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1 Introduction

This work reviews commonly used procedures for precipitation disaggregation, aiming to critically eval-

uate their applicability for use in JULES and identify the most suitable procedure. The JULES use case

requires a procedure that is J1) applicable globally, J2) is defensible and has some physical backing,

J3) circumvents the need for storing large amounts of sub-daily model data, J4) does not add unrea-

sonable computational expense to running the model, and (of course) J5) performs adequately in repro-

ducing the statistical properties of fine-scale rainfall. Within this work, only procedures for downscaling

of temporal rainfall are considered, space and space-time approaches are only briefly acknowledged.

For the purposes of JULES, this is not entirely unreasonable, as therein calculations are already on a

cell-by-cell basis, though the disaggregator implementation may have implications for the spatial (and

temporal) autocorrelation of the data.

The three main approaches in the disaggregation literature are multiplicative cascades, point-process

models and method-of-fragments (resampling-based) procedures. Point-process models represent the

onset and magnitude of storms and individual storm cells as an aggregation of independent random pro-

cesses [Rodriguez-Iturbe et al., 1987, 1988], which is attractive from a physical standpoint (J2). In their

typical form, point-process models are not disaggregators per-se but weather generators. Koutsoyiannis
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and Onof [2001] presents a point-process model coupled with an iterative adjustment procedure, which

enables the use of the model as a disaggregator, and has indeed seen wide use in the field of urban

hydrology [Hanaish et al., 2011, Debele et al., 2007, Pui et al., 2012, Villani et al., 2015]. A different

approach is that of multiplicative cascades, which are based on the scale invariance of rainfall. Their

inspiration comes from cascade models of turbulence [Mandelbrot, 1974, Yaglom, 1966], and while the

exact nature of the turbulence-rainfall relationship is unknown, multiple studies have supported the ex-

istence of scaling in spatial and temporal rainfall [Schertzer and Lovejoy, 1987, Tessier et al., 1996,

Olsson, 1995a, Hubert et al., 1993, Harris et al., 1996] (J2). Multifractal scaling implies that the sta-

tistical moments of the data are related to the spatial (and/or temporal) scale via a power-law. In their

discrete form, cascade models subdivide an initial mass to successive subintervals in a multiplicative

manner [Molnar and Burlando, 2005]. A distinction is made between canonical and microcanonical

models, the former of which only preserves mass on average, while the latter does so exactly. The

main difference between individual models (of both types) is the choice of probability distribution used

to perform the scale-by-scale redistribution of mass. Multifractal disaggregators have been developed in

various flavours for the disaggregation of spatial rainfall, typically [Gupta and Waymire, 1993, Over and

Gupta, 1994, Schertzer and Lovejoy, 1987, Menabde et al., 1999] but not exclusively [Müller and Haber-

landt, 2015] to do with radar images, as well as temporal rainfall [Molnar and Burlando, 2005, Hingray

and Haha, 2005, Licznar et al., 2011a, Pui et al., 2012, Onof et al., 2005, Sivakumar and Sharma, 2008,

Olsson, 1995b, Pathirana et al., 2003, Serinaldi, 2010, Menabde and Sivapalan, 2000, Olsson, 1998,

Olsson and Berndtsson, 1998, Güntner et al., 2001, Menabde et al., 1997, Rupp et al., 2009, Licznar

et al., 2011c, 2015], mostly to do with urban hydrology applications (using gauges), and finally in the

spatio-temporal domain [Over and Gupta, 1996, Deidda, 2000, Deidda et al., 1999, 2006, Veneziano

et al., 2006]. A non-parametric alternative to the two aforementioned approaches is the method of frag-

ments, which is a relatively new procedure, based on resampling a vector of ratios of sub-daily to daily

rainfall, typically via a modified k-nearest neighbours algorithm [Lall and Sharma, 1996]. The method

of fragments has been employed for urban hydrology applications using gauge data [Sharma et al.,

2006, Pui et al., 2012] and also extended to ungauged locations [Westra et al., 2012], with very good

performance in both cases.

The point-process disaggregators have been shown to perform adequately for gauge data on a

point-by-point basis [Koutsoyiannis and Onof, 2001, Debele et al., 2007, Villani et al., 2015] (J5), and

have also been extended for disaggregation at unmeasured locations [Cowpertwait et al., 1996, Kout-

soyiannis et al., 2003, Gyasi-Agyei and Mahbub, 2007], with some studies also addressing the issue of

parameter temporal stationarity in relation to climate change [Burton et al., 2010]. While point process

disaggregators appear to be a relatively mature procedure, their parameterisation is not straightforward,

as they typically consist of at least 5 parameters (in their most basic form), which are fitted via analytical

relations [Rodriguez-Iturbe et al., 1987, 1988], and also do not have an explicit way of dealing with zero

rainfalls (thresholding is typically used). The choice of statistics for fitting is somewhat ad-hoc and the

procedures used difficult to justify. Some authors have sought to address this via various optimisation
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schemes [Onof and Wheater, 1993, Khaliq and Cunnane, 1996, Pui et al., 2012] but this then adds an

additional computational burden to what is already a non-straightforward fitting exercise (indeed, some

authors note that even with iterative fitting procedures, some local optima may be unobtainable [Pui

et al., 2012]). This procedure could be fitted externally from JULES and parameter ancillaries provided,

which would satisfy J3, but the ambiguous fitting procedure may restrict its application for arbitrary

global locations (J1, J2) While the model fitting can be external to JULES, the adjusting procedure for

its use as a disaggregator may still present a large numerical expense (J4), as it iteratively modifies the

disaggregated time series until its statistics match that of the daily-scale within a chosen error tolerance,

the choice of which can be arbitrary (J2).

The widespread use of multiplicative cascades (see references above) could be taken as testament

of their adequacy, and they are attractive in their simplicity, with only two parameters in their simplest

form (J3, J4). However, there are significant practical considerations to do with the model type and

structure. First, a decision between the canonical and microcanonical formulation is needed. As canon-

ical models preserve mass only on average, this implies the need for multiple runs of the disaggregator

in order to obtain a forcing that adequately reflects the statistical properties of the calibration data, which

is at odds with J4, and may also introduce an additional bias in the model water budget, for which clo-

sure problems are already an issue [Haddeland et al., 2011] (J5). Microcanonical models, though less

general in their assumption of explicit conservation of mass, seem preferable for use in JULES from the

viewpoint of J4, J5. The second consideration then, with implications for J5, is the choice of statistical

approximation for modelling the redistribution of the rainfall to be disaggregated - the so-called cascade

generator W , defined as the weights that determine the proportions of the coarse-scale rainfall that get

redistributed to every disaggregated timestep. The simplest assumption - a uniform W [Olsson, 1998] -

has been found to be only narrowly applicable, and the symmetrical beta distribution is the most widely

used formulation [Molnar and Burlando, 2005, Pui et al., 2012, and references therein]. The model

parameters have been found to be scale-dependent [Menabde et al., 1997, Menabde et al., 1999],

and models accounting for this are dubbed bounded cascade disaggregators [Menabde and Sivapalan,

2000]. The most complicated cascade procedures incorporate dependence on both scale and rainfall

intensity [Rupp et al., 2009, Serinaldi, 2010], or employ complicated mixed distributions [Licznar et al.,

2011a,b,c, 2015]. The choice of the exact microcanonical formulation for JULES cannot be done a priori

and requires an analysis of the data, with due consideration of what is sufficient in terms of J5, while

keeping in mind any added complexity in the model formulation1.

Resampling based on the method of fragments would probably be the best choice to satisfy J5 in

an ideal world, as it builds the disaggregated series from fragments of real data, enabling it to most

accurately match its statistics, compared to the aforementioned procedures [Pui et al., 2012, note that

this is the only such intercomparison study known to us]. However, this method supposes that a suffi-

ciently long high-resolution time series is available for resampling, when the goal of the disaggregator

is precisely to avoid this (J3). At the scale of a global use case (J1), if a sufficiently long sub-daily
1As expressed by Aristotle (384-322 BC): We may assume the superiority, other things being equal, of the demonstration

which derives from fewer postulates or hypotheses or propositions [Posterior Analytics, I, 25]
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resolution time series is available and necessary to be present for the method to be employed, then is

it not easier to simply use it to drive the model?

From the above, microcanonical cascades seem to be the only procedure that can satisfy J1,J2,J3,J4,

the question is then one of choosing the right formulation that satisfies J5 to an acceptable standard,

while keeping in mind the model complexity.

2 Methodology

2.1 Choosing a calibration dataset

Before a globally-applicable disaggregator can be implemented, a sufficiently long sub-daily global cal-

ibration dataset is needed. For example, the CMORPH dataset combines gauge measurements with

satellite data from the TRMM platform at a 3h resolution, but is only quasi-global in coverage [Joyce

et al., 2004]. It is theoretically conceivable that a global-scale aggregation of sub-daily gauge records

can be assembled, but the quality assurance and data standardisation challenge it presents is beyond

the scope of this work. The NASA GPM mission offers a uniquely high-resolution 30-minute global

dataset, but only offers data from 2014 onward [Huffman et al., 2013]. Reanalysis data can be used, yet

the precipitation products therein may be strongly dominated by the host models’ physics schemes, with

known limitations in their ability to reproduce precipitation for regions with dominant convective rainfall

regimes [Adler et al., 2001, Bosilovich et al., 2008]. However, to the knowledge of this author, they seem

to be the only alternative that is both global and at a sub-hourly scale. One such dataset is WFDEI -

the WATCH Forcing Data methodology applied to ERA-Interim data [Weedon et al., 2014]. This dataset

is chosen due to its sufficient spatio-temporal coverage, but also because it is already familiar within

the JULES community (e.g. Warszawski et al. [2014]). With regards to comparing the disaggregated

outputs to real-world (e.g. gauge) precipitation, the error introduced by the disaggregator would be in

addition to the error already present in WFDEI. However, as the latter is already known to the modelling

community, disentangling the effects of the former would be easier.

The WFDEI-GPCC dataset is chosen (i.e. bias-corrected using GPCC measurements) due to the

reasons outlined in Weedon et al. [2014]. The data is at 0.5◦spatial and 3-hourly temporal resolution

and spans 1979-2010, with rainfall and snowfall rate products provided separately. At this preliminary

stage, the analysis was performed only for the rainfall rate product2 (kg/m2s), which was converted to

a 3-hourly rainfall accumulation (mm/3h). In order to perform a global-scale analysis but circumvent

the large computational time required for processing the entire 0.5◦x0.5◦model grid, we adopted the

regional classification scheme of Giorgi and Francisco [2000]. Within each Giorgi region in Figure 1, 3%

of the area, as defined by the bounding box of each region, was sampled, which yielded a total of∼3000

points. This was found to be both a reasonable sample in terms of global coverage and small enough

so as not to take overly long to compute. As Giorgi and Francisco [2000] exclude the northern-most
2It is pertinent to note that to the knowledge of this author, no studies in the disaggregation literature address the explicit

disaggregation of snow.
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Figure 1: Map of sampled points for this analysis within each Giorgi region. For abbreviations, see
Giorgi and Francisco [2000]

part of Russia, we included this as region ”NMA” (Northern-most Asia) for the sake of completeness.

Note that under the regional definitions of Giorgi and Francisco [2000] there is a slight overlap between

regions SAS and SEA. This does not mean that the points therein have been included in the analysis

twice, it simply makes it ambiguous as to which region they belong to.

2.2 Cascade model formulation

Starting from scale n = 0, a discrete microcanonical multiplicative cascade procedure distributes the

quantity (mass of rainfall in our case) to be disaggregated to successively smaller subdivisions with

a branching number b. We use the most parsimonious and widely used case, in which the original

resolution is halved at each cascade scale n, i.e. b = 2. The ith subdivision at level n is denoted ∆n,i,

there being i = 1, ..., bn subdivisions at level n. Distributed mass is then the product of a multiplicative

process at all levels n, with the mass of ∆n,i given as:

µn(∆n,i) = R0

n∏
j−1

Wj(i) for i = 1, 2, ..., bn; n > 0 (1)

R0 is the initial depth of rainfall at n = 0 and W is the cascade generator with E[W ] = 0.5 and

Wε[0, 1]. Wj is essentially a weight that determines the portion of Rn that is distributed to ∆n+1,i. As

there are bn+1 subdivisions at level n+ 1, the same number of weights must be generated. For a given

∆n,i timestep, there are two corresponding timesteps ∆n+1,2i−1, ∆n+1,2i, and for mass to be conserved

exactly in the redistribution, the corresponding weights Wj(2i − 1) + Wj(2i) = 1. Wj then denotes the

distribution of weights for a transition between two given cascade levels, i.e. j in Equation 1 stands for
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Figure 2: Linear goodness-of-fit for the log-log q-order moment relationships with scale for every Giorgi
region. Calculations for each point are separate, these are subsequently aggregated into boxplots.
Whiskers are 5th,95th confidence intervals and represent the spread of points within each region. A
higher spread simply represents more variability within a region.

n→ n+ 1. Figure 3 shows a worked example.

For all properties of the cascade to be evaluated, the calibration data at the finest resolution λnmax
is

taken and then aggregated up to successively coarser scales with b = 2, i.e. the cascade from Figure 3

is inverted, with every two timesteps at n+ 1 that correspond to n being summed to make up the rainfall

volume of Rn at a given timestep. In our case λnmax
= λ3 = 3h

In order for the cascade procedure to be applicable, we need to establish that scaling behaviour

indeed exists in the WFDEI rain field. We define the sample moments3 of the data as:

Mn(q) =
bn∑
i=1

µq
n(∆n,i) (2)

q ≥ 1 being the moment order. In multiplicative cascades, the sample moments should obey a log-

log linear relation to the scale of resolution λn (e.g.λ0 = 24h, λ1 = 12h etc.) (e.g. Olsson [1998]). We

examine this for every sampled point and every moment order q by fitting a least-squares regression

and evaluating the R2. Resolutions up to 192h are used and moments of integers from 0 to 5. For the

remainder of the model formulation and parameterisation, only resolutions up to 24h are used, as these
3Note that these are related to but different from the mean, variance, etc., which are sample moments centered around the

mean.
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n=0; λ0 = 20 

n=2; λ2 = 2-2 

n=1; λ1 = 2-1 

R0 (1) 

W0 →1 (2 ⋅ 1 – 1 = 1) 

μ1 (Δ1,1) = R0 (1) W0 →1 (1) 

W0 →1 (2 ⋅ 1 = 2) 

μ1 (Δ1,1) = R0 (1) W0 →1 (2) 

 

W1 →2 (1)  W0 →1 (1)  W1 →2 (2)  W0 →1 (1)  W1 →2 (4)  W0 →1 (2)  W1 →2 (3)  W0 →1 (2)  

μ2 (Δ2,3) = R0 (1) W1 →2 (3)  W0 →1 (2) 

μ2 (Δ2,4) = R0 (1) W1 →2 (4)  W0 →1 (2) 

 

μ2 (Δ2,1) = R0 (1) W1 →2 (1)  W0 →1 (1) 

μ2 (Δ2,2) = R0 (1) W1 →2 (2)  W0 →1 (1) 

 

Figure 3: Worked example of a multiplicative cascade with b = 2 as per Equation 1.

are the ones of practical interest. It can be seen from Figure 2 that the power-law relation of scale and

moments is very well respected. There is more divergence toward higher-order moments, which is a

known feature in such analyses, as higher order moments are increasingly strongly dominated by more

extreme values [Olsson, 1998]. We do not assess the data’s scaling properties any further and instead

focus on the practical use and implementation of the cascade procedure. The ERA-Interim precipitation

product has been shown to exhibit scaling behaviour [Lovejoy et al., 2012] and since WFDEI-GPCC is

based on this, we expect the scaling property to be preserved in our calibration data.

It then remains to be determined what the appropriate distribution for W should be. In a micro-

canonical cascade, the distribution of W is identical to that of the ”breakdown coefficients”, which are

simply the proportions of Rn that get redistributed to its two corresponding timesteps at n + 1, and are

calculated from non-overlapping adjacent pairs of rainfall measurements:

Wj(2i− 1) =
Rn(i)

Rn+1(2i− 1)
; Wj(2i) =

Rn(i)
Rn+1(2i)

; i = 1, ..., N − 1 forRn(i) 6= 0 (3)

N being the length of the time series at scale n. Note that Wj is determined only for timesteps at n

that have a non-zero rainfall volume, because from the inversion of the cascade, if the corresponding

timesteps at n + 1 both have zero rainfall volumes, then division by zero would occur in Equation 3.

The intermittency and variability of rain are parameterised independently for every scale transition j.

The intermittency of rain is determined by the portion of the Wj distribution equal to 0 or 1, while the

variability is Wjε(0, 1). The intermittency parameter p0,j is simply the proportion of Wj = 0, 1 to the total

number of Wj instances, i.e:

P (Wj(2i− 1) = 0, 1 orWj(2i) = 0, 1)). (4)

The parameterisation of the variability parameter is achieved by using a statistical distribution which

allows E[W ] = 0.5 and Wε(0, 1). We computed the empirical Wj distribution for every WFDEI sample

point for scale transitions between 24h to 3h (Figure 4). From this we can see that there is a tendency

with increasing resolution toward W = 0.5 for all regions. To be able to represent the shape of the
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Wε(0, 1) distribution, we adopt the symmetrical beta distribution as a first-pass attempt as in Molnar

and Burlando [2005], plus also parameterise the model separately at every scale - i.e. a bounded

cascade4. The symmetrical beta distribution has a single parameter a, which can be parameterised via

the method of moments, which is the usual approach in the disaggregation literature (e.g. Pui et al.

[2012]):

a =
1

8Var(Wj)
− 0.5 (5)

With the symmetrical beta distribution defined as:

f(w) =
1

B(a)
wa−1(1− w)a−1 (6)

This distribution satisfies E(W ) = 0.5 and has a variance Var(W ), where W in this case is only the

non-intermittent part of the cascade. The beta distribution has the convenient property of adopting a bell

shape for a > 1, a U-like shape for a < 1 and is identical to the uniform distribution at a = 1. In the case

of b = 2, we need to generate two values of Wj (Wj(2i−1) and Wj(2i)) so that Wj(2i−1) +Wj(2i) = 1

and are distributed according to Equation 6. For this, we generate two independent gamma-distributed

numbers x1 and x2 with parameter a. Their ratios Wj(2i − 1) = x1/(x1 + x2) and Wj = x2/(x1 + x2)

satisfy both requirements [Menabde and Sivapalan, 2000]. The parameters are estimated using the full

time series for every point.

2.3 Model validation

The common way to test the performance of disaggregators is to take the calibration data at the finest

resolution λnmax
and aggregate it to the resolution from which dissaggregation would be performed in

the operational case - i.e. in our case λn3 = 3h is aggregated to λn0 = 24h. It is then disaggregated

back to 3h and the distributions are compared. Using the full sample for calibration is the preferred

approach in the disaggregation literature, with evaluation then performed via comparison of attributes

of the data that are not modelled directly, but reflect the ability of the model to match the properties of

the real data [Stedinger and Taylor, 1982]. In our case, we focus on:

• The cumulative distribution of non-zero rainfall. In order to be able to jointly represent the results

for every point in every region, we evaluate the performance for the 5th, 25th, 50th, 75th and 95th

quantiles

• The variance of the data

• The average annual maximum and its standard deviation

• The lag-1 autocorrelation

• As preliminary analysis showed that the WFDEI data displays a threshold for non-zero rainfall that

appears consistently higher than what would be expected for a continuous distribution (which is
4Note that in Molnar and Burlando [2005] the dependence of the model parameters with scale is abstracted via a log-log linear

relation. In our case, for simplicity, we simply adopt a separate parameterisation at every scale
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Figure 4: Empirical distributions of W for every sampled WFDEI point within every Giorgi region. Each point
distribution was quantised into bins as in the figure and then the individual point value for each bin was aggregated
into a boxplot. Whiskers are 5th,95th confidence intervals and represent the spread of points within each region. A
higher spread simply represents more variability within a region.
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be the case for the disaggregated data), we also evaluate the magnitude of minimum non-zero

rainfall

• We evaluate the 5th, 25th, 50th, 75th and 95th quantiles of the distributions of rainfall event lengths

(number of 3h timesteps) and volumes (mm). An event is defined as a sequence of non-zero

timesteps (e.g. Olsson [1998])

Finally, in order to evaluate the performance of the disaggregator W distribution to match that of

the data, we generate 100 synthetic distributions with the model parameters at every point, with length

Nj = NWj
and evaluate the ensemble averages and standard deviations. NWj

is the number of weights

at a given scale transition j. As Wj is defined only for non-zero rainfall at scale n (Equation 3), it corre-

sponds to the the number of non-zero rainfall timesteps at n, and is used as a shorthand for this later

in this report. ”Ensemble” refers to the statistical aggregation of the individual synthetic runs. Unless

otherwise noted, for all analyses, we present the ratio of the disaggregated statistics (WFDEI disagg) to

that of the original data (WFDEI ), which gives an indication of the magnitude of over or underestima-

tion of the disaggregator. This is preferred because it allows for easier visualisation, but also because

it offers a way to purely compare the relative performance of the model across studies, as comparison

of magnitudes would also involve any differences between the WFDEI reanalysis and the station data

used in the comparison studies, and is not the goal of this report.

Other studies that look at a bounded microcanonical model based on a beta distribution with a

formulation close to ours are those of Molnar and Burlando [2005], Pui et al. [2012], Rupp et al. [2009]

and Licznar et al. [2011b]. For these, the target resolution is 10min (n = 7), 1h (n = 3), 1h (n = 5) and

5min (n = 8) respectively. When disaggregating from a daily or quasi-daily accumulation (as is needed

if the resolution at nmax does not allow aggregation to exactly 24h), n = 3 is roughly equivalent to 3h.

As will be revealed in the next section,the mismatch between the modelled and empirical distributions of

W increases with resolution and thus n. We expect the ratio of mismatch in the model to propagate as

n increases comparatively between studies, regardless of the calibration data’s original resolution and

the target scale, as it is a product of the mismatch of the multiplicative weighting as the scale increases.

Thus, focusing on n = 3 allows us to compare these studies with ours. Of these studies, Molnar and

Burlando and Licznar et al. fall within NEU, while Pui et al. and Rupp et al. are within AUS. We will refer

to these studies where the same or similar statistics are studied. We use WebPlotDigitizer [Rohatgi,

2014] for digitising the figures from these studies referred to in this document. As no graphics digitising

software is perfect, all numbers cited are approximate.

3 Results

3.1 The disaggregator distribution

Figure 5 shows the average performance of the disaggregator for matching the empirical W distribution,

while Figure 6 shows the standard deviation between ensemble runs. For W = 0, 1, as governed by
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the intermittency parameter p0, we can see that the standard deviation between disaggregated runs is

consistently very close to zero (Figure 6) and that it is reproduced very close to 1:1 across all regions

(Figure 5). As p0 is explicitly set to the probability of W = 0, 1 in the calibration data (Equation 4)

for every scale, we expect this to be reproduced 1:1. However, for Wε(0, 1) according to Equation 6

(Figure 5), we see that while at the 24h resolution the distribution is generally matched well, there is a

tendency for underestimation of W = 0.5, which strengthens with increasing resolution. It can be seen

that the disaggregator generally underestimates toward the centre of the distribution and overestimates

towards the tails with the exception of W = 0.1, 0.9. Looking at the standard deviations, these are

noticeably high for regions GRL (Greenland), SAH (Sahara) and to slightly lesser extents SSA (Southern

South America) and the Mediterranean (MED). These regions are all arid regions (especially GRL and

SAH, but also true for certain areas of SSA and MED) with rare instances of rainfall and thus a low

number of W instances. When generating a W approximation via Equation 6 with a given a value and

N = NW , we would expect a convergence toward a stable shape as NW →∞. With a low NW , we can

thus expect considerable variability between ensemble members, which explains the large standard

deviations observed. This also explains the very large (e.g. up to 14x for GRL) overestimations in

Figure 5 - with only a limited NW for a given point, we can expect certain bins to be nigh-empty, but this

cannot be accounted for by a continuous distribution, so overestimation is observed. This mismatch of

the empirical distribution will have implications for the rest of the results, discussed below. There is a

possibility that the result for GRL at least is due to the fact that the bulk of the precipitation in that region

is in the form of snow, which is a separate WFDEI product and not under analysis, though we have not

examined this.
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Figure 5: Ratio of the ensemble average W for the disaggregator to that of the empirical distribution. The distri-
butions for every point were quantised into bins, calculations carried out separately and aggregated into boxplots.
Whiskers are 5th,95th confidence intervals and represent the spread of points within each region. A higher spread
simply represents more variability within a region. A value above 1 implies overestimation of the empirical statistic.
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Figure 6: Standard deviation of the ratio of the ensemble W to that of the empirical distribution. The distributions
for every point were quantised into bins, calculations carried out separately and aggregated into boxplots. Whiskers
are 5th,95th confidence intervals and represent the spread of points within each region. A higher spread simply
represents more variability within a region.
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Figure 7: Ratio of minimum non-zero rainfall of the disaggregator to that of the empirical distribution
for resolution 3h. Calculations carried out separately for every point and aggregated into boxplots.
Whiskers are 5th,95th confidence intervals and represent the spread of points within each region. A
higher spread simply represents more variability within a region.

It is evident that the high variability of the model in very dry areas could pose an operational issue. A

way to circumvent this would be to introduce a cross-validation procedure in the generation of the model

parameter ancillaries for ultimate use in JULES. An iterated leave-out procedure can be used to test the

robustness of the parameter estimates at every point. With an appropriately-defined threshold of ac-

ceptable variability, the parameters at points below this threshold can either be set to those of a random

adjacent point or their average. Alternatively, the disaggregator in this form can simply be switched off

and the uniform disaggregation procedure currently existing in JULES (precip_disagg_method = 4)

used for these points.

For the rest of the analysis, only figures for resolution λn=3 = 3h are shown. The general pattern of

increasing magnitude of mismatch with resolution in the analysed statistics reflects that of W .

3.2 Minimum non-zero rainfall

Exploratory analysis revealed that the WFDEI data seems to exhibit a thresholding of non-zero rain-

fall magnitudes, and our overall analysis in Figure 7 supports this. For all regions, the disaggregator

strongly underestimates the rainfall threshold of WFDEI, which is expected as it is governed by a con-

tinuous distribution. Some anomalous points exist for SAH and SSA with overestimations, which may

be because the particular point is modelled in WFDEI with near-zero rain for the entire 30-year period

(some exploratory analysis revealed the presence of at least 1 such point). The WFDEI thresholding

would depend on its rain-snow adjustment, gauge catch corrections and monthly total adjustment [Wee-

don et al., 2011], while in the disaggregator this is stochastic and purely a function of the multiplicative

weighting of the initial rainfall at the 24h scale. In regions such as SAH, with low number of rainfall
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Figure 8: Ratio of quantiles of non-zero rain of the disaggregator to that of the empirical distribution
for resolution 3h. Calculations carried out separately for every point and aggregated into boxplots.
Whiskers are 5th,95th confidence intervals and represent the spread of points within each region. A
higher spread simply represents more variability within a region.

instances NW and high probability of zero rain, it is more probable that an initial rainfall volume at n = 0

is progressively assigned weights tending toward 0 or 1 as the cascade progresses, thus ultimately

yielding a higher value at the 3h scale. This may explain the individual instances of overestimation. It is

known that disaggregators can produce rainfall minima below those of the calibration data, which is de-

pendent to the accuracy of the measurement instrument (typically gauges). However, this is sometimes

dismissed as unimportant in the literature, as most studies are primarily concerned with disaggregation

for use in urban hydrology [Molnar and Burlando, 2005]. Obviously, the requirements of the climate

modelling community may differ and the issue may need to be addressed. In point-process disaggre-

gators, where zero rainfall cannot be explicitly modelled, the calibration data’s threshold is explicitly

enforced (e.g. Rodriguez-Iturbe et al. [1988]). However in our case, the problem is not the presence

of zeros, the proportion of which is explicitly modelled and preserved (and which a simple thresholding

procedure would modify)(Section 3.1). An example fix that would account for the mismatch in thresh-

olding and avoid modifying zeros could be taking the non-zero rainfalls below the threshold of WFDEI

and randomly adding them to the timesteps at the lowest quantiles.
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3.3 Quantiles of non-zero rainfall

Figure 8 indicates that the model is overestimating the ninety-fifth quantile (Q95) by a factor of ∼1.5

across sites, except for SAH, where it is closer to 1:1, plus Q5 is less strongly underestimated than

for other regions. As the disaggregator conserves water exactly, an overestimation in one portion of

the distribution would need to be made up for by underestimation in another - i.e. the general pattern

of overestimation toward Q95 would mean that less rainfall is available to be distributed over lower

quantiles, thus underestimating there. Note that the model will preserve the mean of the data exactly,

which is in the region of >∼Q75, as is expected for a right-skewed distribution. The mismatch in

thresholding from Section 3.3 would lead to allocating more rainfall volume to the lowest-most quantiles,

as the disaggregator would be generating more smaller values, but it was found (not shown) that the

volume mismatch introduced between zero and the WFDEI threshold is too low (in the range of a

few mm at most) to have contributed to the observed pattern of mismatch toward higher quantiles

in any significant magnitude. However, it may partially be offsetting the effect of overestimation at

higher quantiles for very dry points such as in SAH, which may explain the individual instances of

overestimation of Q5 there.

Molnar and Burlando [2005] find that their bounded microcanonical cascade also displays overes-

timation for most of the CDF and nearing a factor of 2 towards the highest quantiles (Figure 5 in their

paper). However, a similar underestimation of the median and below does not occur. They display

the data for n = 7, so we expect that the result for n = 3 would be a somewhat lower mismatch and

closer to our observed value. Rupp et al. [2009] also find a factor of ∼ 2 overestimation but for n = 5

(Figure 13 in their paper). Licznar et al. [2011b] however report an underestimation of ∼ 0.6 toward the

highest quantiles (Figure 9 in their paper). We suspect this is due to the excess of W = 0.5 at the 5min

resolution for which their results are presented - while the beta distribution underestimates W = 0.5, it

also overestimates W for the shoulders, thus yielding an overall underestimation at 5min. For n = 3,

we can see that the pattern of mismatch is more similar to ours, so we could expect overestimation in

that case, but are unable to verify this due to insufficient information presented in the paper (Figure 4 in

Licznar et al.).

3.4 Variance

Figure 9 shows a median factor of ∼2 overestimation in the disaggregated statistic across regions. The

failure of the model to account for the probability density toward W = 0.5 (Figure 5), i.e. the centre of

the distribution (Equation 6) implies a higher probability density toward the tails, which translates into

a higher variance. Even with taking into account the spread around the median, very few points have

variances close to 1:1. Pui et al. [2012] find a similar mismatch in the beta distribution at n = 3 and

corresponding factor of ∼2 mismatch in the variance for four points in AUS.
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Figure 9: Ratio of variance of the disaggregator to that of the empirical distribution for resolution 3h.
Calculations carried out separately for every point and aggregated into boxplots. Whiskers are 5th,95th
confidence intervals and represent the spread of points within each region. A higher spread simply
represents more variability within a region.

3.5 Annual maxima

Mean annual maxima and their standard deviations are overestimated by a median factor of near 2

across regions (Figure 10, Figure 11). Pui et al. [2012] examine the intensity-frequency behaviour of

their model and find significant overestimation of maxima, which is explained by a similar mismatch

of the beta distribution observed and consequent inflated variance, meaning a lower probability of W

toward the centre of the distribution compared to the calibration data, thus a higher probability of allo-

cating larger rainfall volumes to individual timesteps at the target scale. At a scale of ∼ 3h Molnar and

Burlando [2005] show inflation of maxima by a factor of ∼ 1.3, somewhat close to our median estimate

of ∼ 1.8 and within the range of variation for the region. The standard deviation however is underes-

timated by a factor of ∼ 0.6, while for us it is overestimated close to 2x for NEU. However, the annual

maxima and standard deviations at n = 3 are reproduced close to 1:1 in Licznar et al. [2011b]. This

does not fall within the range of values observed for NEU maxima and is only within the tail end of the

observed values for standard deviations. Evidently, there can be large variability even with a region as

defined in Figure 1 and is it unknown why a discrepancy in the model performance is observed both

between studies and compared to our model.

3.6 Lag-1 autocorrelation

Our model is not explicitly formulated in a way that would preserve the autocorrelation of the data.

However, Molnar and Burlando [2005] point out that cascade models should preserve a degree of serial

correlation due to the nature of the cascade process. Our model underestimates lag-1 autocorrelation

by a median factor of 0.25 across regions (Figure 12), with noticeable exceptions for individual points in
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Figure 10: Ratio of average annual maxima of the disaggregator to those of the empirical distribution
for resolution 3h. Calculations carried out separately for every point and aggregated into boxplots.
Whiskers are 5th,95th confidence intervals and represent the spread of points within each region. A
higher spread simply represents more variability within a region.

Figure 11: Ratio of annual maxima standard deviations of the disaggregator to those of the empirical
distribution for resolution 3h. Calculations carried out separately for every point and aggregated into
boxplots. Whiskers are 5th,95th confidence intervals and represent the spread of points within each
region. A higher spread simply represents more variability within a region.
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Figure 12: Ratio of lag-1 autocorrelation of the disaggregator to that of the empirical distribution for
resolution 3h. Calculations carried out separately for every point and aggregated into boxplots. Whiskers
are 5th,95th confidence intervals and represent the spread of points within each region. A higher spread
simply represents more variability within a region.

SAH, which we again attribute to the low number of rainy instances, which gives a higher chance for the

disaggregated series to display a pattern that is more persistent than that of the original. In comparison,

the factor of underestimation in Pui et al. [2012] is 0.6 for AUS (Figure 9 in their paper), outside the

range of values we have obtained. The lag-1 underestimation for Rupp et al. [2009] is a factor of ∼ 0.5,

also not in the range of values we have observed. Thus, the general fact that our model underestimates

the lag-1 autocorrelation is as expected of a cascade procedure, but we are unsure why our result is not

in the range of those from the literature, be as it may that the sample to which we compare is essentially

of 5 points. Of potential importance for use in JULES, it should be noted that this result means that, for

example, the diurnal cycle of the data is not necessarily preserved.

3.7 Rainfall events

For the distribution of individual rainfall event lengths, we see that the shortest event lengths (Q5) are

reproduced 1:1 across all regions, with a single exception for a point in AMZ.

For Rupp et al. [2009], the results for underestimation of quantiles Q5 to Q95 are factors of 0.77,

0.61, 0.37, 0.35 and 0.39 respectively, though for n = 5. Our results compare favourably, as the lowest

factor of underestimation for AUS is ∼ 0.4, the median across regions roughly 0.6 (Figure 13). Under

the assumption of deterioration of results with increasing n, we may tentatively suppose that the values

of Rupp et al. for n = 3 would be in the same range as the ones we report. We can compare this

to the somewhat different model of Olsson [1998], who also finds underestimation of longer events at

n = 4, plus underestimated autocorrelation. Event lengths will depend on the intermittency parameter

p0, as it governs the occurrence of zero values in the time series, which terminate an ”event”. We
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have seen that p0 is preserved (Section 3.1, Figure 5), yet the model still fails to reproduce the full

distribution of event lengths, which implies that this is to do with the stochastic nature of the cascade

process. We have seen that the lag-1 autocorrelation is underestimated (Section 3.6, Figure 12), thus

the seriality of the data is not preserved, and it is then not surprising that the lengths of sequences

of non-zero values are not captured for longer sequences. It is noteworthy however that some points

actually display overestimations, mostly for median events and above but not exclusively (e.g. a point in

SAS).

The underestimation of event lengths implies that too many individual ”storms” are generated. With

explicit conservation of mass, spreading the rainfall volume from n = 0 over more storms than in the

original data should result in smaller (underestimated) individual event volumes. From Figure 14, if

we look at the median across regions, the underestimation factor roughly ∼ 0.7, comparable to that

for lengths Olsson [1998]. However, in some regions e.g. SEA, SAS it is actually close to 1:1. The

underestimation for volumes however is not so consistent for some regions, with practically all regions

displaying at least some points with overestimation, up to 4x in AMZ for example. We suspect that

the pattern of mismatch of individual timestep magnitudes from Section 3.3 contributes to this, as it

is expected that timesteps with larger volumes would contribute disproportionately more to an event

volume, so it then becomes possible for overestimations as those observed to occur. The smallest

event quantiles would be thus composed of almost exclusively smaller-magnitude timesteps, which can

explain their stronger underestimation, as lower timestep magnitude quantiles are also underestimated.

4 Discussion

If we are to summarise, it appears that our disaggregator’s performance is of mostly, though not com-

pletely, similar performance compared to the literature, keeping in mind the spatially limited sample

therein. As the model is only governed by the distribution of W at every scale, most discrepancies ulti-

mately stem from there. It has been observed that the W distribution for a given interval of rain can be

dependent on the state (dry/wet) of its adjacent intervals. Olsson [1998], Güntner et al. [2001] account

for this by modelling W for four different interval classes separately. W has also been found to de-

pend on rainfall intensity [Olsson, 1998, Güntner et al., 2001, Veneziano et al., 2006, Rupp et al., 2009,

Serinaldi, 2010]. The dependence on magnitude is partially accounted for by Olsson [1998], Güntner

et al. [2001] by modelling W separately for intensities above or below the average. Over and Gupta

[1994] conditioned W on the intensity of rain at the ”mesoscale”, which they took as the coverage of

a radar frame (for spatial rainfall in their case), but Veneziano et al. [2006] argues that this definition

does not have physical or statistical significance, so instead varies the cascade parameters conditional

on n. Rupp et al. [2009] takes our version of the microcanonical model and adds a dependence on the

intensity of rainfall at n − 1. They find that conditioning p0 alone accounts for most of the discrepancy

introduced by the simpler timescale-only dependent beta. Rupp et al. captures these dependencies

via fitted relationships, the model having 6 parameters in total, which is a departure from the simple
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Figure 13: Ratio of quantiles of rainfall events lengths of the disaggregator to that of the empirical
distribution for resolution 3h. Calculations carried out separately for every point and aggregated into
boxplots. Whiskers are 5th,95th confidence intervals and represent the spread of points within each
region. A higher spread simply represents more variability within a region.
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Figure 14: Ratio of quantiles of rainfall event volumes of the disaggregator to that of the empirical
distribution for resolution 3h. Calculations carried out separately for every point and aggregated into
boxplots. Whiskers are 5th,95th confidence intervals and represent the spread of points within each
region. A higher spread simply represents more variability within a region.
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2-parameter (or 4, if we parameterise scale dependence instead of estimating at every n) model used

here, but this is also the same amount of models such as Olsson [1998] which however do not account

for scale and intensity dependence. Point-process models also have similar amounts of parameters

(Section 1) but with substantially more difficult fitting procedures and with need for iterative methods.

It is interesting to note that the analysis by Rupp et al. somewhat implies that at least some of the

observed dependence on rainfall interval class may be due to the discrete sampling nature imposed

by the cascade, where a semicontinuous and irregularly-timed process such as rain is broken up into

discrete equally spaced intervals, which may imply that procedures such as Olsson [1998] that explicitly

attempt to account for this are unwarranted. However, the dependence on intensity may reflect distinct

atmospheric processes, and aggregating these in the analysis of the entire time series may undesirably

average-out the parameters [Harris et al., 1997]. Intensity dependence would also capture any seasonal

variability, which some authors have accounted for by seasonal parameterisation [Hingray and Haha,

2005]. Serinaldi [2010] manages to introduce more parsimony in the Rupp et al. model by representing

both scale and intensity dependence as a single power-law relationship, though its global transferability

is unknown.

The authors cited prior note that the ”physical” basis of these models becomes strained and that

they are no longer ”multifractal” in the true sense [Rupp et al., 2009, Serinaldi, 2010]. However, they

registered improved representation of statistics such as wet/dry spells, autocorrelation and the repro-

duction of the CDF. [Veneziano et al., 2006] argues that if these models can account for the observed

departures from multifractality in the data, and can produce time series that are irregular and ”rain-like”

enough, though not necessarily truly multifractal, then they may have utility in the operational case. In

the JULES use case, but as well in any model, a physical basis is preferred (J2), so then it remains to

be determined what the acceptable trade-off between this and reproduction of the rainfall statistics is

(J5).

4.1 Potential future work

The single most important item of further work is an analysis of the performance of JULES when run

with the disaggregated data, as it will review whether more complicated model iterations are required,

as discussed above.

We have performed a very limited analysis of the scaling behaviour of the WFDEI-GPCC data. It is

known that ERA-Interim displays global scaling behaviour for scales up to approximately 5 days [Lovejoy

et al., 2012], so we expect similar performance for WFDEI-GPCC. However, future work can explicitly

assess this. Analysing the data’s conservation exponent H would elucidate whether our a − priori

microcanonical assumption is empirically valid, as Lovejoy et al. [2012] actually find that H 6= 0, which

rules out models based on pure multiplicative cascades, such as the microcanonical formulation. Estab-

lishing the temporal effective outer scale of the cascade in WFDEI-GPCC would give us a bound for the

applicability of a multiplicative cascade disaggregator. Comparing this and the fractal codimension (a

measure of the intermittency near the mean) to the results from Lovejoy et al. [2012] can show whether
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the addition of WATCH de-biasing to ERA-Interim improves the match in scaling properties as com-

pared to observations, which is a separate issue from this project, but nevertheless interesting. What

is more, comparing the empirical and modelled scaling properties of the data allows for identification of

any discrepancies in the scaling behaviour, which can inform the adoption of model formulations such

as those of Rupp et al. [2009], Serinaldi [2010].

Finally, the JULES use case also encompasses impact studies in the climate change future. Rainfall

patterns and their intensity are expected to change with rising global temperatures, yet our disaggrega-

tor (and the vast majority of disaggregators in the literature) are temporally stationary - their parameters

only reflect the rainfall within the calibration set. For use in multiplicative cascades, two studies are

known to this author that seek to address this stationarity. Lisniak et al. [2012] attempt to address this

by an additional layer of classification for the cascade generator W, with separate parameterisations of

its probability of occurrence for each class. These classes are based on circulation patterns, which are

objectively classified using reanalysis data for large-scale atmospheric properties (relative humidity at

different pressure levels and vorticity at 850hPa in their case). The dependence of W on the circulation

pattern is assumed stationary, but in a GCM case, the change in relative frequency of occurrence of the

different circulation patterns then changes the relative frequency in which every parameterisation of W

is used. Thus, different types of rainfall events, as classified, would occur more or less often depending

on how the large-scale atmospheric properties change in the GCM run. However, Lisniak et al. do

not actually find an improvement in their model, but rather take a lack of deterioration in their results

with this added degree of freedom as satisfactory. This approach also has operational implications, as

adding more classification classes means binning the data into more categories. Parameter estimation

would become increasingly difficult with a decrease in timesteps in a class, as is already the case in our

model for dry areas (Section 3.1).

A different approach is that of Bürger et al. [2014], who propose a proof-of-concept approach for

incorporating the influence of temperature on rainfall extremes from the Clausius-Clapeyron relation

by modifying the model probability of intermittency (p0). They incorporate a temperature dependence

via a sigmoid function with two fitted parameters. In the limited scope of their study, they report good

results. However, their study implicitly assumes future relative humidity is roughly representative of

that currently. They also do not provide a fitting procedure, but rather use a trial-and-error approach

within the scope of their paper, with the fitting of the sigmoid being separate to that of the cascade,

though it would be preferable if these are jointly fitted. Further still, only p0 is modified, though if there is

also a potential future change in the variability of rainfall, this is not accounted for. Finally, the authors

themselves note that their model is in a ”rather arbitrary state” and requires further refinement, e.g. for

use in impact studies. Neither approach has seen any follow-up in the literature so far.
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5 Conclusion

This document presents a preliminary evaluation of a disaggregator based on multiplicative cascades

for the WFDEI-GPCC rainfall (and not snowfall) product, disaggregating 24h rainfall accumulations to

a 3h resolution with explicit conservation of mass. The model is parsimonious, as it is based on only

two parameters, governing the intermittency and variability of rainfall. These parameters are estimated

separately at every scale of the cascade process. The intermittency of rainfall is estimated directly

from the data, while the variability is parameterised via a symmetrical beta distribution. Analysis was

performed for regional subsamples of the WFDEI-GPCC grid for disaggregating its entire 30-year rainfall

record.

The disaggregator overestimates larger magnitudes in the CDF of empirical rainfall and underesti-

mates lower magnitudes. The variance, and annual maxima of the data are overestimated, the lag-1 au-

tocorrelation underestimated. Shorter rainfall event lengths are generally reproduced but longer events

are underestimated. Rainfall event volumes are generally underestimated but this is not necessarily

consistent for every analysed point, with overestimations also possible. The general mismatch of the

model statistics with those of the calibration data is linked to the failure of the beta distribution to account

for the probability density toward the centre of the empirical intermittency distribution, though some dis-

crepancy may also be introduced due to the nature of the random cascade formulation. Overall, the

model’s performance is roughly similar to that of a limited number of studies known to us that use a

similar formulation, though we find that the performance at least for standard deviations of annual max-

ima and the lag-1 autocorrelation is outside the range of results from the literature. Some operational

issues are identified, such as parameter instability for very dry points in WFDEI, as well as potentially a

mismatch in the thresholding of minimum non-zero rainfall. Simple procedures to account for these are

briefly outlined.

Areas of further work are discussed, with the most pertinent being an evaluation of the model for

use in JULES.
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