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Truncation errors in the finite different solution of the vorticity
o .advection equation - some numericol assessments.
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By J. S. Sawyer.
1. Introduction.

In solving the differential equations of numerical forecasting truncation errors
necessarily occur, but little information is available on their magnitude. It was
therefore decided to solve the simple equation for the advection of vorticity using
as an initial stream function an analytical field which should progress without change
of form if the equation were correctly solved. Errors in the solution could then
be assessed,

The vorticity advection equation which has been solved is
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where &’ is a strcam function such that u = - ""“’l,"/;)-y y V = W%’) X .
This is similar to the equation used in numerical forecasts with the barotropic
model except that the terms arising from the variation of the coriolis parameter with
latitude have been dropped for simplicity. They are not likely to affect the
character or magnitude of the errors.
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Finite differences are used in ée}veney (1) both to evaluate the operator
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., Since \// appears on both sides of the equation the errors in approximating
V™ on the two sides of the equation tend to balance out. Thus errors in evalua-
ting the first derivatives which make up the Jacobian are probably more serious as
contributing to the totel error of the calculation, because no corresponding
derivatives in x and y appear on the left hand side of the equation.

The type of error arising from truncation error in the Jacobian has been
studied by Knighting (1), Gates (2), Obukhov (3) and Okland (4) in regard to the
simpler equation.
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which represents simple advection with velocity U/ along the x - axis. (Wippermann(s)
also gives a similar discussion of truancation error in a linearised form of the

vorticity advection equation).

When equation (2) is written in finite difference form
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and applied to a sinuscidal disturbance
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it is shown by these authors that the solution cen be written
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The first term in (4) represents a progressive wave approximately to the true
selution of (2)., The second term which tends to zero as A%, A = © is
entirely fictitious.

‘The solution is bounded (stable) provided (/a t,/ Ax< | (Courant=Friedrichs~
Lewy criterion) and the speed of the progressive wave is given by
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This underestimates the speed of the wave. The underestimation increases - as the
wavelength decreases, becoming substantial when G is reduced to 4 & x.

The stream functions to which we wish to apply equation (1) are not simple
sinusoidal functions but can be regarded as made up of a spectrum of different
wavelengths., The individual components will, however, appear to have different
speeds when integration is made from an equation such as (3). This "false
dispersion" has been commented on by Zkland (4) as a cause of distortion of the
troughs and ridges in the nredicted flow in numerical forecasts and is responsible
for the "parasitic waves" found by Obukhov (3) when equation (2) was applied to a
simple step=function.

More accurate finite difference approximations have been considered. In
particular, gkland (4) demonstrates that a five-point difference relation for
"?"1,/?4)(: in (2) gives a closer estimate of the velocity of the disturbance and
reduces the false dispersion. Equation (3) then becomes
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and the velocity of the disturbance computed from it is /

' 1A ey
- LAl n RMAx - oo RILA X}/ ]
5 = L sin '/,‘-,élv} Sin L (4— o v /; — &,
2 2wor ( 0% =

The criterion for stability is now somewhat more restrictive namely UA(-/ADC <.0-73
These theoreticel results form a basis for comparison with the solutions of (1) by
finite difference methods.

2 The computing programme.

A programme (TES) was written for the computer METEOR to carry out numerical
integration of equation (1) by the finite difference methods normally used in
numerical forecasting., Thus the operator V“‘ was approximated by 7 where
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and the first derivations which occur in the Jacobien were approximated by the
simple formula
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In addition the programme provided facilities to try three more complicated finite
difference approximations to the Jacobian in equation (1), namely:-

(a) a five point formula to the first derivatives

(b) Bickley's formula for the first derivatives
R
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(¢) Pedersen's formula for the Jacobian,

(2) The five point formula to the x-derivative (suggested by Oklend(L)) is
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Together with the corresponding formule for the y-derivative this was used
to evaluete “"(17‘/ y) in (1).

(b) Bickley (6) gives an alternative form for the first derivative namely
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The second term on the right hand side is evaluated from the approximate value
| of 24 />x given by the first term on the right-hend side alone. T (V*y, ¢)
was evaluated using the Bickley formula for both the x- and y-derivatives.
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(e¢) Pedersen (7) recommends an alternative finite difference approximation to
the Jacobian, J(2,b) namely
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The finite difference form of equation (1) was applied to the field
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This stream function reoresents a circular vortex superimposed on a uniform
stream and the analytical solution of equation (1) shows the pattern of stream lines
displaced steadily in the x-direction with a velocity // b

The programme provides for either
(a) boundery values made equal to the true solutions of (1)
(b) boundary values constant.

The solution was carried out on a 19 x 19 grid of points, the boundary con-
ditions being applied at the outer two rows of points.,
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The Poisson equation for V / DV/ D(‘) was solved by an iterative Liebmann
process, the iterations being continucd until both

(a) the change in W/SL; at all points was numericelly less than 2""|5
(b) the (algebraic) totel residual was less than 2™

The initial step in the time integration was made using uncentred time
differences as is usual in numerical forecasting procedure.

All of the results discussed below were obtained using the boundary values
obtained from the true solution of (1),
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S Results.,

.

The results of the numerical integrations are conveniently discussed in times of

1’ paremeters a and b of the initisl field and of a third parameter ¢ used to specify
the time increment in the time integration. a is the radius at which the disturbance

of the stream function from the basic stream has half its value at the centre of the
vortex. The basic stream has a velocity /P (the unit of distance being the grid
length)., ¢ = A/ is the fraction of a gridlength moved by the system in the
time increment.

Experiments were conducted with valucs of a of 8, 4, 2 and 1, If the grid
length were 300Km as in current experiments a = 4 corresponds to & half radius of
1200Km - the circulation represented thus corresponds to a large depression,

a = 2 would correspond to a smell depression and a = 1 to a very small system but
nevertheless within the scale of disturbances which do occur.

In termsof the parameter ¢ and the wavelength, 1; , the theoretical speeds
for the calculated movement of a sinusoidal disturbance may be rewritten from
equations (5) and (6) thus:-

simple difference approximation

) —1 y
Calculated speed _ Ly = b sin (C ST :2[’_)
True speed Uy 27ic
S-point difference approximation
Caloulated speed _ Yo - o g (& sm I (4 cos ))
True speed r 72; R7Te 3 & e

The veriation of the expressions (7) and (8) with [ for ¢ = 0°25 is illustrated
in Fig.1.

The ratio of calculated motion to true motion is also shown for features of
the stream functions fields in the numericel calculations by finite difference
methods., This is shown both in respect of the trough-line and of the centre of
maximum vorticity. These were obtained by comparing the initial and final stream
functions aftcr 16 time steps which should altogether have displaced the stream
function pattern by 4 gridlengths. The velues of the ratio for numerical integra-
tion is plotted against the parameter a on a scale which equates K. = La.

(a) The simple (3-point) finite difference formule.

The most noteworthy feature of the results of the numerical integrations
applied to the larger scale patterns & = 4 and a = 8 was the underestimate of the
movement of the features of the stream function ficld., As the scale of the stream
function field is decreased there is an increasing tendency to distort the stream
function field, to displace the maximum of vorticity to the right of its proper
path end to "fill up" the centre of the vortex. With a =2 and a = 1 noteworthy
irregularities werc generated in the strecam function field outside the immediate
ficld of the vortex. These features can largely be interpreted in terms of the
proceeding theoretical results and will be discussed separately below,

(i) Speed of vortex

The speed of the trough-line in the stream function field was calculated
to be greater than that of the vorticity meximum in each case - both being
underestimates of the correct velocity. This is understandeble because the
position of the trough line is determined by larger scale Fourier components
of the stream function pattern than is the vorticity and the former are ex-
pected to be displaced with a speed closer to the correct value.

The fact that the curves in Fig,1 for the numerical integrations slope
less steeply than the theoretical cwrves is to be explained in a similar way.
For the larger scele vortices the position of the troughline is determined by
smoller scale features than those which determine the profile of the trough
at o distance from the axis, but as the width of the trough is reduced in terms
of the grid length the smallest scale features cannot be rcsolved and the
important wavelength in fixing the trough line becomes bigger in relation to
the trough width.
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Since the calculated speed of the longer wavelength is greater than that of the
smaller, the calculated speed decreased less rapidly with the scale of the trough
than predicted by theory for sinusoidal waves.

a3 With the stream function patl!ern assumed, the maxima of the vorticity advection
ahead and behind the trough occur at x = + *35a, Thus a representative wavelength
for the vorticity pattern in the neighbourhood of the trough might be set at 4. =
La/3, The calculated speeds of the vorticity maxime for a = 8 and a = 4 agree
roughly with the theoretical on this basis,

The theoretical results in equation (7) and (8) suggest that the error
magnitude will largely be independent of b if ¢ remains the same, One calculation
with a = 2b = 4 ¢ = 0°25 gave slightly larger proportional errors in velocity than
one using a = 2, b = 8 ¢ = 025 ~ the computed trough speed as a fraction of the true
speed being 0°80 against 0°86 in the latter case., The result is however a little
unreliable because integration was taken only to 8 time steps and placing the compu-
ted troughline with sufficient accuracy was not easy.

(ii) False dispersion.

The effect of "false dispersion" arising because component wavelengths are
moved with different speeds is illustrated in Fig.,2 after 16 time steps by the
profile of the stream function through the vortex centre in the direction of the
advection, The calculated and true profiles are shown for a = 2, The effect of
the "false dispersion" is to increase the minimum value of the stream function and to
make the gradient of Y steeper in the rear of the minimum than ahcad of it. A
secondary effect arising from the stronger transverse flow behind the centre than
ahead is to create a displacement of the vortex to the right of the general stream.
This was apparent in all the computations and the displacement increased from very
small values with a = 8 to 1/4 of the true displacement with a = 1, Fig.2 also
illustrates the underestimate of the trough speed.

(1i1) Perasitic waves.

The effect of truncation error in producing fictitious waves is shown most
markedly with the smallest-scale trough for which the calculation was performed
(nemely a = 1). Here the vortex was largely defined by the value at one point
(the centre) and four surrounding points, The profile of &’ through the centre
(Fig.3) clearly shows the parasitic waves in addition to the other truncation error
effects already discussed, Although the Courant-Friedrichs-Lewy critical velocity
was just exceeded at one grid point in the initial field it is unlikely that the
irregularities arise from computational instebility of the usually recognised type.
The irregularitics also appear if the time=step is shortened so that the criterion
for stability is satisfied and can also be traced in the computation with a = 2
(also stable according to the Courant-Friedrichs-Lewy criterion).

Figs. 4, 5, 6 and 7 show the initial field of \{/ , the final field of ‘W
end the error field for a = 4 and a = 1 (In both cases b = 8, ¢ = 0°25 and 16 time
steps have been carried out)., The pattern in Figures 4 and 6 should have been
displaced 4=-grid lengths to the right if the results of the computation had been
free from truncation error.

(iv) Effect of change of time step.

The equations (7) and (8) suggest that an increase in the time step (increase in
c) will reduce the truncation error provided that the condition for computational
stability is not exceeded. The expressions (7) and (8) are however not very sensitive
tu changes in ¢ within the possible range. The result is however complicated by
the uncentred diff'erences used at the first time step.

An integration cerried out to eight time steps with ¢ = 05 (a = 4, b = 8) gave
almost identical results with one carried to sixteen time steps with ¢ = 025
although the Courant-Frierichs-Lewy criterion for stability was just exceeded at a
small group of points on the lower side of the trough line.
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(b) 1ke five point formula.,

As would be expected the use of the 5-power formula in ccmputing the first
g!rﬁyatives in the ‘advection Jacobian' leads to a significant reduction in errers,

e estimate of the speed of the troughline is improved and the error is very slight
except with the smallest scale of vortex (a = 1). The effect of false dispension in
distorting the profile of the vortex is negligible and the displacement of the
vorticity centre to the right of its proper track is very small except for the
smallest scale (a = 1). With the smaller scale vortices the apparent filling of the
centre is still present and also the "parasitic waves", Compared with the results
using the simple (3-point) formula the "filling of the centre" is materially
reduced for a = 2, but there is little difference in respect of a = 1, The ampli-
tude of the parasitic waves are about the same whether the 3-point or 5-point
formula is used.

The ratio of the computed and correct speed, of the troughline are shown in

Fig.1, and Fig.8 illustrates the computed profile of \./ for the smallest vortex

éa = 1) using the 5-point formula. Figs.9 and 10 give results for (a = 4) and

a = 1) for comparison with Figs.5 and 7 obtained on the same data with the 3-point
formula.

“c (A computetion using the 4-point formula with a = 4, b = 8 and ¢ = 0*5 showed
substantial sinusoidal irregularities probably arising from computational instability.
This is consistent with the fact that the appropriate criterion for stability was
exceeded by a maximum of about 50%. The corresponding computation using the two
the two point formula showed no computational instability but in this case the
advecting velocity exceeded the theoretical maximum for stability by about 10%
and at a group of 6 points only.

(¢) Bickleys formula.

The results of using Bickley's formula for the derivatives are very close to
those obtained using the five -point formula, and do not merit separate discussion.
The maximum errors were generally slightly greater with Biddley's formula than with
the 5=-point formula.

(d) Pedersen's formula.

The results of using Pedersen's formula for the Jacobian were also very similar
to those obtained with the 5-point formula. Again the errors were generally
slightly greater,

(e) Calculations on an alternative stream function.

Similar integrations of equation (1) were also carried out with the initial
stream function given by

p = (- Aendn + % o1 )4

This provided some confluence and diffluence such as occurs in association
with the jet stream. Again the correct solution of equation (1) should have
indicated a motion of the yV ~field without change of form.

Using A = 0°125, a = 8, b = =8, k = 8, d = =16 and ¢ = 025 the results
again showed that use of the 3-point formula tended to underestimate the motion of
the system, When the 5~point formula for the first derivative was used errors
were reduced to little more than 1/10 of their prev.ous values over much of the
area of integration.

Table I gives a complete list of the calculations made and some measures of
their accuracy.

i Discussion,.

The present experiments demonstrate that truncation errors in numerical fore-
casts are not negligible and that with features of the flow pattern comparable with
large depressions the errors in the computed displacement using the usual 3=-point
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approximation to the first derivative may emount to more than 10, It aprears that
+this error can be substantially reduced by the use of a five=-point approximatien,
but the requirements of computational stability are then rather more restrictive.

is also seen that disturbances of the stream pattern with dimensions of 2 to 4

d lengths are very badly treated whichever approximation is used. The presence of
such small scale features will also introduce errors outside their immediate neigh-
bourhood because truncation errors lead to spurious small scale features superimposed
on the true solutioa. There is therefore a strong argument in favour of smoothing
or filtering out the very short wavelength features before the integration is started.

5 Some barotropic forecasts with the 5-point approximation.

Four barotropic forecasts of 500 mb. height have been made using the 5-point
approximation to the derivatives in the Jacobian in place of the usual simple 3-peint
formula, The forecasts were based on stream functions derived for the 500 mb, level
and was carried to 24~hours,.

Systematic differences between the forecasts using 3-point and 5-point finite
difference approximations were not large. Differences of 30 to 40 m existed however
over some areas with dimensions of several grid-lengths. The largest individual
difference at a grid point was 100m, Some verification statistics are given in
Table I.

Table I - Comparison of verification statistics for forecast based on
3~pa2int and 5-point finite difference approximations.

3=point i 5=-point
Date a b c d e | a b c d e
m ket m kt.

5 Feb., 1959 09N 72 | 067 24 | 073 0° 91 71 068 2L | 071
10 Feb., 1959 0- 89 101 O*44 40 051 t 0+ 89 106 040 LA 048
17 PFeb., 1959 0+ 94 97 1079 29 | O 74 ‘ 095 101 077 30 |01

3 Mar., 1959 | 0°93 | 82 |o-68 | 30 10081 | 093 80 |0:69 | 29 |08,

Column a - correlation between forecast and verifiying charts
b - r.m.s. height error
¢ - correlation between forecast and actual height changes

d - r.m,s. vector wind error
e - correlation between forecast and actual geostrophic wind,

As expected the use of the 5-point formula gave signiiicantly greater displace-
ment of mobile troughs and ridges by some 10 to 15%. In general this did not make
any material difference to the accuracy of the forecasts because the trough and
ridge positions were subject to much larger errors from other causes (the selected
examples were all cases of substantial forecast errors)., However a clear improve-
ment was effected in respect of a small trough over the British Isles in the fore-
cast of 3 March 1959, ‘There were also sdme other small scale features which were
clearly treated better by the 5-point formula than the 3-point, but the 3-point
formula gave noticeably smoother results = the 5-point formula results containing a
number of minor irregularities which did not correspond to features of the actual
charts,

The forecasts based on the 5-point formula gave systematically lower values
than those using the 3-point formula over much of the chart - the average difference
overall was 10m., This may be due to the closer approximation to the vorticity
advection in an area generally between the trough over East America and the ridge
over Europe,

The statistical verification of the forecasts shows no signifiicant difference
between the two integration procedures. The local improvement in some areas
introduced by the 5-point formula has been masked by the increased irregularities
introduced into the pattern.
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. Summary of results using TES Programmes,

Correct boundary conditions,

N Max
b e} number of error
time~-steps x 103

Data
Number

Trough speed
correct speed

Three point formula

| 1 L 8 025 16 45 092
| 7 8 8 025 16 -7 094
| 5 2 8 025 16 -178 0+ 86
6 1 8 0-25 16 +547 0+ 82
2 2 4 025 8 =110 0+ 80
8 L 8 05 8 =47 0+925
Five~-point formula
3 4L 8 025 16 -9 0+99
112 2 8 0425 16 +63 100
14 1 8 025 16 +451 095
15 L 8 05 8 +65 1+0
Bickleys formula
3 L 8 0425 16 -12 099
11 2 8 025 16 -92 095
13 1 8 025 16 +465 0+95
16 L 8 05 8 +216 097

Pedersens formula

1 L 8 0425 16 -9 0+99

5 2 8 025 16 +65 0°99

6 1 8 025 16 +433 0+95
-9-
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Fig.5. Final field of Y/%o and error field (two-point formula)

a=4 b=8 c=025

16 steps.

All figures multiplied by IO% Errors plotted as lower figures.
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Fig.6 . Initial field /%o
a=l, b=8.
All figures multiplied by 103,
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Fig 7

Final field /Y0 and error field
a=l, b=6, c=0O:25,

16

(two point formula)

steps.

All figures multiplied by O3 Errors plotfed as lower figures.
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Fig 9. Final field of $/%o and error field ( four-point formula)
a=4,b=8. c=0)-25. |6 sleps.
All figures mulliplied by IO® Errors plotted as lower figures.
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Fig. 10.  Final field of /Y0 and error field (four-point formula)
a=l, b8, c=0:25, 16 seps.

All figures multiplied by O3 Errors plotted as lower figures.



