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Abstract |

The classical concept of parcel (or hydrodynamic) stability is
reviewed in the light of recent developments in semi-geostrophic theory. A
certain Jacobian matrix is required to be positive-definite if solution of
the semi-geostrophic equations is to be well=posed. Formally, this gives
three conditions which must be satisfied, one of which corresponds to the
positivity of the semi-geostrophic potential vorticity defined as the
determinant of the matrix. The full implications of these stability
criteria are sought here together with some simple expression of the
positive-definite requirement.

The existence of a minimum energy principle, with respect to virtual
parcel displacements which conserve absolute momentum and potential

temperature, is shown to play a key role, as in the equivalent circular

vortex problem studied by Eliassen and Kleinschmidt (1957).




1. Introduction

In recent years there has been renewed interest in parcel stability
concepts following the work of Bennetts and Hoskins (1979) on conditional
symmetric instability as a mechanism for frontal rainbands and that of
Emanuel (1979) on inertial instability in viscous, rotating fluids. A
parcel formulation was subsequently exploited by Emanuel (1983, a, b) in
order to quantify the potential instability of moist airstreams subject to
slantwise displacements and has led to a more general concept of convective
available potential energy. A short history of inertial stability theory
is provided by Emanuel (1979). In addition to the papers he quotes we
would like to draw attention to the studies made by Sawyer (1949), Godson
(1950), Van Mieghem (1952) and Eliassen and Kleinschmidt (1957) which are
particularly relevant to our analysis. These studies usually dealt with
zonal or circular flows which are solutions of the time-independent
equations of motion. Godson (1950) suggested that the parcel stability
concept was still relevant in non-stationary, three-dimensional flows and
put forward generalized criteria for stability. Eliassen and Kleinschmidt
show that balanced circular motion corresponds to a minimum energy state
wiht respect to arbitrary axisymmetric displacements provided that a
certain constraint on the circulation is satisfied.

In the context of semi-geostrophic theory, Cullen and Purser (1984)
(hereafter referred to as CP) show that a particular Hessian matrix must be
positive - definite for stability (convective or inertial) and prove that a
modified pressure variable must be a convex function. The simplest
physical example of the relevance of‘convexity to stability is that of a
rotating liquid with a free surface. Viewed from below the free surface

must always appear convex to guarantee stability. The theorems of CP allow




mathematical generalization of this idea without restricting motion fields

to be differentiable so that discontinuous structures (eg. the Margules

front) are admissible as a class of balanced motion. Since the formation
of frontal discontinuities intruding into fluid interiors is a natural
consequence of integrating the Lagrangian conservation form of the
semi-geostrophic equations (Cullen, 1983) this is of more than academic
significance. Furthermore, Cullen et al (1985) show that

the semi-geostrophic equations for dry, adiabatic flow correspond to a
global minimum energy principle subject to arbitrary parcel displacements
which conserve absolute momentum and potential temperature. The result is
consistent with the parcel approach described here. In this paper we
attempt to clarify the relationship of the three-dimensional stability
matrix to semi-geostrophic theory and show how it is central to the minimum
energy principle.

2. The Stability matrix

It is instructive to recall how the stability matrix of CP arises in
semi-geostrophic theory. Following Hoskins (1975), the inviscid adiabatic
equations of motion under the semi-geostrophic approximation may be written

as:
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where z is a pseudo-height coordinate; ¢ is the geopotential, 6 is the
potential temperature with basic state value, 8o; f and g are the Coriolis
parameter and acceleration due to gravity; (ug, Ve 0) and (u, v, W) are

the geostrophic and full vector wind velocities respectively and:
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Using f~1, L (an unspecified length scale), fZL/g, £2L2 and 8, as scaling
parameters for t, (x,y), z, ¢ and 6 respectively, egns. (2.1 - 2.4) may be

non-dimensionalized to give:
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where M = x + vg and N = y - Ug.

CP state that Q defined by:
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where P(x,y,z) = ¢ + 1/2 (x2 + y2) (non-dimensional), is a Hessian matrix

governing the stability of the flow and following Hoskins (1975) that:

q = det (Q) satisfies Dm0
o Dt
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q, therefore is the semi-geostrophic analogue of potential vorticity. We

digress for the moment to consider this result.

If the forcing terms in eqns. 2.5 and 2.6 were zero, conservation of q
would follow immediately since fluid defined initially to lie within a
certain volume AMANA® would remain bounded by the same M, N and 6 surfaces
and so, denoting At as the corresponding volume in physical space, the

incompressibility condition (2.8) gives:

At = J71 P—;-‘-g‘-g). AMANA® = q~ 1AMANA® = constant
L ’

where J denotes the Jacobian of transformation, so that q is a Lagrangian
conservation property. However, M and N are not conserved in

three-dimensional flow but it is easy to show that{DM DN D6
Dt, Dt, Dt

represents a non-divergent vector field in (M, N, 6) space since:
ay . 8. _ . J N, ¥..8Y . J X, M, 8
oM oN M, N, © M, N, ©
= q‘1 J 2‘.1_!1_9) = g (NL-Y;-Q]
X, ¥, 2 X, ¥, 2
; a, b, ¢ X, Y. 2 Y _ 8,.b, ¢
(by the Jacobian property, J (x, oy Z)x J (d, ~wz o By J Gt

= q '[MyB, ~ oMy = Nyo, + 63N 1im O
provided that q =# O

using M, = N M, =6

y 5 Mz and Nz = ey. Volumes in physical space and in (M,

X
N, 6) space associated with a given set of fluid particles remain constant
in time and so the Jacobian of transformation remains constant following

the motion. A direct derivation of this conservation law for the

compressible case is given in the Appendix.




CP also show that the matrix Q appears in the diagnostic equation for
the geopotential tendency in a two=dimensional deformation model of a
front. The three-dimensional geopotential tendency equation may be derived

as follows. Writing eqns. (2.5 = 2.7) as:
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(repeated summation on i)
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e ) and introducing the geopotential

tendency, T = L then these equations may be expressed vectorially as:

ot
yr + QV=» 2.12
where V = u; and b = (y-N, M-x, 0). Forming the scalar product of 2.12
with Q71 gives:
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=

so that the incompressibility condition V.V implies:
v.[Q '.p] - v.[Q7'.vr1 = 0 2.13

which is an elliptic equation for T provided that Q, and hence g", is
positive-definite. Stability of flow is apparently lost when Q has a
negative eigenvalue rendering eqn. (2.13) hyperbolic. In the next section
it will be demonstrated how the 3 matrix arises in the classical parcel

approach to stability.
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3. Parcel stability in the Boussinesq system

Before proceeding to the three-dimensional case, briefly consider the
standard parcel stability analysis for unidirectional flow in geostrophic
and hydrostatic balance. The non=dimensional equation of motion under the

form of Boussinesq approximation used in equations (2.1-2.4) is:

DV + k , V+ Vo = 6K -
Dt

where the same scaling parameters have been adopted. Without loss of
generality assume that the basic flow is in the y=direction and independent
of y =0 that:

V= (o, v(x,z), 0) with

9¢ =v and 3¢ = 6
X oz

then (3.1) is satisfied exactly. Parcel stability analysis involves giving
an impulsive velocity to a parcel without affecting the basic state
pressure field. Because this is a two-dimensional analysis, the parcel
extends arbitrarily far in the y-direction. The resulting motion then

obeys the equations:
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and on defining the absolute momentum, M = v+x, eqn. (3.3) becomes:
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Now consider a Lagrangian view of the perturbed motion. Let the

position vector of a parcel moving with the basic state flow be R and the
position vector of a perturbed parcel be r. The basic state is an exact

solution of the unapproximated equation of motion so that:

d°R . -8

ate B,08 (2¢)B = 6R k

where the suffix R denotes evaluation at the position R. The equation for
the perturbed parcel is the same except with r replacing R and so the
relative displacement of the parcel about the unperturbed trajectory

r'(=r-R) is given by:

rto+ (98), - (T0)g = (6p - BR)K Ry
t - - - -

For adiabatic motion 6, = 6g and eqn. (3.5) implies that:

M) = (Mg
or (V). = (V)g ® fx'
H -
where r = (x',z'). Taylor expansion of Vo gives

(¥6)p = (Z6)g = ri(Tedg + O( [r'|2)

so that eqn. (3.7) may be written as:

a2 4 2%+ x'p (39) +2' 3 ( 28] +o(r|?) =0 3.8
dt? 0x\3x Jg 3z \ 3x/y
and @2z + xt3 (BeY 4 23 30 + o(|r'}R) = O 3.9
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Seeking solutions proportional to e and making the substitution P =

o + x2/2 gives:

0 2(x1Y v [Py Py 'x: =0 3.10
- Pzx  Pzz "

= 32P has no

j ) —

aXiBXj

The stability condition is that the Hessian matrix Qi

negative eigenvalues, which is exactly the form derived in section 2 and is
the well-known condition for symmetric stability (Hoskins, 1974). Consider
next a two-dimensional disturbance to a basic flow with arbitrary
orientation in the (x,y) plane. The equation of motion (3.1) is satisfied
by the basic state (BV(o,z), x V(0,z), 0) where ¢ = ax+By and a,B are

direction cosines, The same analysis as above leads to the condition that:

has no negative eigenvalues

This matrix can be rewritten in terms of x and y as:

2 2
P . Q + P 20 + P 8 Psoo: + P 8
xx - B Xy - £2 yy B x2z% z
52 d ag 8. 5 i
Pzxg + Pzy B P2z
6 )
where § = a2 + 82. The two dimensionality condition means that
8/6 P “/5 Py = 0 so that the matrix reduces to:
1 e Ji R
B s &
3.11
AR P
Foad 2z
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It is easy to show that the two dimensionality condition also reduces

the three-dimensional Hessian matrix Qij to the same form as 3.11, since
the x and y rows become proportional and one variable can be eliminated
(corresponding to a zero eigenvalue).

Thus the three-dimensional Hessian matrix includes the symmetric
stability condition with arbitrary orientation. The condition (3.5)
generalizes to conservation of M and N in the displacement.

It is now natural to generalize the analysis to a case where the basic
state is not exactly two-dimensional but has a large length scale L in one
direction, say 1. The foregoing analysis is valid as long as the scale of
the perturbation is much smaller than L in the 1 direction. Such a basic
state will not satisfy the time-independent equations of motion exactly but
will evolve on some slow time scale T proportional to L so that it would be
appropriate to look for solutions with w >> T~1. These conditions are
exactly those required for the geostrophic momentum approximation to be
accurate.

Assume, therefore, a basic state =satisfying the geostrophic momentum
approximation as a solution of (3.1). The perturbed parcel trajectory is
given by (3.6) with R replaced by r. Again (8), = (8)g and (3.5) becomes
the conservation of absolute momentum dr + Kk A r so that 3.7 reduces to:

dt

d2p

S8+ rExy,0) + (D) (¥ + O(r'|?) = 0

which may also be written as:

dr
B2 o7 MDA Ve anng Bl 0

or dr' + (r'.V) (M, N, 8) =0
dt? G
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Now if r' = (x',y',z')dclexp(iwt) then:

Mx My M, x! 5 x!
Ny Ny N y' = w y' 3.12
By ey 0, z! z!

For perturbations to result in stable oscillations w? > 0 and the

. stability matrix must be positive“definite. Alternatively, the quadratic
form:
*
(x' y' z') My My Mg x:
Ny Ny N, y'
By ey 65 A

may be equated to the work required to move an air parcel from R to r
whilst conserving absolute momentum and potential temperature. By
implication, the unperturbed parcel trajectory corresponds to a sequence of
minimum energy positions dictated by the evolving‘environmental field)of
motion. This interpretation can only make sense if the smallest
. eigenfrequency Wnin obtained from 3.12 satisfies the consistency condition:
Upin | << T
In the two-dimensional limit L,T = «» and the condition is trivially
satisfied. In this case, a class of perturbation exists which exactly
conserves absolute momentum in accordance with the classical approach.
Otherwise, the eigenfrequencies of the semi-geostrophic stability matrix
can only be consistent with parcel theory provided there exists a large
length scale along the direction of the flow (ie. the radius of curvature
of trajectories is large). But this is also a requirement for the validity
2 of the semi-geostrophic equations themselves. The whole concept of parcel
1

stability in rapidly evolving flows (T ~ w min = f) is thwarted by the

impossibility of absolute momentum conserving perturbations (due to the

12



absence of near two-dimensionality) and the loss of distinction between

parcel instability and general flow transience. Although it is possible to
obtain parcel oscillation frequencies directly from 3.7 without assuming
absolute momentuﬁ conservation (Godson, 1950) (V¢) and 6 are assumed to be
slowly varying during the time scale of parcel oscillations. Furthermore,
exponential growth of |r'| is possible in perfectly stable flow
configurations e.g. pure deformation flow.

The Jacobian matrix Q also arises naturally from a variational
approach to global stability with respect to absolute momentum preserving
virtual displacements. (c.f. Eliassen and Kleinschmidt, 1957 pg.66).

The total energy E appropriate to the equation of motion 3.1 is given

E = t% (u2 + v2) - zé} dt
T

where 1 denotes some arbitrary volume fixed in physical space. Without

by:

making the geostrophic or hydrostatic assumptions we define:

Moo= Mio+ N3+ o6k
where M' = v+x and N' = y-u
and so:
E = % L(Mz + N2) - M. (x,y,z?] dt + constant
T

Now consider the change in energy 6E resulting from an infinitesmal
rearrangement of the system such that M is conserved for individual
parcels., Let § (x,y,2) represent the vector displacement field then:

OE 7w o= /{ M.E dt 313
T
Now, under geostrophic and hydrostatic balance:

M= ML+ Nj+ ok = TP

13
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since the incompressibility assumption (2.4) implies V.E= 0, and £.dS = O
at the boundary (where dS is a boundary element). Therefore, geostrophic
and hydrostatic balance is a minimum energy state with respect to adiabatic
and absolute momentum preserving rearrangements. (see also Cullen et al,
1985).
Writing eqn. (3.13) in the form:
§E = - j.(ﬁ - VP).E dt
<
then the second variation with respect to parcel rearrangements is given

by:

826 = -

=

[5 (M-VP).E + (M —gp).sg] dt
y 1

ol

11—

- 3 § (VP).E dt 3.14

T
where § indicates the change measured following a parcel (eg. 6M=0) and the

equilibrium condition (M, N, 6) = VP has been used.

But 8(YP) = (£.V)VP and so eqn (3.14) may be written as:

8%°E = E. (VVP).E dt

N

<

j £.Q.E dt a5
3 &
so that if Q is positive definite, 6°E > 0 and the equilibrium is stable.

or 62E =

N =

The semi-geostrophic equations therefore describe flow evolution as a
sequence of minimum energy states governed by eqgns. (2.5-2.8). Given
parcel values of M, N and 6 at any instant, the stability requirement that

Q be positive definite is sufficient to uniquely determine the position of

14



parcels in physical space subject to the convexity of the domain (CP).
These ideas will now be generalized to the unapproximated equations of
motion.

4, A minimum energy principle governing parcel stability in the

unapproximated equations of motion

Eliassen and Kleinschmidt (1957) showed, using the fully compressible
equations for circular flow, that the stability of a baroclinic vortex to
toroidal displacements was governed by a quadratic form derived from the
second variation of the energy integral as in the previous section. 1In the
spirit of the three-dimensional stability matrix arising in
semi-=geostrophic theory we extend their result assuming absolute momentum
conserving displacements.

The equations of motion for a rotating system characterized by a
rotation vector 2 and a geopotential force V¢ (representing the combined

effects of gravitation and centripedal forces) are:

S+ 20, V+To+alp = 0 4.1
Da ae
B = V. V (continuity) 4,2
C,DT Da 3 :

V== S =

Dt + o) Dt 0 (adiabatic assumption) b3

where V is the wind vector, o is the specific volume, p is the pressure, Cv
is the specific heat at constant volume and T is the temperature. In a
closed system, global energy conservation consistent with these equations
demands that:

E = [% IX|2 + & + Cv'ls]u'1 dt = a constant 4.4
T

15



where dt denotes a volume increment.

We require the change in global energy (E) on subjecting the fluid to
an infinitesmal displacement field E(x,y,z). The integral 4.4 may be
regarded from the Lagrangian viewpoint whereby the increment o ldt is
identified with a fixed mass of fluid so that the first variation of E with

respect to parcel rearrangements is:

S§E = [6(% I_\_/_|2> + §0 + C, 6T] .:)(_1 dt 4,5
g

Now, for instance, 6% represents the change in geopotential energy
experienced by a parcel during its displacement and so:
8¢ = E.VO 4.6
To be consistent with the continuity equation 4.2 the displacement field
must satisfy:
Sa = a V.E
and using the adiabatic expression of the first law of thermodynamics (4.3)
gives:
Cy 6T = - péa = - paV.E R
In order to evaluate 6(1/2|l|2), absolute momentum conservation must
be imposed, ie.
6(V + 2QAr) = 0O (r is the position vector)
or SV = = 2QAE
But 6(1/2|1|2) = V.8V = E. (2QAV) (using the above relation) and so

eqn. 4.5 may be written as:

-~

6E = -’5. [a”T(200v + V0)] - pV.E dt 10
- ;

16



Now pV.E = V.(pg) - £.Vp and since the component of E normal to all
rigid boundaries vanishes and pg * o at the upper limit of a compressible

atmosphere, Gauss' theorem may be used to re-express 4.8 as:

§E = E. [a™1 (2207 + Vo) + Up] drt 4.9
T

The condition for an extremum, 8E = 0 then implies that:

2QAV + Vo + aVp = 0 4,10
which is a general statement of geostrophic and hydrostatic balance. The
second variation is formed by taking a factor o~ ! outside the square

brackets in egn. (4.9) and using the definition for the absolute momentum:

A
ﬂ = 292* = QAV
A A
where ry = r - (2.r)Q, = |2| and 2 = @ §
so that:
-
§%E = 1 £. [8(220V) + 8(V0) + §(a¥p)] o™ ldt
e v T
[
628 = 1 | E£. [40%6ry + E.9(V0) + 8(a¥p)] o~ dr 411
2 T
o

Now for adiabatic and mass conserving rearrangements of a perfect gas:

R lo
{e]
[}
1
=9
100
o ro

= V.E 4.12

where Y = CV/Cp and Cp is the specific heat at constant pressure. If 9
is used to denote the change measured at a fixed point in space after

rearrangement then from eqn. (4.12)

Op mdp - -Esdpiie e p 3’1 A&y (repeated summation
9X4 31Xy on indices).

17



and it can readily be shown that:

SN b e bl N s a[ -1
8 (?x;> 9 (\3x{> * 90X <\€1axl:> 7 E18x Bx X Ei R LR 8-13

Using egns. 4.12 and 4.13 it can then be shown that:

o T6(a¥p) = 3__[op &) - 2. [ &80 + pv" V.t 414
Bxi dX4 8xj 09Xy

* which is required for the evaluation of the second variation. If S is the

gas entropy defined as the logarithm of potential temperature then:

so that using the definition of M and the balance condition 4.10:

(£.1)90 = &5 |£53._ (20M - 40%ry) | + j2p & Y 2p . 88
ij ij p 0Xj 9Xj

- QEEj 3°p

ax ax 4,15

Combining eqns. (4.11, 4.14 and 4.15) and using Gauss's theorem it can

be shown that:

-
T I

[:5.[29;)@ - ¥p¥Sl.£ + pY ! [V.E + = (g.gp)]{, dt

<
where, as in the Boussinesq case, we assume no boundary fluxes. The

extremum corresponding to geostrophic and hydrostatic balance (4.10) is a
minimum energy state for the system
A = 20p7M - Vpys

provided that the quadratic form:

EshE 20



where A is the unapproximated stability tensor corresponding to g in the

Boussinesq analysis. The latter may be retrieved (in dimensional form) by
setting @ = k, 2@ = f, r = xi + yj + zk and by replacing Vp with -pgk and S
with ge/eo.

5. Interpretation of the Stability Criteria

Rather than solve egn. (3.12) for the eigenvalues w? of the stability
matrix the following three conditions can be shown to be necessary and

sufficient for Q to be positive definite (eg. Stephenson, 1971):

(i) M >0 (ii) M

X X
y >0 and
NX Ny
(iii) det(Q) > O (non-dimensional expressions)
Now condition (iii) can be written as:
- M, N,_8 _ M, N,_8 M, N, z
ad J(x,y.z = IMN Tz )Y XY, 2

K§§> J \P_"J._N)
0z / M,N ° Xy

(subscripts denote which variables are to be held constant if different

from x, y and -z).

so that \gg) > 0 guarantees the satisfaction of condition (iii) provided
0z / M,N

that (ii) is satisfied. Furthermore, condition (ii) may be written as:

MoNN MoNN M N grs
] X y) J(M. y) J(X.}) \y M,z My

so that if condition (i) is satisfied then:

AN S i
\a¥) Mz > 0 guarantees condition (ii).
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Therefore the stability criteria (i) - (iii) may be expressed in the

concise form:

(1) M, >0 (ii) [an (iii) [28
x (ay)M,z ¢ (B'Z>M,N ik

To clarify their physical significance, consider firstly the
two-dimensional problem in (x,z). In this case the stability conditions

reduce to:

My >0 and a8 >0
9z/ M

which are the well-known conditions for symmetric stability (eg Bennetts

X is equal to the Ertel

by ©

Z

and Hoskins, 1979). Notice that det. (M M
Z

potential vorticity since a two=dimensional airstream in geostrophic and
hydrostatic balance on an f-plane is an exact solution of the inviscid
equations of motion. The sign of the potential vorticity is however, not a

sufficient condition for stability since:

qQ = My.| 28 = M . 6y
9z/M 9%/ 8

and it is possible (though unlikely) for both My and K?g) <-0s7Note
dz/ M

that the stability criteria may be re-expressed as:

8.-3.0 and aM 3
ox/ 6

ie. for a gravitationally stable two-dimensional atmosphere (6, > 0) the
isentropic absolute vorticity must be positive for stability.
The complementary two—-dimensional barotropic problem in the x-y plane

gives criteria for inertial stability expressible as:
Mei> o0 and oN 2 @
oy/ M

20



or No =00 and oM >0
9x /N

ie. M must increase monotonically eastwards and N must increase northwards

along lines of constant M. Clearly if u, = 0, the second criterion is

g
automatically satisfied and the first condition is the classical stability
requirement for parallel flow - that the absolute vorticity should be
positive.

Consider now the implications of the above conditions for barotropic,

circular flow with azimuthal flow speed V(r). Then it is straightforward

to show that:

My = £ « ¥ +« pr cosZ) dj Vv
r dr| r
and det. (My My\= r l(£+gV) (£r+v)
Ny Ny dr

where (r, 1) are the radius and azimuthal angle, so that stability in the

semi-geostrophic system requires:

'] + y + rd. | V>0
r del 1

and R dl) Afp- . V) "> 0
dr

(iv)

These two conditions are to be contrasted with the single condition

for balanced cyclostrophic flow (eg. Van Mieghem 1952):

d_ 1 2 2
A I- > f rée+ v(r).r] D0 (v)

Consider now the special case of the Rankine vortex for which:

ur Orsarsir
V(r)
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where p is the angular velocity of an inner solid-rotating core of radius

I It is easily seen that condition (v) is satisfied provided that

o°
ré > - 2pr02/f or = u<f/2 and the vortex is stable to axisymmetric
perturbations. On the other hand, conditions (iv) are satisfied when

- % L, The onset of instability when p=+f coincides with the point
when the centrifugal force based on the geostrophic wind becomes equal to
the coriolis force at r = r ., Clearly, the apparent instability of the
Rankine vortex in semi-geostrophic theory coincides with the breakdown of
the semi-geostrophic approximation and does not therefore indicate the
physical instability of the vortex. This need not always follow as the
case of solid 'geostrophic' rotation demonstrates.

Similarly for the case of pure deformation flow given by Ug = — €x and

Vg = gy, the stability conditions become:

Mx =f >0
» 2 . 2
and det. Mx My &  f e 2l
Nx Ny
ore £ f

Here again the requirement for instability occurs in the parameter
range for which the semi-geostrophic equations are invalid i.e. the
Lagrangian time scale < £=1., 1In the comparison of the stability results
for balanced circular flow and the barotropic, semi-geostrophic system it
should also be noted that the former are based on axisymmetric
displacements of the field of motion in contrast to the semi-geostrophic
analysis and are not therefore a condition for physical instability. It is

an observed fact, however, that real vortices can be stable.
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In general, if det(g) is initially positive everywhere then for the

adiabatic, inviscid semi~geostrophic system it will remain positive and at
least one of the stability conditions is satisfied.

CP provide an existence proof which shows that a unique solution
satisfying all the criteria exists even in the presence of discontinuities.
6. Conclusion

The relationship of the three-dimensional positive-definite matrix
identified by Cullen and Purser (1984) to the classical theory of parcel
stability has been explored. The determinant of this matrix is the
Jacobian of transformation between physical space and the space formed by
the two components of geostrophic absolute momentum and potential
temperature. Only for strictly uni-directional flow does this correspond
exactly to the Ertel potential vorticity, otherwise the link between
stability and the sign of the potential vorticity is rather tenuous.
Moreover the sign of the determinent is just one of three stability
conditions which must be satisfied if solution of the semi=geostrophic
equations is to be meaningful. These embody the well-known hydrodynamic
stability condition for a zonal current that the isentropic absolute
vorticity must be positive.

Real eigenfrequencies associated with the stability matrix exactly
correspond with those of classical parcel theory only for two-dimensional
flow with absolute momentum conserving perturbations. Parcel theory is
still relevant under the conditions of validity of semi-geostrophic theory
(near two-dimensionality).

It is shown using the unapproximated equations of motion that at any
instant, geostrophic and hydrostatic balance corresponds to an extremum in

the total energy with respect to infinitesmal virtual displacements which
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preserve absolute momentum and potential temperature. The method is an
extension of the analysis carried out by Eliassen and Kleinschmidt (1957)
for the case of a circular vortex. Using the calculus of variations, it is
further shown that the sign of the second variation is guaranteed to be
positive if a certain matrix (more general than that of CP) is positive
definite. The extremum is then a minimum energy state corresponding to
stable equilibrium. The semi-geostrophic stability theorems of CP
constitute a finite amplitude generalization of the parcel method for which
the requirement of a positive-definite Hessian matrix 3 is replaced by the
more general concept of convexity (of the modified pressure P(x,y,z)). The
semi-geostrophic solution represented at any time by P is continous though
its first derivatives need not be. In this way for example a frontal
discontinuity intruding into the fluid from a boundary is an admissible,
stable class of solution even though the stability conditions of section 4
become meaningless at the discontinuity.

The inclusion of moist thermodynamics into the foregoing analysis is
straightforward if we assume a pseudo—adiabatic process and replace 6 by
wet-bulb or equivalent potential temperature. Conditional slantwise
instability is then implied by the same positive-definite matrix
requirement though it should be noted that the corresponding determinant is

not a Lagrangian conservation property.
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Appendix - The three-dimensional semi-geostrophic 'potential vorticity'

equation.

Using repeating suffix notion, egns.

(2.5 - 2.7) may be written as:

M+ upoM = Xo = N (A)
at ax
p
@N * UPQN = M Ll X-‘ (B)
at ox
p
38 + ujde = 0 (C)
ot Bxp
where (xq, x5, x3) £ (x, y, 2)
It is required to show that q = Eijk§9 aM BN
x5 ij 3 Xy
0 if any two of i, j or k are equal.
where €ijk = +1 if i, j and k are a cyclic permutation of 1, 2, 3.

-1 if i, j, k are a cyclic permutation of 2, 1, 3.

is conserved following the motion.

Now 9N 3 (A) + 3 3 (B) can be shown to
90Xy, axj ij IXy
give:
3 u.3. oM N o [ QMp M BN Qu, oM
=== p—.— o ot == = = --.—p o~ e} -4 + .-p e
at Bxp 9Xj 9Xy (?xj axp Xy IXy 90X
I
+ 85:0N §4,0M
2j== 1K=~
\ JBx“ ax;
ITT
€ijk x term(I) = e;ji %Ep gy g & eipy gy
X3 Bxp 9 Xy 9x
= Ejjk Qup (M N _ M N
9% \ 9xp 09Xy dXy 9Xp

Equation (D) x 36 may then be written as:

8xi
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Bxp

M M _

x5 dxy
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aN 2N
3Xj 9X
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o

9o @

3 K aki BXj Bxp an axk axp

p 9Xj

a8 2_ v upg Eijkau aN & Red R a8 ayp EM QH - QM oN
Bxi ot 9X X

* €1y 20 (M Y . AN BN \* ejjk . 28(6p5 N _ 89 M 7y - (E)
axi BXJ 9 Xy BXj 9 Xy 9Xj! Xy SXj

The second term on the right hand side (RHS) of egn. (E) is equal to zero
in the sum over repeated indices since the expression in brackets is

symmetric with respect to j and k.

Consider now P} (C) « g44, M BN
Se J o2 S <2\
Bxi ij 0 X
€ijk M N (3., upd__ )38 _ _ . M 9N 3U, 28
axj Bxk ot axp aXi ijk an 3Xk Bxi aXp
i T M N @Qp 8 _ (F)

Bxi 9 Xy ij Bxp

The semi-geostrophic potential vorticity equation is obtained by adding

eqns. (E) and (F) giving:

bg _ _ .. ., du M 9N 98 _ M N 38 _ oM 9N 298
Dt ijk axj axp 3%} 9Xj 3%y Bxp 3%y 3%Xj 93Xy axp
45 €::1, 00 §~5; oN 8 oM
ijk == 23 80 e B s BO i
g Bxi (; J an an (G)

Now the first term on the RHS can, by swopping dummy indices i and k, be

written as:

€ijk QUp

T A T B4 9N 28 . M AN 2e
9xj |\ 9xp 9Xj 9Xy dXj 9Xp 9Xg

P e ' dxk 3%j 3%p

or, by forming the mean of the two expressions,

1l .€545¢ 2u Spi 288 Sik 28 Skp 28
ijk &= pi ik Kk £
2 : Bx? (\ dxXy . dXp . E 9Xj
oM ON oM ©OoN
where Sij = 5;1 5;J - 5;j g;i = - Sji
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Also if we let Aikp denote the expression in brackets above then:

Mivp = Spi 38 + Sjx 28 + Skp 38 = Ejkp Q

OXy IXp 9Xj
and the first term on the RHS of (g) may be simplified to:

_ g ou

2 ®ijk ipk 3x;

J
Using the identity:
€ijk €lmk = §i1 5jm - Sim 5jl it is readily shown that this term

further reduces to - q ggj
ij

Finally, we use the balance relation

M i 3P oP
(M) N, 6) . ax1 , axz ; ax3>

where P = ¢ + 1/2. (x12 + x22) to show that the second term on the RHS of

(G) vanishes, so that:

Dg 3°p 9°p 9°p du;

- e 225

Dt = Fidk Bxjaxy |23 Bxax, T Otk Bxjex, T 9 ax
which on expansion can readily be shown to be zero, leading to:

Dgas 2 QQEJ . 0

Using the compressible anelastic form of the continuity equation quoted in

HB ie.
é"—‘l + §v —l!- .a.(.r*w) O
9x oy Rei(2) 92

where ry(z) is a basic state pseudo-density dependent of z alone then eqn.

(H) may be written as:

D_ ] q/l"*(Z) = 0

Dt
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