of pressure, density, potential temperature and buoyancy frequency in an isothermal
atmosphere were given in section 5 (Eqs(5.4)—(5.7)). Pressure and density decrease exponentially
with height, potential temperature increases exponentially with height, and the buoyancy
frequency N is constant. The classical adiabatic sound speed, c,, given by

€ :\J}/RTO ) (8.1)

(where y =c¢, /c, ), is also independent of height, as is the scale height H#, (= R7,/g). From
(3.19), N, H, and ¢, obey a relation that will be used repeatedly in this and later sections:

N'H, , gH,

2

g Cy

=1 (8.2)

8.1 Oscillations of an isothermal atmosphere: f-plane case
We begin with some comments on notation. In linearised analyses it is usual to indicate

o~

perturbations from the chosen basic state by primes: 3 = 3, + 3’ where J is a generic field and
3, its value in the basic state. The equations obtained after linearization involve only 3, and

J’, and the use of primes to indicate perturbations becomes tedious and redundant. We shall
drop the primes in the linearised equations: in this section, u,v,w, p, pand @ are to be
understood as the perturbation velocity components and thermodynamic quantities. Various
combinations of the thermodynamic variables feature in the linearised equations: p/p, , p/p,

and 6/6, (to exercise the notation just introduced). It is tempting to introduce new symbols for
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all or some of these quantities, but we shall resist the temptation: it would lead us into slightly
tidier equations, but their physical content might be obscured. A final issue is the choice of
symbol for the angular frequency of a wave. We shall follow common usage in mathematical
physics, and denote this quantity by @; our choice is not to be confused with the use of w in
sections 6 and 9-11 to represent Dp/Dt (which is common usage in meteorology).

Linearisation of the adiabatic, frictionless, f/~plane equations about an isothermal rest state gives:

é’—+_f0k><v+V_.[—‘?—] =0 (8.3)
a o
@ e Ve (8.4)
a ; 00 124 o \ Dn )
é(ﬁ] SV ) (8.5)
a Po Po & o
2le N (8.6)
a\ o, g
2 _‘_(ﬁJ e (8.7)
G c\P) Po
Here V, = (i : %J Eq (8.3) is the linearised, frictionless form of the horizontal momentum

equation (6.17). Eqgs (8.5) and (8.6) are respectively the linearised continuity and (adiabatic)
thermodynamic equations. Eq (8.7) may be obtained by linearising (3.19) and then using (3.10)
and (8.1). Eq (8.4) is the linearised vertical component of the momentum equation, with the
shallow atmosphere approximation and neglect of the Coriolis and metric terms in (5.14); (8.7)
has been used to eliminate the perturbation density, and (8.2) applied.

Elimination of 6/, between (8.4) and (8.6) gives

2 2
Came T e e R (8.8)
a & g )ap
Another relation between w and p/p, , obtainable from (8.3) and (8.5) - (8.7), is
e apbe Bl @ g alZi ] g (8.9)
ar ar el a’ “)al\ p,

An important special solution of (8.8) has w = 0 everywhere, and hence p/p, o exp[N 2z/ g]. If
wave-like form exp{i(kx + ly — ax)} is assumed, (8.9) then requires that the angular frequency @
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should obey

o’ = kv i)+ £ (8.10)

These horizontally-propagating waves are known as Lamb waves (see Lamb 1932). With them
are associated fluctuations of pressure, density and horizontal velocity, but not potential
temperature (or vertical velocity). They are anisotropic in character, being in hydrostatic balance
in the vertical, but having the structure of classical sound waves as regards their horizontal field
variations. Apart from the effect of rotation ( 7, # 0) they are non-dispersive and have the phase

speed of classical sound waves.

Other modes permitted by (8.8) and (8.9) obey a partial differential equation obtained by

eliminating w:
2 2 2 7
€ w2 o ufd Lol BEI PR ol aa
7 b 5 a 174 Ho@" Cy a Po

Wave-like solutions of (8.11) exist in the form

p/p, = exp(z/2H , )explilkx + 1y + mz — ot )} (8.12)
These solutions have angular frequencies @ that obey the dispersion equation .
a)(a)4 - Q2w? + Qf,Q;) = 0 (8.13)

in which the parameters Q2 and Q; are given by

2 2 2 2 2 l 7%
Q =ci|lk +1"+m + + f° 8.14
a U[ 4H(_)7_J fO ( )
and
QIQ = N(k*+12)+ ffc'j(mz 5 4]112J (8.15)
N 0

Eq (8.13), which is obtained by substituting (8.12) into (8.11), has five solutions. Corresponding
to w = 0 is a geostrophic mode having fv =k x V(p/p(,), with u, v, p/p, =< exp(sz/g),

p < exp(—gz/ ct ) ,and w = @ = 0. The other four solutions consist of two pairs. One pair,
having high frequencies, has

2 2 ol g ) 2 1 2
@ = Qa = (‘O[k +1°+m +Z-1:[—2—] i fO . (816)

0

These are acoustic waves modified by rotation ( f, # 0) and static compressibility (1//, # 0).
Even horizontally-propagating waves (m = 0) of this type are distinct from the Lamb waves.
They are weakly dispersive through the terms in (8.16) in f,> and 1/ 4H? . The second pair of

solutions, having lower frequencies (see Gill 1982, p174), has

33




2 2 2 . 2 ]
Netwo bl shfhimed——
e 'f[ 4Hg]
@ = Q. = - - (8.17)

i

| R o
‘-ﬂ’, +k+ P+ miy —

€y 4 0

These are buoyancy, or gravity waves, modified by rotation and static compressibility; they are
often called inertio-gravity waves. Evenif f, =0, they are dispersive.

The approximations (8.16) and (8.17) are generally very good in terrestrial parameter ranges, and
are sufficiently accurate for many purposes. Exact solutions may be obtained by noting that

QF = 4le, and writing

o in2 (8.18)
= visia ; :
Q, x
: nr
Then R R Qasm(z//+—-£—j; n=0173 (8.19)

and the solutions may be represented graphically, as in Fig 10. From the quartic bracket of (8.13)
it follows that the exact solutions * @,, * @, obey

5

o to) = Q. ; @w = Q6 (8.20)
The approximation (8.16) thus overestimates the true sound wave frequency, while (8.17)
underestimates the true gravity wave frequency.

Apart from the introduction of the geostrophic mode having @ = 0, the presence of rotation does
not lead to any new modes of motion. If f, = 0, a pair of sound waves and a pair of gravity
waves are still found; rotation only serves to modify their frequencies (and generally to increase
dispersion). In particular, it is noticeable that there are no modes corresponding to inertial
oscillations — see section 7 — whereas the (inertio-) gravity waves can be identified with buoyancy
oscillations (modified by rotation). This reflects the fact that the pressure field plays a key role in
gravity waves but not in pure inertial oscillations.

8.2 Filtering approximations in the f-plane problem

The consequences of various approximations and modifications of the equations of motion may be
explored by repeating the above analysis with various terms omitted. An apt way of doing this

[J S A Green, unpublished lecture notes, Imperial College, 1970; G J Haltiner (1971)] is to attach
multiplicative tracer parameters n, to the target terms; then »,= 0 or 1 according as the

associated term is omitted or retained. Our treatment in this section closely follows Green’s.

Of particular interest are the hydrostatic approximation, in which dv/A is omitted from (8.4), and
the anelastic approximation, in which dp/a is omitted from (8.5). Our freedom to omit these

terms is not complete, as an examination of the energy equation implied by (8.3) - (8.7) readily
shows. Consider (8.4) and (8.5) in the forms
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A tracer n, for — (N 4 gXp/ p,) has been placed in (8.4"). The local energy conservation law is

a 6,) ¢ \p
When 1, =n, = n, =1, this reduces to a familiar form (see Gill (1982), p170); in particular, the

term in N’ pw vanishes. To ensure that we do not introduce a spurious energy source, we
therefore require that n, take the same value as n,. In place of (8.4") we use

3 r2
n,ﬁ—gi+(i—nzl\ }—e— =10 (8.4%)

Eqgs (8.8) and (8.9) become

2 5 2NP
(ﬂ, %+N2Jw + {%—-ﬂz N—j%[il =0 (8.8%)
& z g J2\ P

2 2 2
it o) 0”_2+ i -0’,—+1)3—N——L w+ | n, -0‘)—,+f02 —ciV? L (8.9%)
a s e | 32 a\ p,

The solution having w =0, p/p, # 0 has vertical structure exp(N 2z/g) if n,=1, but [from

(8.9%)] 8/at(p/p,) = 0if n,= 0. The Lamb wave is thus absent if the term Jp /et is omitted

from the continuity equation (anelastic approximation). The Lamb wave is still present (given
n,= 1) if n,= 0 (hydrostatic approximation).

Elimination of w between (8.8*) and (8.9%) gives

2 2 2 2
s e R s L e
ar : a’ & Hh e atiria P

which reduces to (8.11) if n, = n,= 1. We examine the fate of wave-like solutions of the form
(8.12) in the remaining cases.

n,= 0, n,= 0 (Hydrostatic, anelastic)
In this case, (8.11%) gives @ = 0 (geostrophic mode) or

1
N2+ )+ fH m? +—
: ( ) j() (m 4Hj]
»® = (8.22)

2 1
m- +
[ 4H:)
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There are no sound waves (or Lamb waves) in this case. Eq (8.22) represents a pair of gravity
waves, whose frequencies differ even from those of the approximate solution (8.17) (section 8.1).

n,=0, n,= 1 (Hydrostatic, elastic)
This gives the same results as the previous case, except that Lamb waves remain.

n =1, n,= 0 (Nonhydrostatic, anelastic)
Now (8.11%) gives @ = 0 (geostrophic mode), or
¢ 2 P .2 2 1
N2 (k2 +/-)+/(;[m- o ]

: 4H
w0 = (8.23)

k* + 17 +m’ + —JA-;
4H

There are no sound waves (or Lamb waves). Eq (8.23) represents a pair of gravity waves; in the
absence of rotation ( £, = 0), their phase speeds are as given by Q_ (see (8.17)).

In summary, the anelastic approximation removes sound waves and Lamb waves and leaves the
gravity wave frequencies almost intact. The hydrostatic approximation removes sound waves but
not Lamb waves, and the frequencies of the remaining gravity waves are noticeably modified.

8.3 Hydrostatic waves in an isothermal atmosphere: mid-latitude B-plane
The treatment given in sections 8.1 and 8.2 assumed a constant value f, of the Coriolis

parameter f (as well as Cartesian geometry). Allowing fto vary with latitude (y) opens up new
possibilities and brings new problems too. These problems are typical of those that arise when
one seeks to approximate the equations for motion subject to gravity on a rotating sphere. We
treat the variable-f linearised case because it offers a vignette of more complicated cases as well as
revealing an important new type of wave motion. The hydrostatic approximation will be applied,
thus limiting attention to motion having a frequency much less than the buoyancy frequency N,
wave motion having a horizontal scale large compared with its vertical scale is of this type.

We consider the linearised equations of motion with, initially, f = f, + By, where f, and /3 are
constants. In place of (8.3) and (8.4*), we have

Ld s +Vz[£] =0 (8.24)
d 0
0 7 N*)p

it g g (8.25)
9() [{% g jpu

The linearised continuity equation (8.5*) — with tracer parameter n, — remains unchanged, as
does the linearised thermodynamic equation (8.6) and the linearised relation (8.7).

For the equatorial S-plane (f = fy), analysis of (8.5%), (8.6), (8.7), (8.24) and (8.25) can be
carried through without further approximation (Gill 1982); we shall refer to this case in section
8.4. Analysis of the mid-latitude S-plane case (f=fy + fy; fo # 0) can also be pursued without
further approximation, but unwieldy latitude structure functions arise. Instead of following this
route, we seek to replace /= f; + fy by constant values, wherever possible in a consistent way.
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From (8.24) we form equations for the time evolution of the (vertical) relative vorticity
= A/ — d/éy and the (horizontal) divergence o= dv/ck + &/ .

)
L e =0 (8.26)
&

2 J+ Pt Vilp/p,) = O (827)

With a Helmholtz decomposition of v = (», v) into rotational/non-divergent, and divergent/
irrotational parts, i.e. v=kxV w +V_ y, where yand y are streamfunction and velocity

potential, (8.26) and (8.27) become

O’ 2 oy 17/ 4

—Viy + S L Bt LB =) 8.28

v N X ﬂ@( /3@ (8.28)
h B ) oy oy 2
— Vg — ‘w+ L& -—+V: =0 8.29
= ﬂ@ {wv/py) (8.29)

A naive application of the f-plane approximation would involve setting /= f, in (8.28) and (8.29),
and then proceeding with £, (as well as /) constant thereafter. Grimshaw (1975) noted that the S-
plane approximation, in this guise, is ill-posed because it does not commute with other operations
such as differentiation with respect to latitude. In the present case we reason instead that, if we
set f= £, in (8.28) and (8.29), we should also omit the terms S0y /dy and —B6y/d to ensure

that the resulting forms

ﬁvgw +fuvfl +ﬂ_0j_l/_/. =0 (8.30)
A - 1.9
and
d 2 2 0‘71 N(!)\
“—NVewy—fNwy+ =+t =0 8.31
SV SoViy 'Bé}c i (830

imply an acceptable kinetic energy equation. [To obtain a kinetic energy equation, multiply (8.28)
by y, multiply (8.29) by y and add the results. The term f («,z/V i zViy/) can be written in
divergence form asV _.(f, [W:,( - szt//]). The term SB(y 8y /0y — y Oy /dy), which arises if
Sy /0y in (8.28) and -0/ in (8.29) are retained, is not of the required divergence form.]

The omissions can also be justified by scale analysis, as follows. We wish to represent the latitude
variation of fin some WKB sense; thus the scale L, of latitude variation of the motion must be

much less than that of f-i.e. the planetary scale @ = radius of the Earth. Hence (for wave-like
motion which is not evanescent in the horizontal), A3%/é in (8.28) must be much less than fV? y
in numerical terms, since #~ f/a. Similarly, fy/d) in (8 29) must be much less than fV:y .

[Some published accounts achieve these omissions by assuming &’¢ = 0 , which is not the
appropriate limit.]

For reasons that will soon be clear, we attach a single tracer parameter (7,) to both the first and
third terms in (8.31):

) 7 . 2 2
”3(‘2V§Z +ﬂ51j - Vi + V;(ﬁj =0 (82
& Po
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From (8.5%), (8.6), (8.7) and (8.25) we obtain, after a lengthy calculation assuming that w does

not vanish everywhere,
ﬁ(ﬁ) =0 (8.33)
a\ p,

=) 4
N*Viy - {(I (i——l—]+)12(1 —n:)N,
The term in N“/g2 in (8.33) vanishes whether n,=0 or 1. From (8.30), (8.32) and (8.33):

a\& H, g
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Solutions of (8.34) of the form (8.12) obey the dispersion equation

4
[ij“ —n3(ﬂk+a)K2)z]a) + (ﬂk+wK2)N2(A];2J =0 (8.35).
in which K*=k+0 (8.36)
and Mrwmi s = . (8.37)
4H

Eq (8.35) is a cubic in @ We shall not give a detailed analysis of the general case (n, = 1): two

of the solutions are a pair of (inertio-)gravity waves modified by the f-effect; the third solution is
a lower frequency solution, a Rossby or planetary wave. When n, = 0, (8.35) becomes linear in

@ ; the gravity waves disappear, but the Rossby wave remains:

Lo Pk
- [K2+(f02/N2)M2] -

The westward propagation of Rossby waves arises because of the latitude variation of the Coriolis
| parameter (the f-effect). For our present purposes, the key aspect is that gravity waves are

"filtered" by omitting the term 6/0¢ (V2 z) = 00/ot from the divergence equation (8.32) [i.e.

n, = 0], but Rossby waves remain (Thompson 1956). [Putting n, =0 in (8.32) also implies
|
|

omission of 0y /dx. Separate treatment of this term unproductively complicates the analysis.] :

Our derivation and discussion has assumed that w # 0. What about Lamb waves? If w=0
everywhere, then (from (8.6)) & = 0 also, and use of (8 7) shows that (8.5*) becomes

"—3-‘2-(—”—} +8 =0 (8.39)
C('; (2 p()

The corresponding vorticity and divergence equations are the same as before ((8.30) and (8.32)).
We find, instead of (8.34),

2 8 oo (., L%l
{{n{dvzwdcj +f0Vngd (dv,+,3dcjvz}(p0} 0 (8.40)
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Once again, we obtain a cubic dispersion relation (if (p/p,) = expli(kx + Iy - wt)] is assumed).
If n; =0 we find
Pk

Ottt le +n, (f(,2 /Cj )J

Setting n; = 0 removes the two (paired) hydrostatic Lamb waves, but leaves a Rossby mode -
known as the Rossby-Lamb or external Rossby mode. This mode's frequency (see (8.41)) is then
dependent on whether horizontal divergence is retained by setting 7, = 1 or non-divergence is
enforced by setting 7, = 0; see (8.39).

(8.41)

8.4 Waves on shallow water: mid-latitude 3-plane
The above analysis is readily repeated for the shallow water equations on a mid-latitude S-plane. -
Appropriate linearization of the S-plane versions of (5.36), (5.37) and (5.39) gives

St foxv+V,(gh) = 0 (8.42)
and ot + hV,v=0 (8.43)
ot :

Eqgs (8.42) is of the same form as (8.24), with gh replacing p/p, . With the same approximations
and tracer scheme as before, we obtain (8.30) and (8.32), with gh replacing p/p, . Eq (8.43)is
much simpler than (8.33). In place of (8.34) we find

0 o1 _Zz 24 |9 LRE _5_. “lp =
{{nz(—ﬁ—v: +ﬂdc) +f; V_,:|d gho(dvﬁﬂo}jvz}h 0 (8.44)

Solutions of (8.44) of exp{i(kx + Iy — wt)} form have angular frequency @ which obeys the cubic

{ij‘ —n3(ﬂk +wK2):}a) . (’Bk+co1<2)gh01<4 =0 (8.45)

Eq (8.45) is the same as (8.35), except that gh, replaces N*/M* = Nz/(m2 + 1/4H02). The
quantity d,=N?/ g(m2 +1/4H g) is called the equivalent depth. Every Rossby wave or (inertio-)

gravity wave in an isothermal atmosphere at rest has the same dispersion relation as a counterpart
Rossby or (inertio-) gravity wave on a shallow layer of incompressible fluid having mean depth
d,. By comparison of (8.40) and (8.44), it is clear that Rossby-Lamb waves have equivalent

depth ¢l /g = ¥RT,/g = /H,.

Putting 7, = 0 in (8.45) reduces it to an explicit linear expression for @ :

(8.46)

W = —1 & '
lKi +(fo2 /gho)]

Gravity waves have been removed by setting n, = 0, and (8.46) gives the angular frequency of
the remaining shallow water Rossby wave (which is an approximation to the corresponding root
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of the cubic dispersion equation (8.45) with n, =1). If we omit the term 0h/df from (8.43) then
we oblige the flow to be non-divergent, and the vorticity equation derived from (8.42) is simply

T 0
L i R 8.47
(a, ; ﬂax)"/ (8.47)

with, from (8.34), w = gh/f, . Waves of expl{i(kx +/y — wt)} form have

) = - 848
K 2 ( )
(Comparison with (8.46) shows that the imposition of non-divergence is valid if K> >> 7.} /gh, ).

These are prototypical Rossby waves — non-divergent, barotropic waves (Rossby 1939). See
Hoskins e al. (1985), Durran (1988) and Holton (1992) for discussion of their mechanism.

The shallow-water equations in spherical polar geometry have been the vehicle of analyses of tidal
motion dating back to Laplace (see Lamb (1932) and Gill (1982)); and the linearised free-wave
problem, which subsumes both equatorial (section 8.5) and mid-latitude cases, was thoroughly
studied by Longuet-Higgins (1968). The mid-latitude f-plane analysis given in this section
provides a straightforward illustration of the key result that omission of the term 5/6¢ from the
divergence equation leads to the removal, or “filtering” of gravity waves, and we have already
seen (section 8.3) that the result extends to the case of an isothermal, compressible atmosphere.

8.5  Tropical modes

If f= py — the equatorial S-plane case — the linearised problems of section 8.3 and 8.4 can be
completed without approximation; Gill (1982) gives a full account. Equatorially trapped modes,
which propagate in the equatorial plane, are found. As well as gravity waves and Rossby waves,
two other types occur: equatorial Ke/vin waves. and mixed Rossby-gravity waves. We discuss
the shallow water case (in which the waves propagate in the zonal direction). Equatorial Kelvin
waves are non-dispersive, eastward propagating, and similar in many ways to the classical Kelvin
waves which are permitted in middle latitudes in the presence of a vertical boundary. They are
hybrid, anisotropic modes, being in geostrophic balance in the meridional direction (perpendicular
to the equator), but having the character of gravity waves as regards the force balance in the zonal
direction (parallel to the equator). Mixed Rossby-gravity waves behave like Rossby waves in
their westward propagating branch, but like gravity waves in their eastward-propagating branch.
Behaviour in the case of an isothermal, compressible atmosphere (with the hydrostatic
approximation and a basic state of no motion) is similar, but with the possibility of vertical
propagation.

The consequences of omitting the term 4%a in the divergence equation are are not obvious a
priori because of the special character of some of the tropical modes. Results depend on which
other terms are omitted from the divergence equation (Gent and McWilliams 1983). Kelvin
modes are absent, but one branch of mixed Rossby-gravity waves remains, and spurious high
frequency modes occur if the term /30y /Ox is retained (cf. the pairing of this term with d5/dr by
the tracer parameter »n, in (8.32)). Such spurious modes are also found on the sphere and on a

mid-latitude f-plane if £ 0y /0x is retained but d5/0r omitted (Moura 1976, Allen et al. 1990b).
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o APPROXIMATELY GEOSTROPHIC MODELS

There are many dynamical models that are intermediate in accuracy between the HPEs (section 5)
and the diagnostic geostrophic approximation (section 7) and from which inertio-gravity waves have
been filtered. Wide-ranging accounts are given by McWilliams and Gent (1980) and Allen and
Newberger (1993); see also Phillips (1963) and Eliassen (1984). In this section we aim not to
review, but to indicate the major types of model and the guiding principles. We use the shallow
water equations (5.36) — (5.39) as a simple vehicle for discussion of each of the major types except
the balance class (section 9.6), for which the HPEs in pressure coordinates are more appropriate.
For simplicity we shall ignore both heating and friction.

9.1 Planetary geostrophic equations (QG?2)

The planetary geostrophic equations were first discussed by Burger (1958), and are known as QG2
(following Phillips (1963)). In their shallow-water guise, they replace the horizontal momentum
equations (5.37), (5.38) by the diagnostic geostrophic approximation, and retain time evolution only
in the continuity equation (5.40); v is replaced by the geostrophic wind v, in the material

derivative, and spherical geometry is retained — as is the latitude variation of f = 2Qsin ¢ :

v=uv, = ZkxVnh (9.1)
I
Dh
V. v =0 92
Dr, Vg (©.2)
where = = - WY = 2+ ad i_,_fii (9.3)
Dt 0 i Ot acos¢g OA a O¢

Gravity waves are absent because the implied divergence equation lacks the term d%ct. The
vorticity equation is also necessarily diagnostic, and (in the terminology of vorticity dynamics)
represents a balance between planetary vorticity advection and vortex stretching/compression:

S T 9.4)
- 2 dd :
By using the continuity equation (9.2), (9.4) can be written
71) {2§)asm¢} i 9.5)
Dt h

Eq.(9.5) is a form of the potential vorticity equation in which the contribution of relative vorticity is
completely neglected. This is an extreme approximation, valid to the extent that the omission in
(9.4) of relative vorticity advection is justified: V/fL << i/a. Since Ro =V /fL <<1 is the

condition for geostrophic motion, it is required that L ~ a: the horizontal scale of the (nearly
geostrophic) motion must be comparable with the radius of the Earth.

The energy equation of QG2 is g(% gh2] = - Vz.(g 2v) (9.6)

Angular momentum conservation is reflected in the meridional component of (9.1) in the form
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In the context of the shallow water equations, QG2 is of interest mainly in theoretical rather than
practical terms. It is a compact model that exhibits analogues of the main conservation properties,
and is in this respect a fully consistent approximation; see also section 9.5.

D2 Quasi-geostrophic model (QG1)

QG originated in attempts by various meteorologists in the 1930s and 1940s to derive equations
describing the time-evolution of extra-tropical weather systems having a horizontal space scale, L, of
about 1000km (the “synoptic scale”) and typified by horizontal flow speeds, V, of order 10 ms™".
The term quasi-geostrophic was suggested by Sutcliffe (1938). For such systems the Rossby
number is of order 10™', the -plane approximation is applicable since L << a, and the use of
Cartesian geometry is justified. A 3-D version of this important model will be discussed in section
10. Here we give an outline derivation of the shallow water version, and describe how it defines

both the geostrophic and ageostrophic parts of the flow.

Suppose that the fluid exhibits variations 4’ about its mean depth A, :

h = hx,y,t) = b, +K(x,y,1) (9.8)

Define the geostrophic flow in terms of a mean Coriolis parameter, f, as

V, = SkxV,h = SkxV,h = ka:[ﬁ] .
JO 0 0

[In (9.9), and throughout this section, V, is the Cartesian operator (3/dx, d/dy).] The use of f;,

rather than the variable 7, in (9.9) is a key simplifying feature in the subsequent analysis; note that
V..v, =0, so that the divergent part of the flow is contained in the ageostrophic flow v, =v-v_.

(The ageostrophic flow also has a rotational part, as we shall see.) The choice (9.9) of v, is a good

approximation to v, (see (9.1)), given L << a . From (9.9), the streamfunction, y, of the
geostrophic flow is

hl
= gf (9.10) -
0

The horizontal components of the momentum equation (the SWE form of (6.17)) may now be
written in vector form as
Dv

o + fkxv, + fkxv, = 0 9.11)

Since v ~ v, to the extent that the Rossby number is small, it is reasonable to replace Dv/Dt in (9.9)
by the geostrophically-approximated (but still nonlinear) quantity

Dv
Dtg - (-g—wg.v__)vg (9.12)

£
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Note that v has been replaced by v, in both the advecting and the advected flow. The replacement-of
the advected flow by v, (and the non-divergence of v ) ensures the absence of gravity waves.

Given L << a , the Coriolis term in (9.11) depending on the ageostrophic flow may be approximated
by f,kx v, so that the latitude variation of the Coriolis parameter enters only via the term fy

associated with the (much larger) geostrophic flow. Eq.(9.11) then becomes

Dv 3
£ + fikxv, + Pkxv, = 0 (9.13) |
Dt : ;

An equation for the time-evolution of the geostrophic vorticity £, = (0'\)8 /dt - o, /@;): Viy may
be formed from (9.13). Noting the non-divergence of v, we find the simple result

l—)l‘i*(vivf + ) = - £V, (9.14)
&

This is the shallow water QG1 vorticity equation.
Consider the shallow water continuity equation (5.39) in the Cartesian form

Dh

AW =0 (9.15)
Dt :
Eq(9.15) is replaced by
Dh'
+h Vv =0 (9.16)
Dt :

This step involves the same approximation of the material derivative as that made in the momentum
equation to reach (9.13). Also, the term AV _.v_ in (9.15) has been approximated by 4,V _.v ,

which requires that fluctuations 4’ about the mean depth 4, be small, i.e. |i'|/h,<< 1; see (9.18),
below. Elimination of V_.v_, between (9.14) and (9.16), and use of (9.10), then gives
D 5
Dr { VB 5 w} (9.17)

g

Since D/ Dt (see (9.12)) involves only @, V. and vy, (9.17) defines the time-evolution of the

geostrophic streamfunction y (given suitable initial and spatial boundary conditions).

Eq.(9.17) is the shallow-water QG1 potential vorticity equation. The advected quantity is readily
seen to be an approximation to A, (( +f )/h valid in the case of small Rossby number and small

height deviation |h’| /h0 << 1. The criterion for the latter may be deduced by simple scale analysis:

i JVL o LaE A
g hy gh,

Hence we require gh,/f,VL >> 1, which is equivalent to

R = g—h; G (9.18)
7 7
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the applicability of which depends on the mean depth 4, as well as quantities already discussed.
Taking = 10ms™ and A, = 10km gives R =10°, while 4, = 1km gives R = 10°; so for a wide
range of choices of A, (9.18) is obeyed if Ro = 10" or greater. Indeed, (9.16) shows that the
dynamics reduces to that of the barotropic vorticity equation (see section 5.6) if gh, [ (;1

result also noted in section 8.4).

The derivation of Eq (9.17) depends on £ being a constant. If £, had been a function of y, a
conservation law would not have resulted. If 4V _.v,in (9.15) had not been replaced by 4,V ,.v, in
(9.16), a conservation law would have resulted, but not in terms of a quantity linear in y .

Finding the height deviation 4’ and geostrophic flow from the streamfunction y, via (9.9) and
(9.10), is just a matter of multiplication and spatial differentiation. The determination of the
ageostrophic flow v, is more subtle. Rather than eliminating V _.v_, between (9.14) and (9.16) we

may eliminate the local time derivatives (noting (9.10)). The result is a diagnostic partial differential
equation for V_ .v,

[Vi -;,%]Vz.va = ;,fh(, v.v. Vi + pv,} (9.19)

The r.h.s. term is known if the streamfunction is known, so (9.19) determines the irrotational part of
v, (given appropriate boundary conditions). Eq (9.19) may also be obtained from (9.17) by algebralc
application of (9.10) and use of (9.16).

The rotational part of v, may be determined from an elliptic p.d.e. obtained by taking the divergence
of (9.13):
1V, = Vv, VN |+ pu - BV (9.20)

where y, is the streamfunction of the ageostrophic flow.

Thus the ageostrophic flow is completely defined in QGl1; it is that flow which is required to maintain
geostrophic balance between the geostrophic flow and height fields as the time-evolution occurs.

An energy equation is readily derived from (9.17),

2wy s Ll - v fwh o oy o) o2

ot gh,

The axial angular momentum balance is governed by the zonal component of (9.13), which — upon
restoring the terms representing geostrophic balance — may be written as

Du oh
Sl D e e =G )
[)[g /O‘a @/‘g /ng & 5
D oh
Hence — - VfAy'y - f = —g— 9.22
Dtg {ug J-fy } .f()vu gdc ( )

This form allows for the fact that the zonal (x) average of the meridional geostrophic flow vanishes,
so the contribution of the ageostrophic flow must be represented.
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9.3 Models based on formal considerations of accuracy

The derivation of QG1 given in section 9.2 may be formalised by a truncated Rossby number
expansion of the velocity field v. We sketch the procedure, and note that it can be taken to higher
order to generate models of higher formal accuracy than QG1. For simplicity we consider the f-
plane case (4 = 0), in which (9.11) may be written as

V=v,+v, = L kxV. K + —l~-kx9—‘i (9.23) ..
JO 3 0 Dt
Non-dimensionalise v, #’, V_ and 8/t by extracting factors of ¥, f,VL/g, 1/L and V/L:
£ A
L e e 5
g Ao e L ot
The non-dimensional velocity v, depth deviation h and operators @_,, o/ of are each assumed to
have magnitude of order unity. Eq.(9.23) becomes

v =¥ i

v o= kxV, A + Rokx(%wﬁ:)o (9.25)

where Ro =V/f,L. Eq.(9.25) formally expresses the horizontal flow as the sum of the geostrophic

contribution and an ageostrophic flow that is one order of magnitude smaller in Rossby number
terms. The continuity equation (9.15) becomes

(-a%wﬁ:]}} + (BRo™ + AR, = 0 (9.26)
where B = £ (c%iro?) 9.27) -
JoL

From (9.25), the zero order approximation to v is kx @zh' , which is simply the non-dimensional
geostrophic flow v . If B is of order unity, or greater, the leading order balance in (9.26) is simply

BRo 'V..v = 0; thisis consistent with v = v, since the geostrophic flow is non-divergent.

To find the next order approximation, put

~

v =V, + Rov, (9.28)

and isolate the coefficient of Ro in (9.25) and the coefficient of Ro’ in (9.26) — assuming that
B(=gh, /f21?) = O):

: o o I

vV, = kx(a—;+vg.Vz)vS (9.29)
P NN e

5+v8.V: h + BV,wv, =0 (9.30)

Egs (9.29) and (9.30) are non-dimensional forms of the f-plane versions of (9.13) and (9.16);

elimination of v, gives
0 . ) -
=+ V.V, {Vih ——h} =0 9.31
(3o v - 54 -



Eq.(9.31) is a non-dimensional, /-plane form of the QG potential vorticity equation (9.17).
A second order approximation may be obtained by putting

Vv =V, + RoV, + Ro’¥, (9.32)

and isolating the coefficient of Ro® in (9.25) and the coefficient of Ro in (9.26). Higher order
approximations may be obtained. A broadly similar procedure has been used by Allen (1993) to
obtain a hierarchy of increasingly accurate “iterated geostrophic models” of 3-D stratified flow;
Allen and Newberger (1993) found that the third member of the hierarchy performed very well in
numerical simulations against the (Cartesian) hydrostatic primitive equations.

Power series expansions are a useful way of systematising the derivation of approximately
geostrophic models which happen to conform to a single truncation of the assumed series, and of -
giving a critical perspective on those that do not. Such expansion methods may be suspected of
lending a cosmetic veneer to what is rather crude and restricted scale analysis. In the present case
(which is typical) it has been assumed that the local time-scale is of order Z/V , and that a single

velocity scale (V) describes spatial and temporal variations of the flow. The method may lead to
lengthy equations, especially at higher orders of accuracy; these may be amenable to numerical
solution but not necessarily to analysis aimed at developing insight into the physical processes
involved. The method is not guaranteed to deliver equations that reproduce conservation properties
at any chosen truncation (although the order Ro truncation in the above case gives the QG1 model,
which does have good conservation properties). A more subtle aspect of our chosen example is that
the deviation height field 4’ has been given special status (Muraki ef al. 1999); it has not been
expanded in powers of Ro. Other fields may equally well be granted special status: in derivations of
some of the PV-balance models noted briefly in section 9.6 the potential vorticity field is considered
as central to the dynamics, and not expanded in powers of the Rossby number. Pedlosky (1987),
section 3.12, expands a// variable fields as powers of Ro; see also Pedlosky (1964).

9.4  Semi-geostrophic model: SG
In QG the advecting flow is replaced by the geostrophic flow v, wherever it occurs. QG requires
for its validity the replacement of f by f; (i.e. L << a) and only small deviations of height / from a

mean value A, (as well as small Rossby number). In order to remove gravity waves, only the

advected flow need be replaced by v, (or some other non-divergent flow) in the horizontal
momentum equation. The semi-geostrophic model (SG) takes advantage of this situation by
retaining advection by the total flow throughout. The shallow water equations in SG form are

Dv,
=+ fikxv, = 0 (9.33)
2h 9Ny =0 (9.34)
Di -
with e (-ﬁ-w.vz and v, = £ kxV.h (9.35)
Dt a 4 > :

The f-plane approximation is made, and Cartesian geometry assumed. Within this framework, the
only approximation made in SG is the neglect of the term Dv /Dt in the horizontal momentum

equation. (This implies retention of some terms or order o’ but neglect of others; see Fjdrtoft
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(1962), p158, and Craig (1993a).) There is no restriction on the depth A, and no need to divide it
into mean and deviation parts. The definition (9.35) of geostrophic flow v, is the same as in QG1.
Eq (9.33) implies the axial angular momentum principle

D oh

E{ug -} = 0 (9.36)
An energy equation exists in the form
h%{vé +gh} = -V (ghv,) 9.37)

The prospects for the existence of a potential vorticity conservation analogue in SG do not at first
look bright, since (9.33) involves (v.V, v . » and such mixed vector advection terms are notoriously

difficult to handle by the usual differential operator methods. However, following Allen ez al
(1990a), consider the components of (9.33) as linear algebraic expressions for # and v:

ai ai au
u(ggj — v(fo-ggj = ——d_g —fovg

(9.38)
( o%»gj (d»g] .
ul fo + = + v 3 = 3 + fou,
"Solving" (9.38) for # and v gives
- - it é)i - 0’1_43_ o £ e — 9.39
L _ fOug a Jo @’ fo‘g —d_ 51—— Jobso (9.39)
= : - ik + 2 oy alg— 9.40
v = _ Jov, i Jo o Hl fou, e 73?_ Jobso (9.40)
in which - +?—)g— —dl‘g X, 2 941
m whic Jobsa = | Jo Py Jo 3 + % o (9.41)

Now form V_.(&,v) from (9.39) - (9.41). After some easy algebra and a few exhilarating
cancellations we find that

V74 o O
g("ém) & 5("‘53(‘;) o i __i;ﬁ_ (9~42)
Hence
D o (ﬂ
—&. el o () 943
D[ 55(3 =t 5.5(,: [ [& -+ 63’ ) ( )

From (9.34) and (9.43) the SG potential vorticity equation follows:

Dt
Dty h
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The quantity &g, is the SG absolute vorticity. Its definition (9.41) may be re-written as

e fo o (/"\"g = dlg i __]_(/?(llg’\’g) =& +LM (9.45)
— & o) fo Ax.y)

Thus &, is the usual geostrophic absolute vorticity, &, , augmented by a Jacobian term which is

small in comparison if the Rossby number is small.

From (9.33) the SG divergence equation may be derived as

N N &
E.Vzug + —é}—.V_,v‘g = fo(g—g) +gVih =0

To a leading-order approximation (v =3V )of its nonlinear terms, this implies

R e el 5) 5(u ,V )
= Al i B B e S S 9.46
e & L & I dy) -

From (9.45) and (9.46), we see that £, is a worse approximation to the absolute vorticity & than
might have been hoped; &, is in fact a better approximation to ¢.

Hoskins (1975) made notable advances in the 3-D version of SG by transforming from spatial to
geostrophic coordinates:

[}
X:x+;—g (: x+g(”’]; Pyt (:y+%§ﬁ] L Z=2z (947)

0 fo ox Jo o
Then:
DX 1Dy, DY 1 Du,
— = U+ —— =y, ad — = V- ——— =V,
Dt fo Dt g Dt 1 Dt :

and it is readily shown that the Jacobian of the transformation from physical to geostrophic space is
none other than the (3-D) SG absolute vorticity (divided by f;). In our 2-D context of the shallow

water equations a similar result follows for the transformation (x, y) = (X, 1)

dxyl %
Further, Hoskins showed that the SG potential vorticity equation can be written in terms of

derivatives of an augmented potential function with respect to the geostrophic coordinates in a form
nearly isomorphic to the QG1 potential vorticity equation in its usual space-coordinate form.

The SG model has given important insights into the dynamics of weather systems (in particular, the
formation of fronts) and into the status of QG1. It has also excited interest in other ways, prompting
various questions. We have space only to juxtapose some of the questions and some of the studies
that have addressed them. What is the mathematical significance of the geostrophic coordinate
transformation? [Blumen 1981, Roulstone and Sewell 1997.] Can a version of SG having a more
satisfactory definition of &g, be derived? [MclIntyre and Roulstone 2000.] Can SG be extended to

the case of variable Coriolis parameter? [Shutts 1980, Magnusdottir and Schubert 1991.]
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9.5 Hamiltonian models

Of the nearly geostrophic models so far presented, QG2 is the only one that succeeds in retaining the
conservation properties of the SWEs whilst allowing latitude variation of both the Coriolis parameter
and the mean depth A,. QG2, however, is applicable only to motion on planetary scales; it is not

appropriate for motion on the synoptic scale of extra-tropical weather systems. Useful extensions of
the SG model have been proposed, but neither of those cited at the end of section 9.4 represents the
true latitude variation of the Coriolis parameter whilst retaining SG’s accuracy.

QG1, QG2 and SG have each been proposed or derived as sets of approximate equations that
represent more or less heavily approximated versions of the SWEs. Conservation properties have
then been investigated as a sort of health check. A requirement of good conservation properties is
useful in limiting the vast number of conceivable approximations of the SWEs (or HPEs) which
present themselves, but it is unhelpful if none of the candidate models passes muster.

Salmon (1983), (1988) proposed a systematic method of deriving consistent approximate models;
see also Allen and Holm (1996). As noted in section 4.6, the unapproximated equations are
equivalent to a variational statement, and by Noether’s theorem, the symmetries of the Hamiltonian
functional in that variational statement are associated with the conservation properties of the system.
Making the desired approximations in the Hamiltonian then ensures that the implied (approximate)
equations have consistent conservation properties.

Salmon (1983) applied this method to the shallow water equations. The coarsest level of
approximation, involving the complete neglect of the velocities u, v in the Hamiltonian, delivers the
planetary geostrophic equations QG2. The next level, in which # and v are replaced by their
geostrophic values, leads to forms reminiscent of the SG equations, but with further terms. For the
/-plane case, Salmon's approximate momentum equation reduces to

(g+ v.V_.)vg+f0kxva = —(vg.V_,)va——%Vz(—hJ%{a) (9.49)

(¢, is the relative vorticity of the ageostrophic flow.) The right-hand terms in (9.49), both of which

are absent in SG, are of order Ro smaller than the left-hand terms. Their presence is consistent with
the following potential vorticity conservation and global energy conservation laws:

D i_f’,j A ;
D’{(fo - /h = 0 (9.50)
and

% '”‘(vf< +gh)hdxdy =440 (9.51)

Allen et al (1990a) give details of the derivation of (9.50) and (9.51) from (9.49).

Salmon’s method can be relied upon to give consistent equations, but in the present case they are not
simple or familiar ones. Salmon (1985) showed that the SG model (section 9.4) may be obtained
from an augmented Hamiltonian whose extra terms are compatible with the formal accuracy of the
model. This demonstration of Hamiltonian structure enabled SG per se to be generalised to the case
of variable f'; see also Purser (1993), (1999).
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The variational method has been successfully applied in the derivation of a number of approximate
models of rotating flows having vertical structure: see, for example, Shutts (1989), Craig (1993b),
Roulstone and Brice (1995), Holm (1996) and Ripa (1997).

9.6 Balance equations

Lorenz (1960) considered how the vorticity and divergence forms of the HPEs (see section 5.4)
might be approximated so as to preserve a global energy invariant. There is little point in illustrating
this important technique in a shallow water model because applying it delivers only QG1 and SG
(Gent and McWilliams 1982). The reason for this perhaps surprising result is that the energy

integrand in the shallow water system is essentially a cubic quantity (hv2 / 2); in the stratified flow
case considered by Lorenz (1960) the integrand in pressure coordinates is quadratic (v2 / 2). Perhaps

less surprisingly, the retention of potential vorticity conservation in approximated forms of the
vorticity equation is far easier to achieve in the shallow water case than in the stratified flow case (in
which the potential vorticity is a scalar product of vectors rather than the absolute vorticity divided
by the depth of the fluid). The SWEs thus exhibit nearly the opposite properties to the HPEs written
in pressure coordinates.

Lorenz’s method depends on dividing the horizontal flow into its rotational (solenoidal), non-
divergent part v, and its divergent, irrotational part v, :

e oo ove e e kxVow 4oV (9.52)

This Helmholtz decomposition differs from geostrophic/ageostrophic decompositions of v, since the
geostrophic flow has a non-zero divergence if the latitude variation of the Coriolis parameter is taken
into account (see section 7.1), and the ageostrophic flow in QG1 has a rotational part (see sections
9.2 and 10.1).

Vorticity and divergence equations are obtained by taking k.V  xand V ,. of the p-coordinate

version of the HPE horizontal momentum equation (5.29):

% +V,(v3/2) + kxv + (u? = — fkxv - gV h (9.53)
P

HereV , is the (spherical polar) horizontal gradient operator on pressure surfaces; § = Viy/ is the

relative vorticity and ¢ = Vf, z is the divergence (both defined in p-coordinate terms).

Multiplication of the two resulting equations respectively by y and y, and use of the identity
ol a’ o >
FEViE vp.{w,, }7—} - 5{(VPF)/2}

(with I = y or y) then gives equations for the time-evolution of the rotational and divergent flow
specific kinetic energies v,, / 2 and v; / 2. The thermodynamic and continuity equations are then °

applied to produce a total energy equation. Associations between groups of terms in the vorticity
and divergence equations which retain total energy conservation are sought. One consistent
approximation of the vorticity and divergence equations which is recognised in this way is the pair

X —vw.Vp(§+f) — Vp.(ﬁ'l) NN C 0 wa—4 = Vpa).VpéW— (9.54)
a P P
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v, v, v, N ]-v,(7,¥)+gv,h =0 (9.55)

Eq.(9.54) is a nearly complete form of the vorticity equation. Eq.(9.55) is a form of the divergence
equation known as the Charney balance equation. It neglects the term 0&ct (so gravity waves are
absent), several elements of V . {(v \% )v + @ d'/o})} and V (/k X Vpl)

A further energetically-consistent pair is obtained if the last four terms on the right side of (9.54) and
the first on the left side of (9.55) are omitted:

B Lo e U6 (9.56)

AN )+ gViE =0 (9.57)

Eq. (9.57) is known as the linear balance equation. The resemblance of (9.56) and (9.57) to QG1, if
the f~plane or S-plane approximations are applied, is noticeable. However, (9.56) and (9.57) are an
energetically consistent pair (as are (9.54) and (9.55)) even when the latitude variation of /is fully
represented (though potential vorticity conservation is then lost). Energy consistency requires in
each case the use of the complete thermodynamic equation, and the definition of kinetic energy
includes only the contribution of the rotational flow. The latter aspect shows that the filtering of
gravity waves by omission of the term 85/d¢ from the divergence equation is intimately related to

the absence of divergent flow kinetic energy from the prognostic energy equation. The same link
occurs between the kinetic energy of vertical motion and the filtering of vertically-propagating sound
waves via the hydrostatic approximation (see Eq. (5.24) and section 8.2).

A variant of the vorticity/divergence equation approach that is more tractable in many respects is the
use of separate momentum equations for the rotational flow and for the divergent flow. The
divergent flow equation is rendered in diagnostic form in order to eliminate gravity waves. Such a
momentum form of the balance equations which conserves both energy and potential vorticity has
been proposed by Allen (1991). This model implies spurious high frequency modes similar to those
noted in section 8.5; they may be controlled by choosing initial conditions and time integration
schemes carefully.

Other workers, especially in recent years, have used what may be called PV-balance models. These
use the PV equation, perhaps in complete (HPE) form, as a forecasting equation, in conjunction with
the Charney balance equation (9.45), the linear balance equation (9.46) or some variant. Energy
conservation is generally not reproduced, but another quadratic quantity — the potential enstrophy
(PV?) — is conserved in the global average; see Gent and McWilliams (1984). Models of this type
have been constructed and used by Lynch (1989), Raymond (1992), Warn et al (1995) and Vallis
(1996); an earlier example is that of Charney (1962). The same rationale underlies the static PV
inversions (see section 10.4) carried out by Davis and Emanuel (1991), Demirtas and Thorpe (1999)
and others.
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10. THE 3-D QUASI-GEOSTROPHIC MODEL QG1

The shallow-water version of QG1 was discussed in section 9.2. Here we focus on a version
applicable to the synoptic-scale, quasi-geostrophic evolution of a 3-dimensional, perfect gas
atmosphere. We begin with an outline derivation of the model in pressure coordinates, and
then note a height-coordinate version that illuminates various issues, including the status of
the so-called omega equation. Conditions for the applicability of QG1 are then summarised.
In conclusion, we note the frequent occurrence in QG1 of variants of Poisson’s differential
equation, and discuss the application of well-known properties of these equations, with
particular regard to various forms of “PV inversion”. Cartesian geometry will be assumed
throughout this section, and, for simplicity, friction and diabatic forcing will be neglected.

10.1 Pressure-coordinate development of QG1

Central to the development of QG in pressure coordinates is a hydrostatic reference state (of
no motion) in which all thermodynamic variables, and height z, are functions of pressure only.
The fields themselves are expressed as deviations from the reference state values. For
example:

I =Lp) + T(xy.pr) (10.1)
6 = 6,(p) + @(x,y,p,) (10.2)
z = z2(p) + Z(xy.p0) (10.3)

From (6.3), hydrostatic balance of the reference state is expressed by
ge. ol

+

g p

=0 (10.4)

From (6.3), (10.1) and (10.3), the deviations z’ and T’ obey a similar relation:

gg’_z; .
g P

=0 (10.5)

The geostrophic wind, v, , is defined as

0

» ¥

g : : &z 0
v, = —kxV, 2’ = kxV y; W= Vps[a

) (10.6)
P

As in the SWE case (section 9.2), vg’ ~|v,| if L <<a (v, being defined by (7.2)).
From (10.5) and (3.20), the streamfunction y = t//(x, ¥, p,t) defined in (10.6) obeys

o Ow B z[ il )9' (10.7)
op . fel Jop b,

Differentiating i with respect to p thus gives the temperature and potential temperature
deviations multiplied by functions of pressure; horizontal differentiation gives v ¢ Via (10.6).

In terms of the ageostrophic wind v, = v - v, the continuity equation (6.18) becomes

e s e (10.8)
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Apart from the use of Cartesian geometry, no approximation of the HPE forms of section 6.1
has been made so far. Approximations are made in the HPE horizontal momentum and
thermodynamic equations. Extraction of (10.6) from (6.17) (in which f=f +/y ) gives

% + fkxv, + fkxv, =0 (10.9)

As in the shallow water case, consistent with Ro << / and L << a, we replace the horizontal
flow v by the geostrophic value v, in the material derivative term in (10.9), and fk x v, by

fok xv, . Inaddition, we neglect the vertical advection term @ dv/dp by comparison with

(v.V)v in Dv/Dr. This is justified if @/p << V/L (where @ is a typical magnitude of @

and p is a scale of pressure variation in the vertical), which requires RiRo >> 1 — see section
10.3. Hence

) - :
N = —a—+v.Vp+a)(—3 v > ((—+vg.Vp)vg = £ (10.10)
Dt ot op ot Dit,
and (10.9) is replaced by
Dv
Dtg + fokxv, + fkxv, = 0 (10.11)

g
Eq.(10.11) is nonlinear through the geostrophic self-advection term (vg .Vp)vg ;. see (10.10).

By taking k.V x (10.11) and using (10.6), (10.8), one obtains, without further approximation:

D ow
4

which is the p-coordinate, QG1 vorticity equation.

The p-coordinate form of the thermodynamic equation (5.20) may be written (in Cartesian
geometry and with O = 0) as

(£+V.V))9' - wi(0x+9’) = 0 (10.13)
ot ; op

Approximations are now made in (10.13) that parallel those made in (10.9), and are justified
under the same conditions: @ 06’/dp is neglected compared with v.V &', and v is replaced

by v, . Upon use of (10.7), the QG1 thermodynamic equation is obtained as

2 3
L{fﬂ ﬂ} + fyw =0 (10.14)
Dt, | § op
in which S = 8(p) = il a8, ; (10.15)
po, dp

Elimination of @ between (10.12) and (10.14) gives the QG1 potential vorticity equation:

D 2 5 o 1oy
— OGPV} = 0 (10.16); OGPV = Viy+py+ fi —| =—=] (10.17
Di, S o < e ap(S 6p) o

OGPV is the (p-coordinate) quasi-geostrophic potential vorticity.
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Eq.(10.16) (with (10.17)) is an approximation to the conservation of Ertel’s potential
vorticity (Bretherton 1966, Green 1970, Kuo 1972). The analogy is between the
conservation laws and not the conserved quantities; Ertel’s PV is conserved under D/Dt,

but QGPV under 1)/1')12, although vertical motion is allowed for in QG1. To indicate this,
QGPV is sometimes called the quasi-geostrophic pseudo potential vorticity (Charney 1971).

Given appropriate initial and spatial boundary conditions, Eq.(10.16) determines the time
evolution of the streamfunction, y ; it is the central prognostic equation of QG1, the “signal

accomplishment” of quasi-geostrophic theory (Dutton 1974).

Elimination of the local time derivatives between (10.14) and (10.11) or (10.12), leads to a
diagnostic equation for @:
2

Vio + foa—‘;’ =G (10.18)

g
p

Jo op

The source function G in (10.18), which involves y and its spatial derivatives, may be
expressed in many different forms; see Hoskins ez al. (1985), Sanders and Hoskins (1990),
Xu (1992), Carroll (1995) and Martin (1999). One of the most useful is the O-vector form of
Hoskins et al.(1978):
- Jo o Mg - So[ e
G=-2V.Q + V, .| =pH— th = 22| —=.V_ |V 10.19
; Q ,,(‘S./J’yap with Q = ¢ ZEV, Wy (1019)

i

At any time 7, @ is determined by (10.18) and appropriate boundary conditions. Knowledge
of @ enables the divergent part of v, to be found from (10.8) [and appropriate boundary

conditions]. The rotational part of v, may be found from the result of taking V ,.(10.11):

JVaWa = Vo (ve- VIV, | + g - BV (10.20)
Here v, = w (x,y,p,1) is the steamfunction of the ageostrophic flow (cf. (9.20)).

A knowledge of the geostrophic streamfunction y = y/(x, y, p,t) at some time 7 thus enables

all other variables of the model to be determined at that time (given appropriate boundary
conditions). The relevant equations are: (10.6) [for v ]; (10.7) [for 7" and #']; (10.18) [for

@); (10.8) and (10.20) [for the divergent and rotational parts of v _].

An energy equation may be formed by multiplying (10.14) by 0w /dp, adding the result to
V,w.(10.11), and using (10.8):

Bl o a'//2 0 3
S BT o

The boundary condition @ =0 on p = p, is often applied in this model (and, from (10.14),
determines a boundary condition on 8/dt(0y /dp)). A more accurate choice is

@ = —(fopy/R1,)0w /ot on p= p,, which introduces various interesting features, both to
the time evolution and to the energetics; see White (1978b) and R6dom (1996).
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10.2 QGI1 in height coordinates

It is revealing to compare the analysis and results given in section 10.1 with the development
of QG1 in ordinary height coordinates. In this case, all thermodynamic variables (including
pressure) are represented as deviations from a hydrostatic reference state that is a function of
height z only:

q=q(x,y,2,t) = q,(2) +q'(x,y,2,1) (10.22)
where g = p, p,6or T, and
dp, Re,
';I,[_f‘ =P8 > Po = poRly Oo= 7E)(Pref/po) ‘ (10.23)

Approximations are made in the hydrostatic and continuity equations as well as in the
horizontal momentum and thermodynamic equations. Pedlosky (1964) gives a power series

derivation assuming Ro << 1, B = Nsz/sz2 ~1, NzH/g << 1 where

Ntz 299 (10.24)
6, dz

and L, H are, as usual, horizontal and vertical length scales of the motion. The third of
Pedlosky’s conditions is readily relaxed to N 2H/ g ~ 1 in his derivation; the result is an

extended QG1 z-coordinate model which includes terms that are negligible if N2 H / g<<i.

»”  «

It has been referred to variously as the “modified”, “ron-Doppler” or “deep” QG1 model
(Blumen 1978, White 1982, Bannon 1989) and is very similar to the formulation originally
proposed by Charney (1948). The geostrophic flow v, is defined as

-~

(¢

v =

/ ; P 0
e = kK<V.p = kxV.u: v= VZE(_
Poto

pofo’ ox

- 10.25
ayz) (10.25)

The horizontal momentum, continuity and thermodynamic equations of the model, as
obtained by White (1977), may be written in the forms

Dv -
£+ fokxv, + Bkxv, =0 (10.26)
D1,
5,V —aﬁ(pOW) =0 (10.27)
/4
2
—9—(9—%) S (10.28)
Dt \ oz 1o
in which 2 0 Loy (10.29)
D, o iy ‘
and V,=V, +£—vg; ﬁ/zw—!—o—@!— : (10.30)
Po g ot

v, is an extended ageostrophic flow and W an extended vertical velocity.

a

Given appropriate boundary conditions, (10.26) — (10.30) imply a global energy equation
having a quadratic integrand (Blumen 1978) and Hamiltonian structure may be demonstrated
(Holm and Zeitlin 1998). Eqs (10.26) — (10.30) imply a prognostic equation for (height-
coordinate) QGPV and a diagnostic equation for the extended vertical velocity W :
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OGPV = 0 (1031); OGPV = Viy + P I | B o 10.32
Dt, {"' g } ( ) I Pt po 0z\ N? &z ( )
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The QGPV equation (10.31) [with (10.32)] is the same in the cases NZH/g << 1 (Pedlosky
1964) and NZH/g ~ 1 (White 1977). Equation (10.33) is also the same in both cases, but
when NZH/g << 1 the local time derivative term in the definition (10.30) of W becomes

negligible, so that # reduces to w; v, also reduces to v, when N 2H/ gl
Various aspects of this “non-Doppler” QG1 model are of interest.

(i) From (10.28) and (10.30), the condition on y at a rigid horizontal boundary (w = 0) is

-~ 2
_D,_("'/’) Bl ko ) (10.34)
Dt \ Oz g ot

The term in Oy /6t (which is negligible if N ’H / g << 1) allows for the change of apparent

vertical — see section 3.6 — that accompanies a steady zonal frame translation (Betts and
Mcllveen 1969, White 1982). Its presence means that the effect of adding a constant U, to

the zonal flow is not simply to shift the evolution by U, ; hence the epithet non-Doppler
(Lindzen 1968). The same effect is seen in the pressure-coordinate QG1 model if the
boundary condition @ = — (fop,/R1;)0y /ot is applied at p = p, (see section 8.1).

(i) In terms of w and v, rather than W and v, the continuity equation (10.27) becomes

op' ; 0
. (v,-V.)o + poV,-v, + b;(p(,w) =0 (10.35)
Eq.(10.35), which is equivalent to the continuity equation used by Charney (1948), is not of
anelastic form (see sections 8 and 11). When N *H / g <<1, the terms in p’ are negligible,

and (10.35) reduces to the anelastic form of Pedlosky’s (1964) model. The two models give
widely different external Rossby wave phase speeds at planetary scales (White 1978b); those
predicted by the non-Doppler model are in better accord with observation.

(i) Eq.(10.33) is diagnostic for the extended vertical velocity w , and for the usual vertical
velocity w only in the case N *H / g << 1, when W reduces tow. One might have expected

that development of QG1 in height coordinates would lead to a diagnostic equation for w that
was in some way a constrained version of Richardson’s equation (see section 5.5), but this is
not the case. Further, from (10.23), (10.25) and (10.30) we have:

& o P& Ot Po&

g oanee o L l(@p %)z-i (10.36)
ot 0z

_ e (et SIS V)
Po&

(since v, .V,p'=0). Hence —p g isan approximation to the pressure-coordinate “vertical

velocity” @ = Dp/Dt . Clearly, (10.33) is an omega equation, although it has emerged from a
height-coordinate analysis. This result suggests (as one would hope, though perhaps not
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expect) that the development of QG1 is essentially independent of the vertical coordinate
used. [See Berrisford et al. (1993) for a development of QG1 in &-coordinates. ]

(iv) From (ii), (iii) and Eq (10.32), we see that compressibility may be taken into account to
varying degrees in QG1 models. By using the p-coordinate form (section 10.1) we achieve
the most complete treatment as regards the interior equations, but at the expense (in practice)
of an approximate treatment of the boundary conditions at quasi-horizontal surfaces. Within
a z-coordinate framework, formally the same interior accuracy can be achieved by using the
non-Doppler model; and boundary conditions are more clearly defined. Both models
represent the effect of dynamic compressibility in the continuity equation: in the p-coordinate
development the full HPE form is used, whilst in the non-Doppler model the term Dp'/Dt is

represented by 8p’/or + (vg.Vz)p’ (see (10.35)). In addition to dynamic compressibility,

there is also a static compressibility effect (Green 1960): the variation with height of the
reference state density p,(z). If this is neglected in (10.32), and the buoyancy frequency N is

assumed independent of height also, then the pseudo potential vorticity reduces to

2.2
3 0
OGPV = Viy + By + % ('9"'/2/ (10.37)
In this Boussinesq limit, OGPV — fy is simply the 3-dimensional Laplacian of the stream-
function, y, if z is scaled by N/f,. A similar simplification occurs on the left side of (10.33).

10.3 Conditions for validity and application of QG1
A summary of the assumptions made in deriving QG1 may be timely. We consider the z-
coordinate case examined in section 10.2. As before, /. and H are horizontal and vertical

length scales over which |v| and |w| change by the characteristic values " and ¥ respectively.
(a) The central condition is that the Rossby number be small: Ro=V/fL <<1.

(b) The Lagrangian time-scale is assumed to be of order L/V, so that |Dv/Dt| ~ V =i

Since l(v.V)v| ~ VL , the local time scale is assuracd to be of order, or greater than, L/V .
(c) L/a < Ro ensures that v, is a good approximation to v .

(d) The neglect of vertical advection of momentum and deviation potential temperature in
comparison with the horizontal parts of the advection requires W/H << V/L . By noting

that fractional variations of potential temperature and pressure in the horizontal are of the
same order, one obtains from scale analysis of the thermodynamic equation (and previous

assumptions) that W/H ~ (V/L)(RiRo)™", where Ri = N*H?/V* is a Richardson number.

Hence it is required that RiRo >>1; RiRo~Ro™'is sufficient, i.e. the Burger number
B = RiRo* ~ 1. For synoptic-scale motion in mid-latitudes we have H ~ 10*m (depth of
troposphere), L ~10°m (synoptic horizontal scale), N ~ 107257, f~10"%s7"; thus B ~1.

(e) Fractional variations in pressure in the horizontal are of order fVL/gH = (V 2 / gH )Ro'1 :

and fractional variations of density in the horizontal will be of the same order. Hence we
require that the Froude number /" =J? / gH should obey /' << Ro, in order that the neglect




of horizontal variations of p in the definition of v, is to be reasonable; the values quoted

earlier give F'~107, FRo™'~107%.

(f) Notice that Ri = NZHZ/V2 = (NzH/’g) /=" The importance of the quantity NzH/g

becomes clear from a scale analysis of the continuity equation using results already obtained:

ow/oz~(V/L)(RiRo)™ and (1/p) Dp'/Dt, ~(V/L)FRo™" . Hence dynamic compressibility is -

important if NZH/gfvl. The values quoted at (d) give NZH/g~10'1, but motion having a
height scale substantially greater than the depth of the troposphere will give a substantially
larger value. Also, N*H, / g =2/7 for an isothermal, diatomic, perfect gas atmosphere.

Assumptions (a)-(d) obviously appear also in the p-coordinate case. Assumptions (e)-(f) are
not required for the interior equations in the p-coordinate case, but they are required for the
validity of the usual boundary conditions. See White (1977) for further discussion of (a)-(f).

Derivation of the conservation properties of QG1 depends on f; being a constant, and on N
being a function of height only. It is tempting to apply the model in contexts for which the
ranges of variation of fand N are not small — to treat f, and N as functions of space and
time, for example within the definition of QGPV (used, perhaps, as the prognostic variable in
a numerical model). Such variations, particularly of /, are sometimes allowed on the
understanding that they have small fractional variations over the horizontal space scale of the
motion; see, for example, Kuo (1959), Charney and Stern (1962) and Pedlosky (1987).

The conservation properties of QG1 are retained if f is held constant but spherical geometry
is assumed and Sy is replaced (in the definition of QGPV) by the true planetary vorticity
2Qsing . Such a formulation has been used by many authors: see Baer (1970), Simons

(1972), Baines and Frederiksen (1978), Shutts (1983b), Wu and White (1986) and Marshall
and Molteni (1993). This spherical polar version of QG is analytically and numerically
convenient but involves gross approximation of /' except in the planetary vorticity term.

If N is allowed to vary horizontally in QG1 in height coordinates (or S in a pressure
coordinate version — see section 10.1), then the global pcential temperature budget is
disrupted (Haltiner and Williams 1981). Advection by the horizontally divergent flow should
be retained in this case, with the consequence that the model ceases to be of QG1 type.

The desire to allow horizontal variations of fand N, and time variations of the latter, has been
a stimulus to development of the more general nearly-geostrophic models discussed in section
9 (and their 3-dimensional relatives). Another stimulus has been a desire to remove gravity
waves by less invasive surgery: to make minimal approximations in the momentum equation,
and — ideally — to leave the other equations intact.

10.4 Equations of Poisson type in QG1

Although it retains the nonlinearity of advection by the geostrophic flow, QGl1 yields a
number of linear, elliptic partial differential equations. Two-dimensional Poisson equations
arise in the determination of the ageostrophic flow; see, for example, (10.20). The omega

equation ((10.18) in p-coordinates, (10.33) in z-coordinates) is a 3-dimensional elliptic p.d.e., :

the source function being a function of y and its spatial derivatives. If QGPV-fy is
regarded as known, then (in (10.17) and (10.32)) it is the source function in another 3-D
Poisson-type equation, in this case for . The QGPV equation itself ((10.16), (10.31)) can be




written as yet another Poisson-type equation — for the streamfunction tendency Oy [0t (see,
for example, Nielsen-Gammon and Lefevre 1996). Considering the z-coordinate case, we can
write (10.31) as

Qi 2 a
{vi +%§(%§ﬂ% - —vg.[szt//+,By+'—£9—§;(%5g):l (10.38)
0 ¢2 5 0

for which the boundary condition at rigid horizontal surfaces is, from (10.34) and (10.29), the
mixed Dirichlet-Neumann form

2
{Q—N F—Vi - —(vg.Vz)a—W— (10.39)
gre o oop 0z
From classical treatments of Newtonian gravitation, electrostatics, magnetostatics, steady-
state heat conduction and elastic membranes — and, indeed, fluid dynamics — equations of
Poisson type are amongst the most extensively analysed and best understood in mathematical
physics. [See Eriksson et al. (1996), chapter 15, and Batchelor (1967), section 2.4.] All the
insights gained can be used to rationalise the behaviour of the linear, elliptic QG1 problems.
For example, the total solution for @ or dy /ot can be additively attributed to different

regions or elements of the forcing or boundary conditions. This approach has been applied by
Hoskins ez al. (1985) and Clough ef al. (1992) to the omega equation, and to the stream-
function tendency equation by Hakim ef al. (1996) and Nielsen-Gammon and Lefevre (1996);
see also Raisdanen (1997). Such methods offer a rational basis for identifying cause and effect
links between fields of wor dy /ot (the effects) and the relevant source terms (the causes).

The problem in which (10.38) is inverted for dy/ot is conveniently referred to as prognostic
PV inversion, and that in which OGPV — fy is inverted for y as static PV inversion (Hakim

et al. 1996). Static PV inversion is of particular interest. Since QGPYV is conserved in the
sense that D/Dt, (OGPV') =0 [in the absence of heat sources and friction, the effects of

which can be taken into account if desired] QGPV may be regarded — to use the language of
gravitation or electrostatics — as a “mass-like” or “charge-like” quantity. To the extent that
inverting OGPV — py for the streamfunction y may be achieved, and all other fields may be

calculated from y;, the analogy of QGPV with mass or charge becomes even closer.
Generalizations of this picture to EPV (with the hydrostatic approximation) subject to a
balance condition such as the Charney balance equation (see section 9.6) offer a still more
compelling view. A gap in the vision is that there is no unique specification of boundary
conditions that can be justified by physical arguments; the boundary conditions in static PV
inversion are ultimately a matter of choice (Bishop and Thorpe 1994). [In the current QGl
case, note that (10.39) gives a well-defined boundary condition on @y /ot , but no condition

on i, at rigid horizontal boundaries.] Hakim et al. (1996) have noted that some choices of
boundary condition violate regularity requirements; this observation is helpful in providing a
constraint on the choice of boundary conditions, but it is a non-holonomic constraint in that it
does not define a particular choice. Nevertheless, given awareness of the flexibility in choice
of boundary conditions on horizontal surfaces, static PV inversion, as well as the clearly
defined prognostic PV inversion, is useful in the development of well-founded conceptual
models of weather systems and their behaviour, For a recent application of this type,
involving an approximation to EPV, see Griffiths ef al. (2000).
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11, ACOUSTICALLY-FILTERED MODELS

The HPEs (section 5.4) are not the only 3-D meteorological model that lacks vertically-
propagating acoustic waves but supports gravity waves. Some other acoustically-filtered (or
“soundproofed”) models are briefly addressed in this section. Anelastic models are discussed in
section 11.1, section 11.2 describes a model which might be seen as an anelastic variant but uses
pressure as vertical coordinate, and section 11.3 discusses application of its technique to represent
the non-hydrostatic effect of the vertical component of the Coriolis force rather than the relative
acceleration Dw/Di. An important nonhydrostatic model which is not acoustically-filtered, but
retains the shallow atmosphere approximation in spherical geometry, is considered in section 11.4.

11.1  Anelastic models

The linear mode analysis presented in section 8.2 suggests that gravity waves are more accurately
treated when the continuity equation is written in incompressible form than when the hydrostatic
approximation is applied. Using an incompressible form of the continuity equation to remove
acoustic waves is therefore an attractive proposition — the more so because Lamb waves are
removed as well as vertically-propagating acoustic waves. A typical anelastic model uses the
continuity equation in the form

ar o =0
S e =) 11.1
Py 5 Do &(pow) (11.1)

in which p, = p,(z) is a fixed profile of mean density; see Ogura and Phillips (1962). The

analysis given in section 8.2 also suggests (see (8.21)) that use of (1 1.1) should be accompanied
by neglect of a certain term in the vertical component of the momentum equation, and this is
usually done. Appropriate Boussinesq forms of the horizontal components and a form of the
thermodynamic equation complete the model. Application of (11.1) to the three components of
the momentum equation gives a diagnostic 3-D elliptic equation for the pressure field. The
formulation is then similar in many respects to the Navier-Stokes equations for incompressible
flow (Williams 1969), and indeed becomes equivalent if the height variation p, (z) is neglected

[as is appropriate if the vertical scale of the motion is much less than the scale height H, =RT,/g
— see, for example, Mason and Brown (1999)].

Nonlinear conservation properties are good if p, (z) corresponds to certain simple thermodynamic

states, but more general choices require specific investigation. Bannon (1995) gives a thorough
discussion of this and related issues regarding a number of models of anelastic type.

The meteorological context of the anelastic equations is commonly that of cumulonimbus-scale
convection; then the Coriolis terms are usually neglected and Cartesian geometry is used. If the
hydrostatic approximation is applied, and Coriolis terms are included, the anelastic model
becomes in the geostrophic limit the height-coordinate QG1 model that is valid when

N*H/g <<1; see section 10.2,

11.2 Nonhydrostatic convection models using pressure coordinates

Miller (1974) and Miller and Pearce (1974) first proposed and used a pressure coordinate model to
describe nonhydrostatic motion of cumulonimbus scale. Their model incorporates a reference
state in hydrostatic balance and deals with nonhydrostatic departures from this state.
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The horizontal momentum equation is written

Dv

L gvl'z' = FI (11.2)

1

where z' is the deviation of the height z of a pressure surface from the reference state z (p) which

is associated hydrostatically with a temperature profile 74(p):

z(x,y, p,t) = z.(p) + z'(x, 5, p.t) (11.3)
= L (11.4)
S dp P

The continuity and thermodynamic equations are applied in the forms

au N w
— 4 = ¢

. B e (11.5)
& & 19

) i

Dt pe, e :

Very small terms are neglected in writing (11.2) and (11.5) according to the criterion g>> Dw/DX.
Nonhydrostatic effects are retained in the vertical component of the momentum equation by
applying the approximation

w ~ —ogo.(p) = -oRT,/gp (11.7)
in the vertical acceleration term: 3
T ’ 2 ’
80| L B0 (11.8)
gDt p /8 RT, &

(See the comment after (11.12), below.) In (11.8), 7" =7 — 7,(p). The material derivative is

D 7% 0 17 é
—_— = — A Y—— Y e
Dt a & & @

(11.9)

with @ = Dp/Dt and differentiations with respect to 7, x and y taken at constant p.

Miller (1974) justified the model by considering numerical magnitudes of the (small) terms
omitted, and Miller and White (1984) obtained the same equations via power series expansion.
The approximation (11.7), as applied in (11.8), has the effect of eliminating vertically-propagating
acoustic waves, and Lamb waves may be eliminated by applying the lower boundary condition @
=0at p=p,. Integration proceeds by time-stepping in conjunction with solution of a 3-D

Poisson-like equation for the height deviation z'; it is obtained by taking V ,.(11.2), adding
(gp/RTA_ )6/6p (11.8), and applying (11.5). The model gives analogues of energy and potential

vorticity conservation laws, and is virtually isomorphic to an anelastic model in height
coordinates. It has been used in a range of numerical simulations of cumulonimbus and squall-
line motion; see, for example, Miller (1978) and Brugge and Moncrieff (1985). Sigma-coordinate
forms (which imply Lamb waves) have been used by Xue and Thorpe (1991) and Miranda and
Valente (1997) to model flow over and around orography.
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White (1989b) noted the dependence of the Miller-Pearce model on the reference state profiles
z (p), T.(p), and pointed out that the (Cartesian) vertical component of the momentum equation

can be written, without approximation, as

Labil VR A R (11.10)
Dt RT g Dt @ p

Use of the uncritical approximation g >> Dw/Dt , together with

w ~ —-wo/pg = —wRT/gp, (11.11)
then replaces (11.8) by A + g[—1 + ﬁ{ﬁé =0 (11.12)
gDt p 1 RT &

which does not involve the reference state. (Setting 7' =T (p) in(11.12) gives (11.8).)

Equations (11.2), (11.5) and (11.6), (11.12) constitute a modified Miller-Pearce model that retains
analogues of energy and potential vorticity conservation, and implies a diagnostic, Poisson-like
equation for z; Salmon and Smith (1994) demonstrate its Hamiltonian form. R66m (1998) and
Ro0m and Mannik (1999) describe related formulations and compare their linearised behaviour.

Economical time integration of the fully-nonhydrostatic equations, with acoustic waves present,
may be achieved by using a semi-implicit scheme (Tapp and White 1976). Such a formulation
was the basis of a regional, mesoscale model used operationally by the U.K. Met. Office during
the 1980s. The use of semi-implicit methods requires the solution of a 3-D Helmholtz-type
equation at each timestep. This illustrates a common situation: a diagnostic elliptic p.d.e. has to
be solved at each timestep whether special numerical methods are used to handle high frequency
modes or whether these modes are filtered by approximating the governing equations. Lie (1999)
gives a survey of nonhydrostatic models in the context of mesoscale weather forecasting.

11.3 Acoustically-filtered global models having a full representation of the Coriolis force
Miller and Pearce's method can be used to represent other nonhydrostatic terms in the vertical
component of the momentum balance. White and Bromley (1995) noted that the term 2Qw cos ¢

in the zonal component of the momentum equation (4.4) is not comfortably negligible in tropical,
synoptic-scale flow systems in which diabatic heating is inportant. To include it requires the
inclusion of other terms and effects, if conservation principles are to be respected: as discussed in
section 5.4, the corresponding term in the vertical component (4.6) must be kept, the shallow-
atmosphere approximation must be relaxed, and various metric terms retained. [The 2Qcos¢

terms are negligible in adiabatic motion if 2Q << N ; see Gill (1982), p 449. This condition is
obeyed given 2Q ~ 10 *s™" and N~ 107 57", but it is clearly not satisfied as N — 0.]

White and Bromley (1995) proposed a model based on a pseudo-radius defined as

Po

RT.(p'

r(p) = a + j——d"(,p)p' (11.13)
P

p
in which p’ is a dummy variable and p, a mean sea-level pressure. Use of 7,(p) as a vertical

coordinate entails no approximation; interpreting 7, as distance from the centre of the Earth does.
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Dr, RT,(p) =
= ————

From (11.13), = W (11.14)

E‘ 8P

This is the approximation to the vertical velocity used in the Miller-Pearce model (section 11.2).
The material derivative is written as

e v (11.15)
Dt a
3 )
with u = (wv,w) and Y= ( S S i] (11.16)
r.cospoL r, o a,
The following pressure-coordinate equations were proposed:
Lo e T (vsin ¢ — Wcosg) + £ F, (11.17y
Dt r, cos¢g r,cos¢ oA
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v L l%) <0 (11.20)
. D
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In the continuity equation (11.20),

~ | ou o
£ - oo 11.22
P cos¢{0/1 i (v°°S¢)} gL

Some of the terms retained in these equations are typically very small, but they are needed for the
delivery of the following conservation properties:

D &'
E{('”Q’s cosg)r, cosg} = F,r, cosp - = (11.23)
D1 o 12
‘[‘)—I(EVZ-{-Cprj ok Vp-(VgZ)+ ?;?—)-(rsza)gz) == Q-{-v_Fh (1124)
ps.£.)_ 7.V “ §.|:m’~7th+i_l_)_0_:| (1125)
Dt{ p, Dt
In (11.25),
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Sl 20 ——ur, ) , 2Qsi sl
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and, for any vector A = (A, ,4,),

~ ~ 1 >

VA =V, A, pti0fe ) (11.27)

r, or,

Eqs (11.23) - (11.25) are axial angular momentum, energy and potential vorticity conservation
laws; their derivation is eased by noting an isomorphism with corresponding equations for the
motion of an incompressible fluid. Only the term Dw/D1 (in the vertical component of the
momentum equation) is unrepresented in (11.18) - (11.22). Its inclusion could be achieved by
using the Miller-Pearce technique directly, but at the expense of having to solve an elliptic 3-D
p.d.e. for z at each timestep; in the global model as set out above this is not necessary.

Roulstone and Brice (1995) demonstrated the Hamiltonian structure of isomorphs of (11.17) -
(11.21), and White and Bromley (1995) derived o-coordinate versions by direct transformation
and described an integration strategy. Versions using another vertical coordinate system form the
dynamical basis of the UK Met. Office's Unified Model (see Cullen (1993)) which is a gridpoint
numerical model. The presence of the pseudo-radius r(p) would complicate implementation of
these equations in current spectral numerical models (see section 12).

11.4 A nonhydrostatic, global, shallow atmosphere model

As we noted in section 5.4, the HPEs omit the cos¢ Coriolis terms and various metric terms from
the components of the momentum equation, and adopt the shallow-atmosphere approximation
throughout. The nonhydrostatic, global, shallow-atmosphere model used by Tanguay e al. (1990)
[see also Miiller (1989)] consists of the HPEs augmented only by the term Dw/Dt in the vertical

component of the momentum equation. In place of (5.19), the model therefore has

=0 11.28
Dt i p Oz ( )

with D/Dt given by the shallow atmosphere form (5.16). The retention of Dw/Dt in (11.28)
appears unjustifiable for a range of mesoscale motion given that —2Qu cos¢ has been neglected

(Draghici 1989), but the model is of theoretical interest because of its good conservation
properties. The axial angular momentum conservation law is the HPE form (5.29), the energy

conservation law is the HPE form (5.24) but with specific kinetic energy ‘/2(\'2 + w? ) and the PV
law is of the HPE form (5.25) but with absolute vorticity § defined by

low oOv Ou 1 ow | ov 0
= Rl T R O s 11.29
: [a Op 0Oz 0Oz acosg oA gt acos¢|:5/1 o¢p (u COS¢):D ( ).

Roulstone and Brice (1995) showed that isomorphs of (11.17) — (11.21) arise when the functional
form of the Hamiltonian is modified to exclude the contribution of the vertical motion to the
kinetic energy. They showed too that the HPEs arise if the geometric factors in the Hamiltonian
integral (its “phase space”) are also modified. It seems likely that the model of Tanguay et al.
(1990) arises when the geometric factors in the Hamiltenian are modified but its functional form is
left unchanged, and thus that there are two dynamically-consistent models intermediate in
accuracy between the HPEs and the unapproximated equations — the model of Tanguay et al.
(1990) and the model of White and Bromley (1995). These suggestions deserve further study.
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12. DISCUSSION: DYNAMICAL MODELS, NUMERICAL WEATHER PREDICTION
AND CLIMATE SIMULATION

This article has given an account of the basis and nature of many of the approximate models of
meteorological dynamics. Here some remarks are offered on the approximation problem, on the
applications of the approximate models, and on basic issues in the design of numerical models.

A theory of approximation for the equations governing meteorological flows is not yet fully
developed or its rationale agreed upon. The retention of conservation properties during the
approximation process is an attractive guiding principle, and if it is given exclusive priority, then
the Hamiltonian technique pioneered by Salmon (1983) offers the best way forward. If a dynamical
model having the desired conservation properties has been derived by other means, then the
demonstration of Hamiltonian structure lends further credence. Prompted by evidence that
Hamiltonian structure does not ensure superior performance in numerical practice (see, for example,
Barth ef al. (1990) and Allen and Newberger (1993)) some researchers consider that retention of all
conservation properties should not be the priority. Few consider that conservation properties should
be disregarded, but opinions differ on which should be favoured. Traditionally, global energy
conservation has received most emphasis, but Lagrangian potential vorticity conservation is
increasingly seen as paramount; at the time of writing, some striking results are emerging from
studies of balanced, PV-conserving versions of the SWEs (McIntyre and Norton 2000).

What are the approximate models used for in meteorology? As we have noted, the HPEs are the
foundation of most of the numerical weather prediction and climate simulation models run by
operational and research centres worldwide, but the use of more accurate models is becoming more
widespread. For example, the U K. Met. Office's Unified Model is based on the acoustically-
filtered equations discussed in section 11.3, and the use of virtually unapproximated forms is
planned — the strategy being to use semi-implicit integration schemes to overcome the restriction to
very short time steps which the presence of acoustic modes would otherwise impose; see Staniforth
(2000). A trend towards the use of formulations more accurate than the HPEs is evident also in
ocean modelling (Marshall ez al. 1997). The utility of approximate models — especially those more
heavily approximated than the HPEs — also lies in the development of a conceptual framework for
the analysis of numerically-generated and observational data. Such a framework is necessary both
in general scientific terms and to guide the development of better techniques for assimilating data
into numerical models and effecting their time integration. We shall briefly discuss these aspects.

Analysing and understanding a simplified model is clearly casier than analysing and understanding
a complicated one. Some uses of the barotropic vorticity equation in this respect were noted in
section 5.6. In so far as it embodies notions of vorticity and temperature evolution and advection,
the QG1 model systematises these concepts of the synoptic meteorologist and weather forecaster. A
more modern view — not necessarily a competing view — is the PV perspective (Hoskins ez al. 1985)
which is embodied in QG1 and in some of the other balanced models discussed in section 9. The
articles in Meteorological Applications (1997) elucidate the current interplay of ideas in this area.

Approximate models also play a major role as apparatus for thought experiments (which may be
carried out either analytically or numerically). A particularly influential type of thought experiment
is the stability analysis: a steady flow is subject to perturbations at # = 0 and the subsequent
evolution determined by solving linearised forms of the governing equations. Eady's baroclinic
stability problem (Eady 1949) can be solved analytically in the QG1 case, and its dominant
eigenmodes resemble structures seen in developing mid-latitude weather systems. A large literature
has grown up which extends Eady's analysis to more realistic initial steady flows and assumed
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external conditions, and explores development into the nonlinear stages using either analytical or
numerical methods (in many cases using less heavily approximated dynamics); see Hart (1979) and
Held and Hoskins (1985) for reviews. It could be argued that such stability problems, though
illuminating, have been somewhat overemphasised, since one may reasonably enquire how the real
atmosphere could ever reach the supercritical states which may be chosen for investigation. [Some
recent work in this area has focussed on influences that stabilise flows, and on the hypothesis that
the real atmosphere evolves close to a stability threshold; see Mole and James (1990), Stone and
Nemet (1996), Dong and James (1997), Harnik and Lindzen (1998) and Nakamura (1999)]. Also,
the complete initial value problem is complicated by the presence of continuous spectrum
instabilities as well as normal mode growth (or decay): many early analyses emphasised the latter
at the expense of the former — see Farrell (1989). This important aspect of the stability problems
reflects the non-self-adjointness of the relevant operators; Held (1985) gives a lucid account.

As reviewed by Errico (1997), adjoint operator theory has recently found practical application in
ensemble forecasting and data assimilation. Ensemble methods (see Farrell 1990, Buizza and
Palmer 1995, Buizza et al. 1997) aim to determine the sensitivity of a numerical forecast to its
initial conditions. Since numerical integrations are time-consuming and the number of degrees of
freedom is vast, ways must be found to identify patterns which capture the main instabilities of the
initial flow and hence the sensitivity of the forecast. One way (of several) is to calculate singular
vectors, having defined a suitable norm to gauge differences between integrations with slightly
different initial conditions. The assimilation of observed data is a key part of the process of
numerical weather prediction; see Daley (1991). The 4-D variational technique (Talagrand and
Courtier 1987) minimises a cost function that measures differences between evolving model values
and observations over a chosen assimilation "window" (typically a few hours). The minimisation is
carried out with respect to fields at the beginning of the window period, and may be subject to
constraints whose nature reflects knowledge of atmospheric behaviour developed from more
heavily approximated dynamical models such as the semi-geostrophic and quasi-geostrophic forms.

Further examples of the use of knowledge gained from approximate models are noted in the
following brief discussion of numerical model design.

Because of the nature of the governing equations, any reliable numerical model of the atmophere
must use a finite representation of its fields. That finite representation may involve field values at a
number of chosen points (the gridpoint method) or fields specified in terms of amplitudes of a
number of chosen functions (the Galerkin method). The Galerkin representation most frequently
chosen for horizontal variations is a spectral representation in terms of surface spherical harmonics

Y™ . (The viability of the technique depends on the use of finite Fourier transforms and Gaussian

integration to handle product terms; see Hoskins and Simmons (1975), Coté and Staniforth (1988),
Hortal and Simmons (1991) and Temperton e a/ (2000)) Almost all models use the gridpoint
method for vertical variations; thus, in global spectral models, the fields are represented by finite
spherical harmonic expansions at a number of levels (typically 30 or more). There is advantage in
using a staggered arrangement in which different fields are held at different levels. Many models
hold the relevant vertical velocities at levels between those at which the horizontal velocity
components and the potential temperature are held. This "Lorenz" arrangement cannot give the
most natural and accurate depiction of thermal wind balance (see section 7.3) and it also leads to the
occurrence of spurious vertical modes (Schneider 1987). Thermal wind balance (Eq(7.11)) is better
represented by holding potential temperature at the intermediate level — the "Charney-Phillips"
arrangement. The practical advantage of the Charney-Phillips arrangement over the Lorenz
arrangement has yet to be demonstrated conclusively, but its theoretical advantage (at least for
geostrophically-balanced motion) is partly an implication of the QG1 model. Horizontal grid
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staggering in gridpoint models is an issue of even greater variety; see Adcroft et al. (1999) for a
recent discussion.

The spectral method of representing horizontal field variations has the considerable advantage of
satisfactorily treating field variations close to coordinate poles. (Indeed, the "triangular truncation”
of the spherical harmonic series gives an isotropic representation which is independent of the
location of the coordinate pole; see Hoskirs and Simmons (1975).) Use of a gridpoint
representation on points defined by the intersections of circles of latitude and longitude leads to
numerous difficulties in the vicinity of the poles. Amongst various ways of coping with these, one
of the most obvious and attractive is to use another distribution of points. Because of the existence
of only 5 regular polyhedra in 3-D space, a regular distribution of more than 20 points over the
surface of a sphere is not possible. However, a quasi-regular distribution may be achieved by
triangulating an icosahedron and centrally projecting the triangle vertices onto the circumscribing
sphere (Sadourny ef al. 1968, Thuburn 1997, Majewski 1998). Alternatively, projections of points
on an inscribed cube may be used (Ran&i¢ er al. 1995, McGregor 1996). Another way of mitigating
the pole problem is to use a subsidiary grid in the vicinity of the geographical poles. This is a
particularly attractive option when it is used in conjunction with the semi-Lagrangian representation
of material derivatives; see Staniforth and Coté (1991) and references therein. Regional models
can avoid the pole problem by using a rotated coordinate system whose poles are outside the
domain: another strategy is to use a distribution of gridpoints that covers the sphere, but has their
separation smoothly increasing away from the region of main interest — see Staniforth (2000).

The gridpoint method is reasonably expected to be better than the spectral method at representing
near-discontinuities such as fronts in the atmosphere. It also has the advantage of allowing choice
in the locations at which the various fields are held, and generally permitting more freedom — and
thus scope for improvement — via the finite differencing. At present, however, their superior
treatment of the poles makes spectral models at least competitive with gridpoint models.

Global gridpoint models nowadays have a grid interval of 50 km or so in the horizontal; so systems
having a wavelength of less than 100km are not resolved. Global spectral models are subject to
broadly similar restrictions. Many important scales are therefore not explicitly represented, but
their effects — in terms of heat, moisture and momentum transfers — must be allowed for. Especially
in climate simulation, this problem of subgridscale parametrization is acute. An understanding of
the fluxes carried by, for example, cumulonimbus systems, and their relation to the resolved flow is
crucial for the development of appropriate parametrizations. Numerical simulation and theoretical
analysis of motion on the relevant scales are the subjects of intense study, and the formulations
described in sections 11.1 and 11.2 are frequently used for this purpose. Closely related is the
problem of the scales that are barely resolved, and thus poorly treated, by the large-scale model, be
it gridpoint or spectral. For an analysis of this key issue see Lander and Hoskins (1997).

In conclusion, it should be emphasised that meteorological dynamics is not solely concerned with
the equations used for numerical weather forecasting and climate simulation. A glance at a text on
satellite imagery (such as Bader e al. 1995) - or, indeed, out of a window during most daylight
hours — serves to remind that the atmosphere is populated by flow structures and associated
phenomena. These are naturally the concern of the users of weather forecasts, and could be said to
be the weather itself An appreciation of the structure of weather systems and phenomena, as well
as of the structure of the governing equations, should guide the development of numerical models of
the atmosphere and the appraisal of their performance.
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Figure captions

Figure 1

(a) Displacement in time Az of fluid particles that are in the neighbourhood of the
point P =(x,, ,) attime 7 =#,. To leading order, the fluid particle which is at P at

t =1, is displaced to (x, + uAt, y, +vAt) at t =1, + At , where u and v (the
components of the flow in the x and y directions) are evaluated at (x,, ¥y, #)) . Also to
leading order, a fluid particle which is at O =(x, + &, y, + &) at £ =1, is displaced
to (x,+ Ax, y, +Ay) at 1 =1, + At , where Ax and Ay are related to u, v and the
spatial derivatives u,,u,,v,, v, at (X, ;,4,) according to (2.1). As well as the

coordinate system Oxy relative to which # and v are measured, the diagram shows (at
! =1, + At ) the coordinate system O'x’y’ which moves with the flow velocity at

(xg, Yo, 1) and is coincident with the Oxy system at £ =1,

(b) Tllustrating that the evolution of an initial circle of fluid particles in a short time
At is the sum of a translation, a rotation, a scaling and a deformation.

(c) Showing the effects of deformation on pre-existing gradients of a conserved
scalar ' when the stretching axis is respectively perpendicular to and parallel to the
gradient of C.

Figure 2

The (4, ¢,7) spherical polar system whose origin O is at the centre of the Earth and
which co-rotates with angular velocity €. The unit vector triad (i, j, k) at the generic

point P = (4, ¢, 7) is also indicated, as are the corresponding zonal, meridional and
radial velocity components u, v and w.

Figure 3

(a) An element of air of mass pdr = pr? cosgpdldpor centred (at some time 7) at

longitude A, latitude ¢ and distance * from the centre of the Earth. If the net zonal
force acting on the element is X, , then the net torque about the polar axis is

X ,rcos¢. The axial component of the absolute angular momentum of the element is
04 = pSr(Qr cos g +u)r cos ¢, where u is the zonal component of its velocity relative
to the Earth. Since the mass pdz of the element is by definition constant, equating the
rate of change of d4 to the net torque gives

POT -[% {(Qrcosg+u)rcosg} = X,rcosg

Eq (4.7) then results when X, is appropriately expressed as the sum of contributions
from the pressure gradient force and the force F (see (3.11)).
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(b) A small cylinder has bases &5 which lie within isentropes @, and 6, + 66, and
generators parallel to grad@. In the case considered (see text) the motion is assumed
adiabatic, and the cylinder is a material volume.

Figure 4

(a) Temperature variation with height to 90 Km in the U.S Standard Atmosphere.
Profile consists of straight-line segments, as shown. Arrows span the lowest and
highest mean monthly temperatures obtained for any location, and so indicate the
spatial and temporal variability of monthly means about the standard profile. Scale at
right gives pressure implied by the standard profile (assuming hydrostatic balance).
After NOAA/NASA/USAF (1976) and Gill (1982).

(b) A broad-brush view of the Northern Hemisphere potential temperature field
6(¢, z), temporally and longitudinally averaged. Isentropes (contours of constant 6)
are marked every 30K from 270-390K by thin lines; the thick line indicates the
tropopause. After Hoskins (1991)

Figure 5

A parcel of air displaced vertically a distance & from its equilibrium position within
a hydrostatic environment.

Figure 6

Transformation of horizontal and local time derivatives between height and pressure
coordinates. X = A, gort. Line AB (parallel to OX) has length &X, line BC (parallel

to Oz) has length & ; pressure p is constant on AC. Let &Jps denote the difference
in O =0(4, 4,2z, 1) between any points R and S. Then

e = g +&pe

oX|, 0 Oz
oQ 00| 00 oz
ie. —= = = + .
oX|, oX|, oz dX|,
Figure 7

(a) Nlustrating the balance between the horizontal components of the Coriolis and
pressure gradient forces acting on unit mass of air in (horizontal) geostrophic flow
v,,. The diagram is drawn assuming f >0 (Northern Hemisphere). If f <0

(Southern Hemisphere) v, would be oppositely directed, given the horizontal
pressure gradient V_p shown. K is unit vector in the upward vertical direction
(perpendicular to the plane of the diagram).

(b) A typical map of mean sea-level pressure; analysed locations of warm, cold and
occluded fronts are also shown. Contour interval 4hPa. From The Met. Office’s
Daily Weather Summary. [In land regions the pressure at mean sea-level has been
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obtained by a standard extrapolation based on the hydrostatic approximation and
knowledge of the atmosphere’s temperature structure.
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