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B INTRODUCTION

Variational analysis is a method for achieving a balance between certain constraints. In
meteorology this translates to minimising a cost function that describes the distance from the
analysed field to a background field and to a set of spatially and temporally varying
observations. It is an iterative algorithm and in its full 4DVAR form not only allows a
consistent global use of all observations (including satellites and non-linear variables), but
also constrains the analysed field to be consistent with the forecast model. Unlike many other
Met Services, the UK Met Office uses a grid point model, so whilst research using spectral
models done at ECMWF and NMC (amongst others) can provide useful ideas, only research
explicitly carried out on a grid can be of any concrete use to the UK Met Office.

2DVAR is a univariate analysis that, from a truth field, randomly generates a background
field and a set of observations and, using their correlated errors, calculates an optimal
analysis. It can be run on several grids - global, u-v (a staggered global grid with no points
at the pole), Limited Area Model and polar stereographic - and at several resolutions (the
highest of which is 288x217 for the global grids, and 91x91 for the LAM grid). It performs
the analysis on the surface of the globe (hence 2D) and uses concepts from variational
analysis (hence VAR). The code is written in FORTRAN 77 with PP package additions, and
can be run on either the HP work stations or on the HDS mainframe. The actual program
is a highly modular collection of subroutines, all controlled by a top level routine. This




enables the user to have complete control over the type of experiments by overriding default
values set up in common blocks.

The purpose of conducting these experiments is to show that a grid-point version of
variational assimilation is feasible, and to provide some pointers for the direction in which
the operational 3DVAR should go. There are therefore two main objectives for the 2dvar
project: to show it works; and to develop an iteration strategy for minimising the time taken
to reach convergence. By using 2DVAR we have a simple model that is easy and quick to
program but that nevertheless contains most of the important features of 3DVAR.

2. SHOW THAT 2DVAR WORKS

For the 2DVAR prototype to work, it must be shown that it improves the analysis, and that
the results that it provides are consistent with data assimilation. The method used for this
experiment was to define a truth field, and then to generate observations and a background
field using correlated errors and a random generator. We therefore know what the analysis
should be aiming for and can compare it with the truth field by looking at the Root Mean
Squared Differences between the two. We use the background field as the initial field,
although there is no need for this to be the case.

2.1 RMS differences

One way to find out if 2DVAR works is to compare the root mean square value (RMS) of
the difference between the background field and the truth field, with the RMS of the
difference between the analysis and the truth field. We would expect the RMS of the
difference of the analysis field to be less than that for the background field; we expect
2DVAR to improve the analysis by incrementing the analysed field closer to the truth field.
We can also predict that the more observations we include in the assimilation the better the
analysis should be; by including more observations we introduce more information into the
assimilation. The RMS is equal to

RMS = /(x)? + g2

so since x bar is small (random variations around zero tend to cancel each other out) the
RMS of the differences should start off equal to the standard deviation s (which is equal to
1.0 in this case). We therefore expect that the RMS difference, for an analysis using a zero



truth field and correlated errors set to 1.0, will asymptotically decrease from 1.0 to zero. We
therefore have some criteria by which to judge 2DVAR.

A set of experiments were run on a global grid at high resolution with a varying number of
observations, ranging from O to 20 000. The correlated errors were set at 1.0 and a zero
truth field was chosen, although there are plans to use real fields. The results are shown in
Fig 1. The RMS difference decreases from 1.0 (the value of the standard deviation), and
reaches a value of 0.33 with 20 000 observations. A separate experiment using a similar
setup has shown that with 50 000 observations the RMS difference is reduced to .26 and with
100 000 observations it is reduced to 0.23. We can therefore say that 2DVAR does improve
the analysis, although it is heavily dependent on the number of observations (as is any
assimilation scheme).

2.2 Penalty Function

Another way to verify that 2DVAR works is to study how the penalty function behaves
against the number of inner iterations. We expect the penalty function to decrease at each
new iteration of the descent algorithm, and finally reach convergence. Fig 2 shows the results
of an experiment on a u-v grid with 100 observations. (In fact it is easier to count function
evaluations than iterations; the graph is plotted against this. Each iteration has one or two
penalty evaluations). The penalty function decreases rapidly then slowly decreases to a
minimum where convergence is reached. The background penalty function term starts at zero
because the analysis starts at the background field, as in a real assimilation cycle a previous
forecast would be used. The observation penalty term decreases until balanced by the
background penalty term. Fig 3 shows what happens to the norm of gradients of the penalty
function and penalty terms. The total gradient decreases to zero, whereas the two component
terms converge to equal but opposite values.

2.3 Observation values

If only one observation of value 1.0 is analysed on a zero background field and
diag(B)=diag(O+F)=1, then since

F=ag +4J
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a value of 0.5 is expected to be returned at the observation. Fig 4 shows an experiment with
one observation at the equator, using a correlation scale of 400km. A value of 0.506 is
returned which confirms expectations. The background error correlation p, between two
points a distance r apart is given by

b(n) - (1+I) exp( )

whose spectral response is
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where s is the correlation scale, €, is the variance and k is the wave number of the
appropriate wave component. If s is taken to be 400km, and p is taken to be 0.4, then r is
given as approximately 810km. By inspection from Fig 4 a value of about 800km is evident.

2.4 Boundary points and polar points

Because the Met Office uses a grid point model (so the model for the LAM is the same as
for a global grid), there are always going to be problems with: the poles, where the pole is
represented by 288 points each with a different value; the boundaries of a LAM grid due to
the constraint that edge increments must be zero.

The LAM grid has boundaries and these present a problem for 2DVAR. It is desirable that
the boundaries are constrained to remain fixed, that is that boundary increments are zero. A
simple way is to remove the boundary points before the analysis, and then add them on when
the analysis is finished, using some appropriate ramping function to fill in the missing
increments. This is schematically shown in Fig 5.

The results of an experiment run with 1 ob at the boundary of a LAM grid can be seen in
Fig 6. The ramp has constrained the boundary to zero. In other words the observation has
only minimal effect with a maximum value of 0.069 as opposed to the expected value of 0.5.

Another way of dealing with the boundary is to use a spectral filter. The latter has the
advantage of automatically keeping boundary increments to zero, although this can also be
achieved by using an S-shaped ramp (see fig. 5). This works with a double sine transform




and means that the control variable now takes the form of spectral coefficients of a spatial
field. This has been implemented in 2DV AR using the spectral response given by eqn 5, but
it is not yet working correctly; analysing 1 observation on a LAM grid gives a totally
unacceptable result. This can be seen by comparing fig 7 (analysed with normal recursive
filter) with fig 8 (analysed with spectral filter).

The pole presents a different problem. Because on the global grid there are 288 points at the
pole, each of which is slightly different, the 2DVAR program averages them out.

There is another component to this which is the filter. The filter is used to precondition the
control variable. It is a two pass recursive filter that approximates a SOAR. Lorenc has
constructed a routine which is its inverse (except at the poles). This could introduce small
scale noise at the pole into the analysis.

Another point to bear in mind is that the filter treats a grid as if it were regular, and so the
filter on a sphere has been designed to be uniform. This has not been completely achieved,
and points near the pole do not get exactly the desired filtering. A good test of the 2DVAR
code would therefore be to analyse a grid with just one observation at the pole. Fig 9 shows
the resulting analysed field, and Fig 10 shows the same field interpolated to a polar
stereographic grid, and Fig 11 shows the same experiment but analysed on a polar
stereographic grid. It can be seen that whereas the analysis on the global analysis interpolated
to the stereographic grid is circular (as the correlation function should be), the polar
stereographic grid is rather square. This is a result of the analysis dragging the observation
around the top of the global grid.

The fact that the filter has problems at the poles can be seen from Fig 9 It can be seen that
the value attributed to the ob is 0.649 but equation 3 predicts a value of 0.5. This is
compared to Fig 4 where the value is 0.504, very close to 0.5. The problem is that the filter
does not weight observations properly at the pole. This is not seen to be a problem since the
weighting depends on the background error variance, which is imprecisely known.

Another factor is the interpolation routine that is used to calculate the w-field value at an
observation. Fig 12 shows the analysis of one observation at the pole for a u-v grid.
Although the observation was placed at the pole, the analysis has placed it slightly off centre.
This is a result of the way the routine was coded, which extrapolates beyond the boundaries
of the grid, and if considered a serious problem can easily be rectified, by interpolating
across the pole.




N ITERATION STRATEGY FOR 3DVAR

Because 3DVAR, and even more so 4DVAR, is so expensive in computer time, there is a
necessity to cut down on time. There are two main ways of doing this: the first is to use the
multigrid approach where the initial work is done on low resolution grids; the second is
convergence interruption where the descent algorithm is stopped before convergence is
reached, but after a good approximate solution has been achieved.

3.1  Multigrid

One possible way to decrease the variable transformss’ and background term’s contributions
to computer time is to use the multigrid approach. This involves working out an increment
to minimise the cost function on a low resolution grid (which should be a good
approximation to the full field answer), then interpolating the resultant field to a higher
resolution and adding to the previous high-resolution estimate. This process can be iterated
in an outer loop until a final solution is achieved on the full field. Since a lot of the donkey
work is carried out on the low resolution grids, an approximate answer is obtained at low
cost. The final solution on the full field then just adds fine detail and so should take little
time to reach convergence. We thus have inner and outer iterations. Outer iterations are
performed over resolution changes, whereas inner iterations are performed at one resolution
and represent the steps needed by the descent algorithm to reach a solution. Because the
analysis is for the most part carried out on low resolution grids, there must be some way of
preventing aliasing, that is the loss of small scale features by undersampling the full field
with a lower resolution grid. This works by working in increment space, so an analysis is
produced of the increments needed to be added to the background field at low resolution.
This field is then interpolated back to full resolution for use in the persistence background
term for the next outer iteration.

There are two major parameters that can be changed: the number of outer iterations ie. the
number of resolution changes, and the reduction in resolution of the low resolution grids.
The latter is obviously in need of careful tuning but general schemes such as 1, 1/2, 1/4, 1/8,
1/16 or 1, 1/2, 1/3, 1/4, 1/5 etc can be used to gain a rough idea of what is needed. An
important point is that if the gridlength of a reduced resolution grid is more than the filter
scale then essentially any observation is not spread, and remains at the gridpoint. Assuming
a filter scale of 400km,if we have a global grid 288x217 with a gridlength of 100 km at the
equator then we cannot have a grid reduction larger than 1/4. For a global grid 96x73 (for
use in climate models) we cannot reduce the grid by less than 2/7, and for a LAM grid
43x43 cannot reduce less than 1/4 . Tests were conducted on global, u-v at high and medium
res, and on LAM at high, running through 1-4 outer iterations for each scheme. The results



for the LAM grid are plotted in Fig 13. Similar results are obtained for global and u-v grids.
One can see that although the number of inner iterations increases with increasing numbers
of outer iterations, there is a minimum of computer time that comes after 2 outer iterations.
For the U-V grid a scheme of 2 outer iterations with a resolution reduction of 1/4 for the
initial iteration produces the quickest time, whereas for the global grid a scheme of 3 outer
iterations with reductions of 1/3, 1/2 for the first two iterations works best. In all cases there
is a strong correlation between the total time taken to reach convergence and the number of
inner iterations in the final outer iteration. With 3DVAR, the background term is even more
important since there are (in the global model) 19 levels to contend with and so I would
expect the reduction to be even more dramatic.

If a graph, showing results from an analysis with 1000 observations, of purely penalty
function against number of inner iterations is inspected as in Fig 14 then it is obvious that
there is a rather large spike in the penalty function that corresponds to the beginning of the
last outer iteration. Although this reduces fairly rapidly it is nonetheless a bit worrying. The
reason it occurs is that when interpolating to a finer resolution, not only is the number of
background contributions to the penalty function increased, but also there is a mismatch
between scales due the coarser resolution being unable to display fine detail. Another reason
why there is a spike is the interpolation routines used for interpolating from one grid to
another. Experiments were run using instead a spectral interpolation routine. This was much
slower but it did reduce the spike. One would expect the spike to be bigger for a bigger
resolution jump and this appears to be the case. Running an analysis on a global grid at high
resolution for a jump of 1:2 the spike has a maximum value of 1.5 10, whereas for a final
jump of 1:4 the spike’s maximum is 5.3 10"

Another method to reduce computer time is to use some type of convergence interruption of
the descent algorithm. From Fig 2 it can be seen that after approximately 4 inner iterations
there is no substantial reduction in the penalty function; a good approximate solution has
been found and the computer is spending a lot of time to put the finishing touches to its
solution, and so reach what the descent algorithm considers to be convergence. We should
remember that even if the descent algorithm satisfies convergence criteria it is unlikely that
an exact solution has been found (due to the descent algorithms own accuracy criteria). This
leads to the idea of stopping the algorithm prematurely by introducing artificial convergence
criteria. This is obviously only desirable in early outer iterations, and for the final outer
iteration the descent algorithm should be stopped after different criteria (since there is
evidence that the algorithm’s own criteria introduce over-fitting of the observations to the
analysis). Since we are only looking for approximate solutions to the initial outer iterations,
the fact that convergence has not quite been reached should not be a problem. Several
schemes can be designed, but I have used two: the first stops the descent algorithm when the
total penalty function is less than some value, normally a fraction of the initial cost function;
the second stops the descent algorithm when both components of the penalty function are less
than a fraction of the total current penalty function. However it was found that convergence
interruption had little effect on the final convergence, perhaps because in the earlier iterations




it finished before a satisfactory solution was found. In this case more investigation might be
needed.

3.2 Precision

Most of the results presented in this paper were obtained on the FR HP computer system,
using the NAG routine EO4DGF routine. On the HP system, only DOUBLE PRECISION
versions of NAG routines are available, while the recursive filter was only available as a
REAL version, so some interface copying was necessary, and the resulting effective precision
was probably only 32bit. Some tests have been performed on the HDS mainframe, using a
single precision version of the NAG routine, with acceptable results.

There is a significant loss of precision in the inverse filter at high resolution. This manifests
itself near the poles, where points come very close together, and in high resolution limited
area experiments. Tests that the inverse filter routine is a true inverse can fail in these cases.
For the global case the method avoids problems due to loss of precision near the pole by
transforming to a control variable on a quasi-uniform grid, having the same latitude rows,
but fewer points per row near the pole. In the limited area case, problems are avoided as
long as the analysis grid is not very much finer than the correlation scale used in the filter.

There were some problems, probably due to loss of precision, in non-standard configurations
(e.g. without preconditioning, or without the quasi-uniform global grid). For the default
method it seems that 32bit precision is sufficient.

3.3 Descent Algorithms

The NAG routine EO4DGF routine uses a pre-conditioned, limited memory quasi-Newton
conjugate gradient method. This gave acceptable results, but was inconvenient since source
code was unavailable. Its inbuilt gradient testing facility was found to be unreliable, giving
false alarm failures - we ended up coding our own (TESTOBJFUN).

After doing many of the runs we obtained the source code for routines M1IQN3 and N1QN3
from the MODULOPT library from Jean Charles Gilbert at INRIA (Gilbert and Lemaréchal
1989). (This is the code used by ECMWEF in their variational analysis project). In order to
compare with the NAG routine, we implemented the double precision N1IQN3. When
properly set-up, specifying a sensible initial step-length, the INRIA routine converged more
rapidly than the NAG routine, as illustrated in figure 15. It is also more flexible in its
storage usage, and in preconditioning options. Moreover we have the source code available,
allowing greater portability, and easy implementation in fortran90.

4. CONCLUSIONS




The work described here has shown that variational analysis for a grid-point model, using
a filter to define the background term’s constraint on smoothness, is a viable approach. The
recursive filter used for the experiments is designed to match a "SOAR" covariance function.
The filter gives results that differ from those implied by an optimal interpolation using the
SOAR function, in the shape of the influence of a single observation, which is rather square,
and in the weight given to an observation at the pole, but the differences are probably less
than our uncertainties in the true covariance function. Practical methods for dealing with the
boundaries of a limited area grid can be defined.

The "multigrid" approach, doing some early iterations at a lower resolution, works. This
technique can potentially make savings in the computational cost of the variable transforms
and background penalty term calculations, and also (in 4DVAR) in running the perturbation
forecast and adjoint model. However it does not make a saving in the cost of the
observational penalty term, whose cost is grid-independent. Nor does it make a saving in
the number of iterations needed, since the method is already well conditioned. (This is in
contrast to other applications of the multi-grid approach, which converge for small scales
faster than large scales). It is not possible from this 2DVAR system to make firm
recommendations for 3DVAR or 4DVAR, since the cost ratio of grid dependent and grid
intependent calculations will be different, as will the conditioning.

For implementation at normal practical resolutions 32bit precision is sufficient for most
calculations; we can code the VAR system using the default REAL arithmetic. However
tests at very high resolution should not be expected to always work. This should not be a
practical limitation - we would avoid an analysis grid that is much finer than the correlation
scale by using the multigrid approach.

We should use the INRIA descent algorithm M1QN3.
S. FURTHER WORK

Some experiments demonstrating the advantage of preconditioning by using a transformed
control variable have been perfomed (Lorenc and Griffith 1994).

The 2DVAR system has been used to test the use of non-Gaussian penalty functions to do
implicit observational quality control (Ingleby 1994).

The recursive filter needs to be compare with the spectral filtering approach, which is
implicit in variational analysis schemes at ECMWF and NMC which use spectral models.
The spectral approach offers more flexibility in spectral response, and (using spherical
harmonics) a homogeneous response on the sphere, avoiding the polar "fixes" of the
recursive filter. However it is likely to be more expensive. A double sine-transform filter
has been coded for the limited area mode of 2DVAR, but not yet debugged.

S



The recursive filter also allows variable filter scales, e.g. allowing a different scale to be
used for the tropics. This option has not yet been tested.

The NMC SSI variational analysis system (Parrish and Derber 1992) allows for correlated
observational errors in satellite data by putting the on a regular grid and filtering them.
Lorenc (1992) tries some similar ideas. On the other hand the ECMWF system only allows
for correlations within one processing batch of observations, doing an explicit matrix
inversion. The 2DVAR system could be used as a testbed to decide which approach to use
in VAR.
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FIGURES

Figure 1 Graph of RMS difference between analysis and truth field, against number of
observations

Figure 2 penalty function against inner iterations

Figure 3 gradient of penalty function against inner iterations




Figure 4 analysis of one observation at equator

Figure 5 diagram showing reduced grid used in perturbation to control variable
transformation

Figure 6 analysis of one observation at LAM boundary

Figure 7 analysis of one observation using recursive filter

Figure 8 analysis of one observation using spectral filter

Figure 9 analysis of one observation at pole on global grid

Figure 10 analysis of one observation at pole interpolated to Polar Stereographic grid
Figure 11 analysis of one observation at pole on Polar Stereographic grid

Figure 12 analysis of one observation at pole on u-v grid

Figure 13 variation of; CPUTIME, total inner iteration, inner iterations in final loop, with
outer iterations

Figure 14 the spike in the penalty function that occurs for the final outer iteration
Figure 15 Penalty function, and norm of gradient, against number of penalty evaluations, for

the NAG EO4DGF and INRIA N1QN3 descent algorithms, for a 288*217 global grid with
10000 observations.

Cha




T =2anbtyg

SNOILVAYASHO 40 49NN
00091 0002T 0008 000v

)

—
e
P

SNOILVAYASHO0 40 YH9INNN LSNIVOV ‘dTdId HLNY.L
ANV SISATVNV NHIM.LHE HONFIHAIIA SN 40 HdVED

r

— JTHII HLOYL ANV SISATYNV NHIM LIS HONFIHAIIA SN ~




SUOT3eI93T ISUUT 3Jsurebe uoriouny Ajreusd z 2aInbtg

. 2

xd

-~

SNOLVIMVA3 ALWN3d 40 H38NON
] »

Shdnnts pa S 0 Syasd g -
’ ?

e
— — —
— o v— — — — —
S — — — — —— — — —

..........

Of -
e - P —
NOLLONNS ALTWYNId 3NVS CRIS—A 91Z.882 'L GNO-M | 10

THES

Sld I10d ON 19 S3Y—HIIH 91Z+BBITCNO~X NIVWEVA 91°:0°9s ¥6/80/80

>

R
r

T
ONISYANO30 M MUY SVAT H0d




T
suoT1eI93T JISUUT 3suTebe uoT3IdUNJ AaTeusd jo juatpeib € 2anbtg

SNOLVITIVAT AL'IWN3d H0 d38NNN
v »

Srmdaios Cae 0 e At ma v a
o » v . » ' 2

—
—_—
——

—
— — —

S s b ——— et PSSR ST T,

<00 0D> o - o
<BY BY> = <9 9> —
IN3IGVAIO IO WYCON 3AVS QRIG-A 9124882 'L GO-M | 10

WHES  Sld F10d ON 119 S3Y—~HIIH 91Z«8BZZAHO-X'NIVWYVA 91°10'9s ¥6/90/8C

(ONISVINZIA 1 HiM STVA3 04) <ZeaXB/PPS>



102enbe 3B UOTIBAISSJO SUO jo stsAteue  2anbtdg

‘3110704 SINWA CON—A L

b

Cd
\'3"’
I VANDES
A
o 1a
4
N
g
s
=
/
,

. & 9
i X . .m/> mr/ . g/pry B

Y
ot S et — =

o

™

il
i
3

—
. _

=

000" =NIN 906" =XV 220’ =SWY 200 =NA  TVNLIX
00000’ L666%° L666Y° 141148 86¥Z1° I 0 NN4reo
3AVS QRIO—A L1Z88Z 'L QRIO-M | 10
'WME6  310d LV Sid 19 SIY—HOIH L1Z+88ZLANO—X'NIVWEVA 91°0'9L ¥6/L0/0Z




Diagram showing reduced grid used in tangent linear to
control vanable transform
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Figure 15 Penalty function, and norm of gradient, against number of penalty evaluatiqns, fpr
the NAG EO4DGF and INRIA N1QN3 descent algorithms, for a 288*217 global grid with

10000 observations.




