L 8
)

MET O 11 TECHNICAL NOTE NO 155

FAST REAL FOURIER TRANSFORMS ON THE CYBER 205

by

C Temperton

Met O 11
Meteorological Office
London Road
Bracknell

Berkshire, U.K.

March 1982

N.B. This paper has not been published. Permission to quote from it must

be obtained from the Assistant Director of the above Meteorological Office
Branch.

Ts Introduction

The Fast Fourier Transform (FFT) algorithm is one of the most useful items
in the computational physicist's toolkit. The algorithm (of which there are many
variants) provides a fast way of implementing the Discrete Fourier Transform

(DFT), given by

N-=l .
x; = :[;}o Gy up(acjk'f‘c/N> (1)

for OSJ' X N-1, where xj and ¢, are complex numbers. Direct calculation of

k
the sums in Eq (1) would require N(N-1) complex additions and N2 complex multiplications
However, if N can be represented as a product of small integers, then the number

of arithmetic operations can be dramatically reduced by the FFT technique. Table 1
gives examples for N = 96; as suggested, there is a distinct advantage in

grouping the factors together, though this is obtained at the expense of increased

program complexity. The inverse of Eq (1) is:
. : N-1
c, = ;& 2: x5enq>6-2idkﬁt/$l) . (2)
J=0
which can be implemented in almost exactly the same way.

Table 1. Complex FFT: operation counts for N=96

real adds real mults
Direct 36672 36864
Nw2?x3 1762 964
K widfr s 1602 644

In many cases of interest the xj's in Eqs (1) and (2) are real numbers,

implying that the Fourier coefficients = must satisfy the relationships

Gl = c: (* denotes complex cpn,jugé.te). Eq (1) is then sometimes
rewritten as
N2
;= Z} { a, COS(ajk’lT,/M) + bksin(zjl<i?,/'~i)}
=0 :

where ao = Rﬂ,(co) 2 Qm/:_ = ‘R‘Q, (CN/1> 3

3 QKZZRL(CK> > b2 = 2Xme,) for ©0< k< N/2,

There are several ways of adapting the FFT algorithm to this case.
Several examples of the use of the FFT can be found in numerical weather

prediction. The new operational model run on the Cyber 205 at the UK Meteorological
Office is based on a regular latitude-longitude grid on the sphere. The major
problem with such a grid is that the convergence of the meridians implies
progressively shorter gridlengths in the zonal direction as the poles are
approached, requiring a prohibitively short timestep for computational stability.
The remedy adopted (Holloway, Spelman and Manabe, 1973; Williamson, 1976) is to
Fourier filter'the tendéncies of the time-dependent variables poléward of a given
latitude. These tendencies are expanded in terms of Fourier series which are then .
truncated at a given wavenumber (depending on latitude) and finally reconstituted .
at the gridpoints. This device gives a resolution in the zonal direction which

| 5 remains effectively cénstant as the poles are approached, Qithout sacrificing the

| regularity of the grid. Fourier filtering is most efficiently implemented via

the FFT algorithm.

Further uses of the FFT can be found in other numerical weather prediction
models. In the ECMWF gridpoint model for example, the use of Fourier filfering has
been replaced b& a form of implicit diffusion in the zonal direction, again most

efficiently implemented via the FFI. This model also uses a semi-implicit time

integration scheme which requires the solution at each timestep of a three-dimensional

discrete elliptic equation. This can be decoupled into a set of two-dimensional |

Helmholtz equations over the sphere, which are solved by a direct method (fast
% elliptic solver) applicable to spherical geometry (Swarztrauber, 1974) together

| i
| with a technique specially developed for large out-of-core problems (Burridge and ‘
1

-2—

- Temperton, 1979). Much of the work in the direct elliptic solver consists of

FFT's.

The most extensive use of the FFT in numerical weather prediction is found
in spectral models, where the prognostic variables are not gridpoint values but
coefficients of spherical harmonics. All the nonlinear terms are evaluated by
transforming the fields to an appropriate grid, computing products and transforming
back to spectral space (Bourke, 1972; Orszag, 1971). The zonal part of the
transformation to and from gridpoint space is performed using the FFT. ECMWF's
quasi-operational T63* spectral model requires almost 30,000 real Fourier transforms .
per timestep, each of length N = 192 (Burridge, personal communication).

This paper reports on a real Fast Fourier Transform package implemented on
the Cyber 205 for the new operational model. Section 2 briefly describes some
mathematical aspects of the algorithm used, while Section 3 deals with the
%mplémentation on a vector computer, with partiéular reference to the Cyber 205.
Timings are presented in Section 4, together with some comparisons with a similar
package implemented on the Cray-1. Documentation of the package is included in

Section 5.

4 Mathematical Characteristics

As mentioned in the Introduction, there are many variants of the FFT algorithm.
The version used here can be briefly described as mixed-radix, self-sorting and
real.

"Mixed-radix" refers to the fact that.N can be represented as the product
of several different factors, in contrast to the simplest and most restrictive
case N = 2P, The present package allows the c;se N = 2’ 31 Sf . In order to
decrease the operation count, there is scope for grouping the factors together,
so that in addition to the factors 2, 3 and 5 there are sections of coding for
factors 4, 6 and 8. The provision for factor 6 is unusual, but it does lead to

a worthwhile decrease in the amount of arithmetic.

* triangularly truncated at wavenumber 63; <~ 4000 degrees of freedom per

horizontal field.
—5-

"Self-sorting" means that the input to and output from the algorithm are
naturally ordered. In the FFT algorithm as originally presented by Cooley and
Tukey (1965), and in many of its descendants, the data had to be either shuffled
before entry to the transform, or unscrambled on exit. This kind of data shuffling
can be an expensive overhead on a vector computer. Self-sorting variants have in
fact been known for a long time; Cochran et al (1967) attribute the idea to
Stockham. For a detailed derivation of self-sorting and other versions of the
complex FFT algorithm, see Temperton (1977, 1982a).

Finally, the package described here implements the FFT algorithm for the
case in which the x;’s of Egs (1) and (2) are-real numbers. Conventionally, the
FFT is regarded as an algorithm for complex numbers, and the real case is handled
either by forming an artificial complex series of length-N/2 to which a complex
FFT (of length N/2) can be applied (Method 1); "or a complex FFT of length N can
be used to perform two real Fourier transforms of length N simultaneously (Method 2),

The operation counts for these two methods are almost identical (see Table 2). .

An alternative approach, first suggested by Bergland (1968) for the case

N = 2P but subsequently rather neglected, uses the complex transform of length N
- more directly. If cy_, = cdf then there are only N real degrees of freedom

in the input data for Eq (1); the same is true for the output data (all the x;’s
are real). In fact it can be shown that the same is true at each stage of the
algorithm; every number in the array is either reel, or else accompanied by its
complex conjugate somewhere else in the array (Temperton, 1982c). We can adapt
the complex FFT of length N directly to the real case by "pruning out" redundant
operations (i.e. on zero imaginary parts, or complex conjugates of operations
already performed elsewhere). This leads to a rather more complicated algorithm,

but also to a significantly reduced operation count, typically 25-30% less than

the conventional approach. Some examples for N = 192 are given in Table 2.

The first two lines represent typical black-box FFT packages (assuming they
rise above the restriction N = 2 P), while the last line represents the

package described here.

Table 2. Real FFT: operation counts for N = 192

real adds real mults
Method 1, cplx N/2 = 2° x 3 2236 1152
Method 2, cplx N = 26 % 5 223%9 ‘ 1154
Method 1, cplx N/2 42 x 6 2076 , 832
Method 2, cplx N = 2 x 4% x 6 2079 834
Real, N = 3 x 26 1764 sy 964
Real, N = 3 x 4° 1698 802
Real, N = 4 x 6 x 8 1654 694

A program to implement Eq (1) via the FFT algorithm will normally include
provision for iﬁplementiné the inverse transform, Eq (2), instead. With the
conventional approaches this requires minimal extra programming. One disadvantage
of the approach adopted here for the special real case is that separate programs
are réquired for Eqs (1) and (2). Operation counts are the same for both

forward and inverse transforms.

e Vectorization
In order to appreciate the vectorization scheme for the FFT package on the

Cyber 205, it is necessary to look at the structure of the self-sorting complex

FFT routine as it might be implemented on a scalar computer. There is one pass
through the data for each factor of N, and two arrays are used alternately as input
and output for successive passes. The indexing within each.pass is controlled

by the value of the current factor of N, and by the variable LA which takes the
value 1 during the first pass, and on completion of each pass is multiplied

by the current factor. Suppose for example that the factors of N are listed in the

array IFAX(1) to IFAX(NFAX). The outermost structure is then as follows:

'COMPLEX A(N), c(N)

INTEGER IFAX(NFAX)

LA=1

D0 1§ I=1, NFAX

IFAC = IFAX(I)

CALL PASS(A,C, IFAC, N, LA)

LA= LA*IFAC

(now reverse roles of arrays A and C)

1¢ CONTINUE
The subroutine PASS has a nested structure:

SUBROUTINE PASS (A,C, IFAC, N, LA)
coMPLEX A(N), c(n)

M= N/IFAC

I=f

J=f

JUMP = (IFAC-1)* LA

D0 2¢ K=@, M-LA, LA

D0 14 L=1, LA
£ () =2(x) * w (zFAC) * A (1)

I=1I+1

]

J=J+ 1
1 CONTINUE
J=J + JUMP
2¢ CONTINUE
RETURN
END
In the inner loop, W(IFAC) represents the DFT matrix of ofder IFAC, L£L (K) is a
diagonal matrix of complex ﬁumbers (fixed during the loop), A (I) and C (J) are

vectors of length IFAC, of the form

A (TA+I) c(:_m+:r)
AD = fa@esn| , £@) = | c(@B3)

~

.

where IA, IB, JA, JB etc are base addresses fixed for the duration of the pass.
In practice the inner loop would of course be expanded into real scalar arithmetic,
using various tricks to speed up the multiplication by W(IFAC), and taking
advantage of the fact that the first element of J[2(K) is always i , and 0L (k)
is the identity matrix for K=0.

The salient points are that the inner loop vectorizes naturally with an
increment of 1 between successive elements of vectors¥ (I=I+1,J7=J4+1;
note that the vectors we are considering now should not be confused with the
mathematical vectors’ﬁ‘(l) and.Ea(J), used here only for compactness of notation),
and that the vector length is LA, This scheme was referred to by Temperton (1979)

as vectorization scheme A, and is illustrated schematically in Fig 1. The vector

¥ Assuming here that the real and imaginary parts of complex numbers have been

stored in separate arrays.

length is unfortunately never very long; for example if N = 96 = 4 x 4 x 6 the
vector length is 1, 4, 16 on successive passes.

On Cray-1 (though not on the Cyber 205), the elements of a vector do not
have to be contiguously stored, but can be spaced at any constant increment.

This permits the nested loop structure of subroutine PASS to be "turned inside

out" (vectorization scheme B), giving instead a vecto£ length of N/(IFAC*LA).

The case N = 96 = 4 x 4 x 6 can then be implemented with vector lengths 24,

6, 16 on successive passes, by choosing the mosf appropriate structure at each
stage. Even on the Cray-1, which reaches half maximum speed with vector lengths

as short as 10 or thereabouts, this is some way from being optimal. On the

Cyber 205, which requires'véctor lengths of order 100 to reach half maximum speed,
this would be much too siow even if the data could be reorganized to give contiguous
vectors with the "inside-out" loop structure.

The problém of vectorizing the FFT on the Cray-1 was studied in detail by 7
Temperton (1979). The simplest solution stems from the fact that we usualiy need
to perform many transforms simultaneously. It is then an easy matter to arrange
the data so that the transforms are performed in parallel, with each vector
containing one element from each transform, and the vector length equal to the
number of transforms being performed simultaneoﬁsly. The details of the indexing
are transferred to outer loops, and become irrelevant from the standpoint of
vectorization. This multiple vectorization scheme for Cray-1 is illustrated in
Fig 2. As the optimum vector length is 64, and we can usually arrange for the
nuhber of simultaneous transforms to be of that order or even greater, the problem
was considered solved for that méchine.

On the Cyber 205 the situation is somewhat different. First, the requirement
that vector elements be contiguous means that the data organization of Fig 2 must
be transposed (see Fig 3; this reorganization would also work on Cray-1). Second,

the efficiency continues to improve as vector lengths increase (up to a maximum

-8 -

of 64K-1), and vector lengths should preferably be at least of order several

hundred, typically rather more than the number of transforms which can conveniently
be performed in parallel. Fortunately, the transposed data organization as in

Fig 3 allows us to apply the "direct product" of the first vectorization scheme

(A) referred to above and the multiple vectorization scheme. The vector length
becomes LA¥LOT, where LOT is the number of transforms being performed together.

The situation is illustrated in Fig 4. Again, this procedure could also be

applied on Cray-1, but there would be little gain unless the number of transforms
was much less than 64.

The preceding discussion has referred throughout to complex Fourier transforms,
but the situation is almost exactly the same for the specialization to the real
case.

It is worth noting that Korn and Lambiotte - (1979), addressing the problem of
Qectorizing'multiple complex FFT's on vector computers (particularly the Cyber 205's
ancestor, the CDC STAR-100), suggested‘a scheme similar to that adopted here.

Later vwriters (Fornberg, 1981; Vang, 1980) have suggested a somewhat different

approach in order to achieve a vector length of (N*LOT)/IFAC throughout. Their

~ schemes essentially replace ¢ (J) by C (I) in the skeleton Fortran routine PASS,

and follow each call to PASS with an explicit permutation of the data using scatter/
gather or merge/compress techniques., However, recent analysis (Temperton, 1982b)
shows that this approach is slower than the present proposal on the Cyber 205;
the longer vectors are outweighed by the time taken for data permutation, not to
mention the need to create and store enormous arrays of trigonometric function
values and bit strings.

There remain a few technical points concerning the details of vectorization
in the Cyber 205 FFT package. In the real Fourier transform algorithm, real and
imaginary parts of complex numbers are interleaved in such a way that they can
frequently be qombined into a single vector, thus further doubling the vector

length. Also, triadic operations of the form ;3:='b * (¢ + d) or
~ N

~s

a=>»+c b 4 can be performed in almost the same time as a single vector addition

or multiplication, using the vector "link" instruction (note that one of the

operands must be a scalar). This is analogous to the (more flexible) operation

of "chaining" on Cray-1. Since the FFI algorithm contains more additions than

multiplications, the ideal situation would be for all multiplications to be linked

with additions, so that the total time depended effectively only on the number

of additions, with multiplications being implemented free of charge.

ingenuity, this ideal can be realized.

Vith a little

The conventional coding for factor 5 contains several pairs of statements

of the form
y=a*“g+c*g
Z=X+Yy
~ ~ ~

Since a and ¢ are prescribed constants, this can be rewritten in triadic form as

' =~¢P, 5 (c/a.) *.9;

PISIIR A

=X+ a ¥
~ .2

Throughout the FFT algorithm, complex numbers are added together or

. subtracted and then multiplied by a cormiplex number of the form
~where 0<6<1T . This requires a computation of the form:

} (real part) W=2a+ b

|

(imag. part) =c+4d

; 4
~

(real part) y = cos p¥ y = gin o x
(ad .
z

(imag. part) 8in@ % w + cos 0% x

~e

This sequence can be rewritten in triadic form as:

|

| ;

| w' = cos ® * (a + b)

| = o s

| x' = cos © ¥ (c + d)

| ~ ~ ~

y =w' - tan@* x!

| s ~ o
z =tan® * w' + x!'
~s ~ ~

3 ' = 40 =

8
e

cos @8+ i sin@,’

The only snag is that tan © is infinite for O =71/2, and in fact to minimize

rounding error the above sequence should be reorganized using sin @ and cot B
for /4 < B € 3 7T /4, The FFT package implemented on the Cyber 205 includes
both options in each case, and the appropriate path is taken depending on the

value of B© =

7. Timings
The real FFT package for the Cyber 205 was first written in straightforward

vector Fortran, and subsequently translated into "special call" format using
Q8 calls for all vector instructions and descriptor manipulations. This gave some

speed advantage at short vector lengths, but the main reason was to permit the use of

32-bit arithmetic before a suitable compiler became available. The timing information

presented here refers to the special call version, and to the forward transform,
Eq (1). The inverse traﬁsform, Eq (2), runs slightly slower due to some
multiplicatioﬁs which could not readily be linked with additions in this case.
Comparative figures are given for an FFT package written at ECHMWF and run on :
the Cray-1 computer; the mathematical aspects of the FFT algorithm used afe the
gsame as for the Cyber 205, while vectorization was by the simple multiple scheme
as discussed in the previous section. It should be noted that the Cray-1 package

was written in CAL (Cray Assembly Language), and runs about twice as fast as a

corresponding vectorized Fortran version. 32—bit arithmetic is not available
on Cray-1.

Table 3 presents the time per real transform (in microseconds) for three
values of N, and for four values of LOT, the number of transforms being performed

together. Results for N = 180, 192 and 200 are shown to demonstrate that the

choice of N is not as critical as is sometimes thought for efficiency of the F¥T.

Values of LOT = 16, 64, 256 and 1024 are shown to demonstrate the increasing
efficiency of long vectors on the Cyber 205, in contrast to the Cray-1 where there

is no advantage in increasing the vector length beyond 64.

- g

Notice that 32-bit arithmetic is asympfétically twice as fast as 64-bit
arithmetic on the Cyber 205, but because the start-up times for each vector
operation (and other overheads) remain the same, many transforms must be
performed together before this ratio is approached.

Some timing results (not shown) were also obtained on the Cyber 205 with

the vector link instruction suppressed. If many transforms are performed together,

Table 3. Time per transform in ps

N LOT Cyber 205 Cyber 205 Cray-1

(64-bit) (32-bit) (64-bit)

16 87 78 36

180 64 35 26 26
(5 x 6%) - 256 22 1% 26
1024 18 10 26

16 81 72 36

192 64 3% 24 25
(4 x 6 x 8) 266+ - <21 12 25
1024 18 9 25

16 98 88 41

200 64 40 30 30
(52 x 8) 256 25 15 30
1024 21 1 30

the times are then about 50% longer, as expected from the ratio of multiplications
to additions in the algorithm. For fewer‘simuitaneous transforms, the effects

of suppressing the link instruction are again less marked.

gl

Comparing times on the Cyber 205 with those on Cray-1, at LOT = 16 the

Cray-1 is markedly faster. At LOT = 64, 32-bit arithmetic on the Cyber matches
64-bit arithmetic on the Cray. By LOT = 256, 64~bit arithmetic on the Cyber
beats that on the Cray, while at LOT = 1024 32-bit arithmetic on the Cyber is
almost three times as fast as 64-bit arithmetic on the Cray.

The performance of supercompﬁters such as the Cray-1 and Cyber 205 is often
measured in megaflops, or millions of floating-point instructions per second.
For a computation in which there are as many multiplications as additions (and

assuming on the Cyber 205 that they can all be linked), the machine architectures

Table 4. Megaflop rates for FIT packages

N LOT Cyber 205 Cyber 205 Cray-1

(64-bit) (32-bit) (64-bit)

16 32 35 T4

180 64 80 106 104
(5 x 62) 256 129 214 104
1024 152 2717 104

16 32 35 7

192 64 78 105 160
(4 x 6 x 8) 256 124 207 100
1024 145 274 100

16 34 LY 79

200 64 83 e 109
(55 x.B). 256 132 220 109
1024 155 293 M08

impose maximum limits on the Cray-1 of about 145 megaflops, and on the (two—pipe)

Cyber 205 of 200 megaflops for 64-bit arithmetic, or 400 megaflops for 32-bit

- B

arithmetic. For computations in which the mii of additions and multiplications
is in the ratio 2:1, the corresponding limits are about 110, 150 and 300 negaflops
respectively. Table 4 shows that these limits are very nearly achieved in the
FFT packages, but that many transforms must be performed together on the Cyber 205

before maximum performance is approached.

5. Documentation of the Cyber 205 FFT package

This package performs multiple real transforms, defined by the following

formulae:

a. Spectral to gridpoint transform, ISIGN = + 1:
N~

x; = ij c exp (25 ki /N)
=0
where Cy.y = Cgf (complex conjugate). <€, and <, , are real.

b. Gridpoint to spectral transform, ISIGN = -1:
‘ N-|

e, = J& ji::o %5 exp (—llJ'k'lT./M>

N must be factorizable in the form N = Al 3$ Sr .

The Fourier coefficients <, = a,+ tb, are stored in the order a s 24, b1,
2% b2, ceey B 49 bm-1’ a where m = N/2. (bo-and bm are zero and not stored).

Suppose the number of real transforms of length N to be performed together is
LOT. Then the following arrays are required:
DIMENSION A(LOT*N), B(LOT*N), IFAX(14), TRIGS(N).

Before any transforms are performed, the following setup routine should be
called:
CALL SETFIL (TRIGS,IFAX,N)
SETFIL factorizes N and puts the.factors into the array IFAX. The number of factors,
NFAX, is put into IFAX(1), ami the factors follow in IFAX(2) to IFAX(NFAX+1). An
array of trigonometric function values required by the FFT package is set up in

TRIGS. The call to SETFIL need only be made once for a given value of N.

A

The input data for the transforms is stored in A, The data vectors should

be stored as rows of a columnwise matrix A(LOT,N), e.g. for ISIGN = + 1 successive

storage locations should contain:

A(1,1) = a for transform 1
A(2,1) = ao for transform 2
A(LOT,1) = a for transform LOT
A(1,2) = a, for transform 1
A(2,2) = a, for transform 2
etc

The transform routine is invoked by:

CALL FFT77 (A, B, TRIGS, IFAX, N, LOT, ISIGN)

The output from the routine is stored in the séme fermat as was the input
data. If NFAX is eveﬁ, then the output is in the array A; if NFAX is odd, then
the output is in the array B. In either case the input data is destroyed.

Warning: there is no check for illegally long vectors, which may be
generated if (LOT*N) 2 128K.

. The package exists as a set of source decks on the UPDATE PL CDEXB iﬁ pool
P11, For the 64-bit version the required source decks are SETFIL, FFT77, RPASSQ
and QPASSQ. If the input and output data are 32-bit numbers, then replace the last
two routines by RPASSQH and QPASSQH. (N.B. Thg array TRIGS is still assumed to
contain 64-bit numbers).

. RPASSQ and QPASSQ are written in "special call" format; alternative versions
using straightforward vector Fortran (slower but more easily understood) exist

as RPASSM and QPASSM,

e

References

G.

V.

D.

P,

D. Bergland (1968): "A Fast Fourier Transform algorithm for real-valued series",

Comm. ACM 11, 703-710.

Bourke (1972): "An efficient, one-level, primitive-equation spectral model",

Mon. Wea. Rev. 100, 683%-689.

M. Burridge and C. Temperton (1979): "A fast Poisson-solver for large grids",

J. Comp. Phys. 30, 145-148.

T, Cochran et al (1967): "What is the Fast Fourier Transform?", IEEE Trans.

Avdio and Electroacoustics, AU-15, 45-55.

W. Cooley and J. W. Tukey (1965): "An algorithm for the machine calculation

of complex Fourier series", Math. Comp, 19, 297-301.

Fornberg (1981): "A vector implementation of the Fast Fourier Transform

algorithm", Math. Comp. 36, 189-191.

L. Holloway, M. J. Spelman and S. Manabe (1973): "Latitude-longitude grid suitable
for numerical time integration of a global atmospheric model",

Mon. Wea. Rev, 101, 69-78.

G. Korn and J. J. Lambiotte (1979): "Computing the Fast Fourier Transform

on a vector computex'", Math..Comp. 33, 977-992.

A. Orszag (1971): '"Numerical simulation of incompressible flows within simple
boundaries, I: Galerkin (spectral) representations", Studies in

Applied Mathematics 50, 293-327.

N. Swarztrauber (1974): "The direct solution of the discrete Poisson equation

on the surface of a sphere", J. Comp. Fhys. 15, 46-54.

i

"0

C.

H.

D.

Temperton (1977): "Mixed-radix Fast Fourier Transforms without reordering",

ECMWF Technical Report No 3.

Temperton (1979): "Fast Fourier Transforms and Poisson-solvers on Cray-1",
in Supercomputers, Infotech State of the Art Report, Infotech

International Ltd., Maidenhead, U.K.

Temperton (1982a): "Self-sorting mixed-radix Fast Fourier Transforms", in

preparation.
Temperton (1982b): "Fast Fourier Transforms on the Cyber 205", in preparation.
Temperton (19820): "Self-sorting mixed—radix real FFT's", in preparation.
H. Wang (1980): "On vectorizing the Fast Fourier Transfo£m", BIT 20, 233-243.

L. Williamson (1976): ‘“"Linear stability of finite-difference approximations
on a uniform latitude-longitude grid with Fourier filtering",

Mon. Wea. Rev. 104, 31-41.

ST

VQCtOrs \
L/ N

Fig 1: Vectorization scheme A for a single transform.

. R I

>

L . transforms

& - - ——A- - -
f-)»——%

\/eclx)rs —/

"-? stomge order

Fig 23 Multiple vectorization on Cray-1.

B S T S e ¢
A
)
)
: vectors
N /
: .
Sl
)
) => S‘Esvase order
|
{

i n o 3
- Eransferms

Fig 3: IMultiple vectorization on Cyber 205 (or Cray-1)
Y o

#
¢
2

|

i

|

%

t'!l-'\sf;vms : :
Fig 4: - "Direct product" of vectorization scheme A and multiple vectorization
\

on Cyber 205 (or Cray-1).

