=

Numerical Weather Prediction

Explicitly accounting for observation error in categorical
verification of forecasts

Forecasting Research Technical Report No. 456

Neill E. Bowler

email:nwp_publications@metoffice.gov.uk

www.metoffice.gov.uk © Crown copyright




Explicitly accounting for observation error in
categorical verification of forecasts

Neill E. Bowler*
Met Office, Fitzroy Road, Exeter, EX1 3PB, UK.

March 8, 2005

Abstract

Given an accurate representation of errors in observations it is possible to
remove the effect of those errors from categorical verification scores. The er-
rors in the observations are treated as additive white noise which is statistically
independent of the true value of the quantity being observed. This method
can be applied to both probabilistic and deterministic verification where the
verification method uses a categorical approach. In general this improves
the apparent performance of a forecasting system, indicating that forecasting
systems are generally performing better than they might first appear.

A major problem in the area of weather forecasting is caused by deficiencies in
the observing network, either through the imperfect coverage of the observational
network or through errors in the observations themselves. These deficiencies con-
tribute to the initial condition uncertainties that have been the subject of great
study [5]. Comparatively little has been written about the effect of observation
errors on the verification of forecasts. Ciach & Krajewski [3] introduced an error
separation technique for decomposing the mean square error of a forecast into terms
involving the error in the observations and the error in the forecast. Anderson &
later authors [1, 4, 6] used the rank histogram for verifying ensemble forecasts and
showed how to remove the effect of observation errors from the verification of these
forecasts. In this paper the categorical verification of forecasts is addressed, and it
is shown how one may attempt to remove the effect of observation errors from such
verifications.

1 Sources of errors

The source of observation errors changes dramatically depending on the type of
observation. For example, radar-based estimates of surface rainfall rate are affected
by the height of the radar beam above the ground and the size distribution of
the raindrops, amongst other things. On the other hand the principle source of
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error in a rain-gauge measurement is that the measurement at that point is not
necessarily representative of the rainfall rate at other points - so called representa-
tivity errors. Since Numerical Weather Prediction (NWP) models are formulated
to forecast area-averaged quantities, representativity errors are ascribed as obser-
vational errors, rather than being seen as an inability of NWP models to represent
sub-grid-scale variability.

In this study the imagined scenario is the verification of a forecast of the average
temperature over London against a measurement of temperature at a single location.
The reason for this choice is that the errors in surface observations are better
characterised than the errors in remote-sensed observations. Furthermore, since
the main error in a surface temperature measurement is due to the representation
of small-scale processes the errors in the observations are unlikely to be correlated
between one time and the next and for observations at different locations. Biases in
the observations may introduce a correlation between observation errors at different
times or locations, but provided these biases are known they may be removed. A
serious problem in this and other methods may occur if biases are treated as random
errors.

2 A desirable property of verification scores

An important property of verification scores is that the same score is achieved for
a forecast, whatever the quality of the observational network. The importance of
this property is seen when one considers a perfect deterministic forecast. Given a
perfect observation this forecast would be seen to be perfect. However, any error
in the observational network may obscure this fact, leading to the perfect forecast
being believed to be in error!

One proposal for dealing with observational error would be to treat the observa-
tion as defining a probability density function for the truth and using probabilistic
measures (such as the Brier score) to define the forecast quality [2]. However,
such an approach would penalise a perfect forecast and lead to difficulties when
comparing forecasts verified against different observations.

In general the problem of observational errors leads to the same problem as is
faced in the verification of probabilistic forecasts - it becomes impossible to state
whether a single forecast was “correct”. However, by aggregating a number of
forecasts, as in categorical verification, it becomes possible once again to recognise
the quality of a perfect forecast.

3 Categorical verification

A categorical forecast is defined as one which forecasts whether a particular event will
occur, for example will it rain in London tomorrow? Thus a whole wealth of forecast
information is reduced to a forecast probability for an event to occur. In the case
of a deterministic forecast a contingency table with four entries may be constructed
as is shown in table 1. For a perfect forecast (and error-free observations) only hits



Event Forecast | Event not forecast
Event observed a (hit) b (miss)
Event not observed | ¢ (false alarm) | d (correct rejection)

Table 1: Contingency table for a categorical forecast. A perfect forecast would
have zeroes in the off-diagonal elements.

Event Forecast Event not forecast
Event observed e=(1—pyla+pcc | g=(1—pp)b+ pad
Event not observed | f = (1 — pc)c+ paa | h = (1 — pg)d + ppb

Table 2: The contingency table for forecasts verified against observations, using
the mis-categorisation approach.

and correct rejections would be seen. Innumerable skill scores may be derived from
a categorical forecast [7] and their popularity lies in the simplicity of the verification
method.

Many methods for the verification of probabilistic forecasts also use the cate-
gorical approach. The relative operating characteristic (ROC) uses the same con-
tingency tables as for deterministic forecasts. It is common to calculate the Brier
skill score by partitioning the forecast into a series of probability bins - this parti-
tioning is necessary if the decomposition of this score into reliability and resolution
is required. When forecasts are verified in this manner the same mis-categorisation
and deconvolution approach detailed below may be used for these forecasts.

4 Accounting for observation errors

In the following a method for performing verification of categorical forecasts is
sought which will produce the same results independent of observational errors. If
an observation is in error, the event may have been observed to have occurred
when it did not happen, or vice versa. This means that an event may have been
categorised as a hit when it should have been categorised as a false alarm (see table
1). It is therefore natural to define a probability that a false alarm is mis-categorised
as a hit (p., and similarly for the other three probabilities). If table 1 is taken as the
contingency table when the forecast is verified against the truth, then table 2 gives
the contingency table which would result when verification is performed against
the (noisy) observations. The probabilities of mis-categorisation p, p.c,q4 are related
to the magnitude of the observational error, and e, f,g and h are the observed
contingency table values.

From a corrupted contingency table, such as table 2, it is possible to re-construct
the true contingency table values by solving the set of four equations for a, b, ¢ and
d, provided the probabilities of mis-categorisation are known. Table 3 gives the
reconstructed values, and it is clear that tables 1, 2 and 3 all give the same values if



Event Forecast Event not forecast

(I—ple—p:f (I—pa)g—pah
Event observed (1-pa)(1—=pc)—PaPe (1—pp)(1—pa)—pePa
(1—pa)f—pae (1—ps)h—psg

Event not observed | 7= ~G= 577 | T=p)(i—p2)—pepa

Table 3: Reconstructed contingency table in terms of the measured values and
the probabilities of mis-categorisation.

the mis-categorisation probabilities are zero. So, provided that the probability of an
event being mis-categorised is known, then the contingency table which describes
the verification against truth can be re-constructed. However, the estimation of
these probabilities is not a trivial matter.

5 Estimation of probabilities

In order to estimate the probability that an event is mis-categorised it is convenient
to consider the observation of a continuous variable, such as the temperature. The
reason for considering continuous variables is two-fold; observational errors are of-
ten defined in terms of continuous variables, and they permit the definition of a
probability density function for the observational errors. The error in an observation
is defined as the difference between the observed value and the true value (which is
generally unknown). It is assumed that the error in one observation is independent
of the error in another observation and that they are both independent of the value
of the truth. If this is the case then it is reasonable to define some probability
density of the observational errors, P,.

The true value of the quantity which is being observed can, in general, be de-
scribed as being drawn from some frequency distribution, P;. If, as already assumed,
the observation errors can be treated as additive white noise then the distribution
of the observations, P, may be written as the convolution of the distribution of the
truth with the pdf of the observation errors

PalF) =1 [ " PWIF)P.(e - y|F)dy 1)

where z is the observed value, y is the true value and the distributions have been
conditioned on the event being forecast to occur (F') and 7 is a normalisation
constant. No assumptions have been made about the shape of the distributions and
these may be different for forecasts of the event to not occur. Once the distribution
of the truth has been estimated via the deconvolution, the correct contingency table
values may be estimated by calculating what fraction of this distribution lies above
the event threshold.



Event Forecast | Event not forecast
Event observed 2114 401
Event not observed 386 2099

Table 4: Contingency table for the example forecast when verified against the
truth. Approximately 84% of the forecasts lie in the diagonal elements, which
is close to the figure that would be expected.

6 An example

To demonstrate the deconvolution process an example is considered where all the
data have been simulated and therefore the truth is known. Consider forecast-
ing the average temperature over London, and comparing this forecast with the
climatological temperature. An event is said to have occurred when the average
temperature over London is above the climatological average value. The forecast is
verified against a single observation located in central London, which provides an
unbiased estimate of the average temperature for London.

In the imagined case 5000 forecasts of the average temperature over London are
made, of which § forecast the event to occur. The distribution of the truth is chosen
to be taken from a Gaussian distribution with standard deviation of 2°C. When the
event is forecast to occur (to not occur) the mean of the distribution of the truth is
chosen to be 2°C above (below) the climatological average. The choice of 2°C for
the mean and standard deviation is arbitrary and has been chosen to illustrate this
method. When forecasts are verified against the truth the contingency table is given

by table 4. The expected value for the diagonal elements is @ (1 +erf (%)) ~
2103, and the values seen in the contingency table are close to this. erf is the
normal error function, defined as erf(z) = % Jye vt

The error in the observation is chosen to be taken from a Gaussian distribu-
tion with mean zero and standard deviation of 2°C (this is a typical value for the
estimated error in a surface temperature observation used in the global data as-
similation system of the Met Office). When the forecasts are verified against the
noisy observations the contingency table is given by table 5. Clearly the forecast
appears to perform worse, simply due to the errors in the observations. The ex-
pected value for the diagonal elements of the contingency table in this case is
2590 (1 +erf (1)) ~ 1901, and the observed contingency table values are close to
this.

The contingency table for verification against the observations (table 5) provides
the basis for estimating the values seen in the true contingency table (table 4). In
order to do this the mean and variance of the observed values are measured, from
which the mean and variance of the true values will be estimated. For forecasts
of the event to occur, the observations are estimated to be taken from a Gaussian
distribution with mean 2.054°C above the event threshold, and standard deviation
of 2.898°C. Given that the pdf of the observation error is known to have zero mean
and standard deviation 2°C, the distribution of the truth for forecasts of the event to



Event Forecast | Event not forecast
Event observed 1938 599
Event not observed 562 1901

Table 5: Contingency table for the example forecast when verified against the
observations. Approximately 77% of the occasions lie in the diagonal elements,
which is close to the expected frequency of 76%.

Event Forecast | Event not forecast
Event observed 2091 418
Event not observed 409 2082

Table 6: Contingency table for the example forecast when verified against the
observations, and corrected for the effect of observation error. The statistics are
close to those obtained for the verification against the truth (table 4).

occur, is estimated to have standard deviation 1/2.8982 — 4 ~ 2.097°C. Therefore,
the estimated number of true hits is given by

2500 2.054
Nirue hits = N (1 +erf (m)) ~ 2091 (2)

which is very close to the expected true value. A similar process is followed for
occasions where the event is forecast to not occur, and the full reconstructed con-
tingency table for this set of forecasts is given in table 6. The values in this table
are much closer to the values in table 4 than those in table 5, indicating that the
correction procedure has a positive effect.

7 Discussion

The sensitivity of the reconstruction to the specification of the observation errors
will be common to all the approaches for removing the effect of observation errors.
If the observation error is estimated to be too small, then some effect of the obser-
vation errors will remain in the verification statistics. However, if the error in the
observations is estimated as being larger than reality then the method here may
lead to an impossible deconvolution. In the same situation the Ciach & Krajewski
[3] method may indicate a negative mean square error. The approach of Anderson
[1] would suggest that the spread of the ensemble is too great. Any error sepa-
ration is likely to be particularly difficult for forecasts where the observation error
is much larger than the true forecast error since the statistics will be dominated
by the observation error. A useful estimate of the observation error may be that
used in the data assimilation scheme of the NWP model providing the forecasts,
although this may only provide reliable estimates for “traditional” observations such
as radiosondes or surface observations.



Calculating the probability of mis-categorisation allows an interesting insight
into the effect of observation errors on (uncorrected) contingency table values. If
the distribution of the truth is uni-modal and a > ¢, then the true values in category
¢ will regularly be close to the event threshold. For true values in category a the
peak of the frequency distribution will be away from the event threshold. Therefore,
if the observation errors follow a symmetric uni-modal distribution centred around
zero, then the probability of mis-categorisation for true values in category ¢ will be
greater than for those in category a (p. > p.). However, observation errors will
ensure that the distribution of the observations is wider than the distribution of the
true values, and hence the effect will be to increase the number of false alarms at
the expense of decreasing the number of hits. This means that observation errors
tend to equalise the values of a and ¢ (and similarly for b and d). So, although in
this case p. > p, it is also true that ap, > cp.. This equalisation will often lead to
an apparent decrease in skill, even though the forecast has not changed.

8 Conclusion

The use of categorical verification of forecasts is extremely widespread in weather
prediction. However, little attempt has been made thus far to quantify the effect
of errors in the observations on this verification. In this paper a deconvolution
approach has been introduced which can be used to restore the contingency table
scores which would have been achieved had the observations not been corrupted by
noise, under the assumption that this noise is white, additive and independent of
the true value of the quantity being observed. This approach can be applied to the
verification of both deterministic and probabilistic forecasts.

It is crucial to the success of this technique that the errors in the observations
are well known. If this is not the case, then spurious results can be obtained, and
potentially even negative entries in the contingency table. This is the same issue
that affects the error separation method of Ciach & Krajewski [3]. If an NWP
forecast is being produced, then the data assimilation system will require estimates
of the errors in the observations, and this may be a useful source for the verification
system.
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