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Abstract

We devise a family of kinematically possible motions in shallow water versions
of semi-geostrophic theory, with variable Coriolis parameter, for which two distinct
measures of potential vorticity take the same value. We describe conditions for which
this value is conserved following the actual motion of a particle. We relate the results
to the existing literature, in particular for a constant Coriolis parameter.

1 Introduction

Shallow water theory can serve as a simplified basis for the study of so-called semi-
geostrophic theories in geophysical fluid dynamics. We examine shallow water theory
and two semi-geostrophic models of that type, with particular reference to a definition of
potential vorticity associated with each, and allowing for the Coriolis parameter f to be
spatially varying wherever possible. We describe a class of kinematically possible motions
under which the expressions for two of the potential vorticities are the same. We give

hypotheses under which that value is conserved following the particle.

The plan of the paper is as follows. In §2 we recall the shallow water equations, and the
associated measure (¢ in (6)) of potential vorticity attributed to Rossby (1940, equation
(9)). We describe a variational principle for these equations, prompted by Salmon’s (1983)
work. We state the semi-geostrophic approximation to the shallow water equations for con-
stant f, and we recall (in (12)) the measure of potential vorticity, analogous to Hoskins’
(1975, §3(717)) definition, which is conserved by motions which satisfy that approximation.
In §3 we describe a generalization, for variable f, of the geostrophic momentum transfor-

mation. This leads naturally to the third model, which is a pair of pseudo-hamiltonian
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equations, also with variable f, studied by Salmon (1985, equations (3.22)), and their
associated potential vorticity (@ in (20)).

We are then in a position to exhibit, in §4, a class of kinematically possible motions for
which ¢ = . This our main result. In §5 we establish hypotheses which are sufficient to
ensure that both ¢ and @) are conserved following the motion of the particle. This applies,
in particular, to the semi-geostrophic equations. Specializing to constant f in §6, we make
some specific connections with the previous literature, including Salmon’s (1988, equation

(5.18)) constraints.

We remark that these results, which stem largely from equation (27), were discovered,
in the first instance, using the properties of covariant skew-symmetric tensors, often re-
ferred to in the mathematical physics literature as forms, but we have rephrased the proofs
in the more elementary form described here. (The calculation about the conservation of ¢

on pp. 70-71 of Rossby (1940) can be understood in terms of these quantities.)

2 Governing equations

The motion of a typical particle in shallow water theory can be described by expressing

the current cartesian horizontal coordinates

&= :L‘((l, b7t)7 o y(a7b7t) (1)

as functions, on the right, of the particle labels a,b and the time ¢. Throughout this
paper we shall use the same symbol to denote a function and its generic values, as in
this example (1). If ¢ = 0 is the reference time, the functions in (1) have the properties

z(a,b,0) = a, y(a,b,0) = b.

The incompressibility hypothesis requires the current depth & to be a function h(a, b, )

with the property
h(a,8,0) _ 3(z,y) o
h(a,b,t)  d(a,b)’

where the jacobian on the right is that of the mapping (1). The time derivative of (2)

following the particle gives the differential equation of continuity. We regard (2) as de-
scribing the explicit solution h(a,b,t) of that continuity equation in terms of (1), and of

h(a,b,0). The latter function of @ and b only needs to be given. It is not uncommon to




simplify and normalize by choosing h(a,b,0) = 1in (2), and we make this choice forthwith,

but we note that this does constrain the free surface to be parallel to the bed at ¢ = 0.
In compensation one can take the view that events to be studied take place at much later

times.

The equations of horizontal momentum balance for flows over a flat bed which is

rotating with position dependent Coriolis parameter f(z,y) are
o oh . = ol
E+g5-—9f=0, y+ga—y+xf—0- (3)

Here g is a given constant, representing the combined effect of the acceleration due to
gravity and a centrifugal component due to the Earth’s rotation. Common choices of the
Coriolis function are f = a constant or Sy, as approximations to 2{2sin ¢, depending on
purpose. Here  and § are constants, and ¢ is latitude, which depends on y, so that z is
absent. The superposed dot signifies time differentiation following the particle, i.e. partial

differentiation with respect to ¢ when a and b are held constant. The inverse
a =alz;y,t), b= b(z,9,1) (4)

of the mapping (1) has been used, with A(a,b,0) = 1 in (2), to express h(a,b,t) as another

function

_ 9(a,b)
o(z,y)’
whose derivatives appear in (3). The basic problem is therefore to solve (3) with (5) for

(1), which will then deliver h(a,b,t) from (2).

h(z,y,t)

(5)

Let
1 (04 0%
q‘h‘(a_z“%Jrf) (6)
denote a measure of potential vorticity. This name was introduced by Rossby (1940). We
shall use ¢ for velocity fields &, § which are not solutions of (3) in §§4 and 6.

A result of Salmon (1983, equation (2.20)) can be adapted to show under what condi-
tions (3) are the natural conditions of a variational principle. Let p(z,y) and r(z,y) be
any two functions which satisfy the partial differential equation

dp

)
52 T 5y = 1Y) (7



The motion (1) can be used to define a functional

Flz,y] = // (5062 +3#) = ré + pi = 50h] dAoct (8)

where the integral is over the area Ag of label space occupied by the fluid particles under
consideration, and over an arbitrary time interval ¢t; < t < t;. The first variation of (8)

for small variations éz(a,b,t) and 6y(a,b,t), taking due account of (2) and (7), is
. t2 t2 |
g o [ / (G b Ly - p)6y)dAo] + / / Soh*(18z + mby)dSdt
t1 t
SR Ol L O
~ [ [ [+ 950 - inpe + G+ o5 + 2016y dac )
t X 8?/

where S, 1, m denote the current boundary of the fluid and its outward unit normal com-
ponents. Thus whenever the first two terms are zero in (9), we see that (3) implies 6 F = 0

and stationary F. It is necessary that, for example, either h = 0 or 6z = dy =0 on S.

The semi-geostrophic approximation to equations (3), in the case when f is a constant,

is the replacement of the true acceleration by the time derivative of another vector

co g o alh
Ug = fay’ Vg f(?:z: (10)

following the particle. The vector (10) is a notional velocity, called the geostrophic velocity.

The semi-geostrophic approximation therefore seeks to find motions (1) satisfying

; oh . : Oh:
ug+ga—x—yf=0, vg+g-(-9—?7+xf=0 (11)

with (5) and constant f. Associated with these equations, the expression

i dvy, Ou 1.8, .05)
+_y_ y+ 9> Vg
Rl 7 ole,0)

is conserved. This is the shallow water version of Hoskins’ (1975) potential vorticity.

(12)

When f is variable, no measure of potential vorticity associated with (11) is known to be

conserved.

3 Transformation to momentum coordinates

The definition (10) of geostrophic velocity suggests a transformation of coordinates

ga
20’

g Oh

X=2t oo Yoltome (13)




where (5) is used. However, in this definition we regard f as a given function f(z,y) of

the spatial coordinates in the first instance. Equations (13) are a transformation
X=X 9.t ¥ = Yz yt) (14)
which, at each ¢, has an inverse
&= oAt = gl XY ) (15)

certainly if

a(X,Y)
Bog) PO (16)

Then (15) can be used to write f(z,y) = f(X,Y,t), and the latter will not be a given func-
tion if the motion is unknown in advance. The explicit presence of ¢ in this last expression
becomes important in Theorem 2 below. There are some reasons from the literature about
constant f (e.g. Eliassen 1948, Hoskins 1975), to call X and ¥ momentum or geostrophic

momentum coordinates.

It is known that (13) is a Legendre (i.e. gradient) transformation when f is constant.

This is also true for variable f if and only if

8(h,f)
0y

i.e. only for certain special motions, and evidently not all motions. Such Legendre trans-

(17)

formations have been studied systematically by Chynoweth and Sewell (1989, 1991) for |

constant f.

Salmon (1985, equations (3.22)) studied certain generalized semi-geostrophic equations

with pseudo-hamiltonian form in X,Y space, namely

. Lol « TOH
oy wm o
where
1
H(X,Y,1)= 2(u2 4 ) + gh. (19)
Associated with these equations is a generalized potential vorticity defined by
= JOEY)
=Ry =

Salmon’s version (1985, equations (3.12)) of (13) has f(X,Y) written in. Thus (16) is
implicitly assumed, but the ¢ dependence in f(X,Y,t) is omitted. When f is a constant,
(20) is equivalent to (12).




4 Identification of potential vorticities

We are now in a position to establish the main results of this paper, as follows.

Theorem 1 There is a class of kinematically possible motions, described in the following

proof, and permitting f to vary in physical space, for which

¢ =@, and therefore ¢ = Q. (21)

Proof

We use the variables X,Y defined by the momentum transformation (13) to construct

another transformation

X=X(X. Y1, Y =Y(X,¥t) (22)

to new coordinates X, Y. The functions on the right of (22) are required to be any which

satisfy the partial differential equation
(X, T)
—= = f(X,Y,1). 23

This is one equation, from which to determine two functions, so it will have many solu-

tions. For example, in the special case when f is a non-zero constant, (22) may be any

canonical transformation (cf. Sewell and Roulstone, 1993), with ¢ absent.

The momentum transformation (14) can be inserted into the transformation (22) to
define a pair of functions f((m, .1 f’(w, y,t). Let A(z,y,t) be any function, and construct
the family of velocity fields @(z,y,t), y(z,y,t) defined by

S gx 1[.8Y 98X
r = T+a_m+§[xa—z—YE$
4 4 (24)
: oA 1|.0Y 00X
By differentiation we see that these satisfy
e e
T TR e
using (7). The chain rule for jacobians gives
X Y): %Y
= =h 26
0y oy O S

6



using (23) and (20).

By (6), (25), and (26) we obtain (21);, and differentiating it following the particle gives
(21),.

O

Summarizing thus far, the two potential vorticities (6) and (20) are the same for any
velocity field in the family (24). In other words, (24) is a solution of

9 0 (J(X,Y)
L

(27)

5 Rate of change of potential vorticity

It follows that either both potential vorticities are conserved, or neither is, during the

motions (24).

Theorem 2 Any solution X = X(t), Y = Y (t) of (18), for any hamiltonian function
H(X,Y,t) (not only (19)) and for variable f(X,Y,t) (= f(z,y) via (14)), has the property

. 8(X,Y)0f
- T (25

Here 0f /0t is the partial t derivative of f(X,Y,t), and the jacobian is that of the trans-

formation

X = X(a,b,t), Y =Y(a,b,t) (29)

obtained by substituting (1) into (14).

Proof

Combining (5) and (20) gives

_ OXY)
Q v f a(a’ b) ¢ (30)
Differentiating following the particle gives
s XYY A(X K) AN V)
Oy an e (1)




The chain rule, with the pseudo-Hamilton equations (18), implies

i OF afy,

e P e By

and

The result (28) follows.

X Y

X V) Ay

of S 10(H.f) . of
Bt F O, Y) G

1 9(X,Y) a(J, H)

Ba,0) " Bab) - I olad) XY

When f and @ are constants, (30) shows that (29) is canonical.

Theorem 3

Q=¢=0

(32)

(33)

(34)

for any motion (24) which satisfies the dynamical equations (18), and which also has the

property that df/dt = 0, i.e. for which t is absent from f when expressed as

f(z(X,Y,1),y(X,Y,1)) in terms of X and Y wvia (15).

The latter requirement is satisfied a fortiori when f is a constant.

Proof

This is a consequence of Theorems 1 and 2.

6 Specializations to f-plane semi-geostrophic theory

Schubert and Magnusdottir (1994) prove that, when f is constant, (27) can be rearranged

as a zero curl condition which implies the representation

(e

i =

0
Oz

2o

e
dy

)

0X

S0 (35

o0X
¥ - y)"{;'y-

J
J

(35)

for arbitrary x(z,y,t). It can be verified directly that (35) implies (24) when f is constant.

It can also be seen that (35) is included within (24) by making the particular choices

1 A 1o L 1
p=5fe, r=5fy, X=|fIFX, Y = |f3Y, A=x-p(a¥ ~ yX)

(36)



when f is a constant.

A brief and elementary calculation using (10) and (13) allows (35), when x = constant,

to be rewritten as

L +L< 2..*.”.2.)1)
B o\ gy

= 'v—i<u—?—+vi>u
Wi g\ cee foy) "
which are precisely Salmon’s (1988, equation (5.18)) constraints. The latter define his

(37)

Dirac bracket formulation of f-plane semi-geostrophic theory. When the velocities in (37)
are substituted into (6) we obtain (12) identically. Therefore ¢ = @. The potential vor-

ticity @ is conserved and consequently so is ¢, i.e. ¢ = 0.

We note that when f is a constant, (13) can be written

BPY oP

. ; Sl i
.6_17, s ay’ with P(:L',y,t)— 2(1: +y )+ h(x’yvt)' (38)

f2

The transformation (14) is then of Legendre type, having inverse (15) of the form

3

OR

R =
= a5 V= 57 with R(X,Y,t)=Xz+Yy— P. (39)

T

This duality leads to a Monge-Ampére equation for P, from (20) and (38), namely

P, G P
A s

G-1| 2 oey ) (40)
dydx  0y?

In practice, although we have identified @ with the Rossby expression (6), one still has
to solve (40) (with suitable boundary conditions) for P, given @, f and h, in order to
calculate X and Y from (38); 2.
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