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1. INTRODUCTION

It has long been known that even shallow layers of warm (ie. whose
temperature is everywhere >0°C), stratiform cloud are capable of 4producing
drizzle which reaches the ground. Mason (1952) refers to observations
where drizzle was observed to fall from a cloud only a few hundred metres
deep. Nicholls (1984, referred to as N84) presented observations made with
modern airborne pérticle—sizing instrumentation in which significant
amounts of drizzle fell from cloud only 450m deep. 1In this and other
studies (eg. Brost et al, 1982), the settling of drops under gravity has
been found to make a significant contribution to the vertical transport of
water through the cloud topped boundary layer. Drizzle should therefore be
quantified and included in models attempting to predict the behaviour of
sheets of stratiform cloud. However, as Mason (1952) pointed out, the
production of pr'ecipitatioh sized particles by shallow layers of cloud is
incompatible with the simplest models of drop growth since growth rates due
to condensation and coalescence are so slow that a drop would fall out of
the cloud long before attaining the size necessary to survive the fall to
the ground. But, as he also recognised, theory could be reconciled with
observation if turbulent diffusion could be shown to extend the residence
time of some of the drops within the cloud. Using a crude representation
of turbulent motion within the cloud "together'*wit.h thé)ltmiﬁédl?kiiéﬁ!éd@e%ofﬁ
cloud structure then available, Mason was able to estimate the probability
of an individual drop remaining within the cloud for a given length of nidye
time. He concluded that including the effects of vertical wﬁﬁa‘m{ Bt
motions could extend the lifetimes of sufficient numbers of droj )
aurt‘icient;ly Iong to chptainf ‘the fex:tsﬁenee of preefmaﬁﬁon f




turbulent diffusion is potentially an important factor in determining the

vertical distribution of even quite large drops (r ~ 100 ym) since
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updraughts exceeding the terminal velocities of such drops (~ 1ms ') are

regularly observed penetrating deep within stratocumulus layers. However,

despite these advances, little progress in modelling the growth of

. G o
precipitation in such clouds has been reported since Mason's original

paper.

This paper describes an attempt to construct a model of large drop
growth within a fairly realistic representation of a turbulent cloud layer,
The development of the drop size distributions (dsd's) is calculated
explicitly as a function of height which therefore yields quantitative

information which may be compared with observations.

The main aims of the study are twofold. Firstly, to construct a model
to help determine whether the observed distributions of precipitation sized
drops are consistent with the observed cloud structure and our current
knowledge of droplet growth processes. Secondly, to use the model to
investigate the sensitivity of precipitation growth to various parameters

including cloud depth and turbulence intensity.

A central feature of the model is the method used to represent the
effects of turbulence, which retains the stochastic nature of the actual
vertical motion field in a much more realistic way than has hitherto been
attempted in models containing explicit microphysical calculations. 1In
most previous models the dynamics of the reference volume or parcel are
grossly simplified. A common approach is to calculate spectral evolution
within a single Lagrangian parcel whose vertical movement is either
restricted to an arbitrarily defined trajectory or one which also includes
a response to buoyancy accelerations. However, in a fully turbulent
environment (which includes most clouds), such a description is only valid

for a short period of time which is small compared to the local Lagrangian

integral timescale, 1. Over longer times, the essential random nature of
the turbulent velocity field means that the integrity of the original
parcel is progressively lost i.e. the 'lifetime' of the parcel is related
to the local turbulence characteristics. This connection is often

disregarded in Lagrangian parcel models where drop growth is calculated
within a single parcel framework over considerable periods of time, which
essentially assumes that 1, is very large. In fact estimates of 11, from
measurements in stratocumulus (see section 6.1) are typically only a few
minutes. Although some single parcel models admit the possibility of
mixing between parcels with differing histories, the possibility of
encountering parcels representing a complete spectrum of previous
development and the probability of such events occurring are not considered
within a consistent framework nor is any attempt made to render these
consistent with the ensemble averaged statistics of the turbulent velocity
field. The dynamical framework of such models therefore remains completely
deterministic and although the effects of the stochastic nature of drop
interactions on small scales may be included through the stochastic
coalescence equation (SCE), the stochastic nature of turbulent diffusion
(present in almost all clouds) is ignored. This general criticism may be
levelled at almost all previous attempts at modelling the microphysical
evolution of clouds and represents a fundamental deficiency. While use of
the SCE allows certain 'lucky' drops to experience growth rates
significantly greater than average because certain interactions have a
small, but nevertheless finite, possibility of occurring, so turbulent
diffusion also enables other 'lucky' drops to be carried upwards within the
cloud, significantly extending their lifetimes within regions rich in
smaller drops. Only a very small fraction need to be transported upwards a
significant distance to have a marked effect since the efficiency of the
coalescence process is strongly increased by the presence of a few, larger
collector drops. Note that this process is entirely different from the
enhanced growth mechanism envisaged by Tennekes and Woods (1973) where
increased turbulence was expected to increase the chance of droplet pairs

coalescing ie. to increase the effective collision cross—section.

The model described below includes representations of both stochastic
coalescence and stochastic turbulent diffusion. Furthermore, the latter is
achieved in a manner consistent with the observed characteristics of the
turbulent cloud layer. Following a general overview of the structure of
the model, the turbulent diffusion and drop growth schemes are described in

detail. Comparisons with previous results are made whenever possible and




the assumptions and limitations of the model are assessed critically. A

simulation of a real case is then described and compared with observations,
The sensitivity of the results to

turbulence and to variations in clou

the assumptions made, to the intensity of

d depth and water content are also

examined.

5. A GENERAL DESCRIPTION OF THE MODEL

The basic structure of the model is depicted schematically in Fig 1.
A steady, horizontally homogeneous turbulent layer lies between two
impervious boundaries and is divided into a number of equally spaced levels

of thickness 6z. In the upper part of this turbulent region and adjacent

to the upper boundary lies the cloud layer.
turbulent region is represented by a model which decomposes the motion into

Vertical diffusion within the

an ensemble of constant velocity trajectories connecting any two levels in
times which are multiples of the basic timestep, ét. The probability of
each trajectory occurring, p, is related to the observed statistics of the
turbulent layer. Three of the many possible trajectories which terminate
at one particular level are illustrated in Fig 1. Clearly the sum ofall
the probabilities must be unity at each level (Ip = 1). Some of the
trajectories lie completely or partially within the cloud layer and along
these it is possible to calculate the development of the drop size
distributions which are stored at each level in a number of discrete radius
classes. The spectral evolution along a trajectory includes a
represehtation of condensational or evaporative effects, growth by
stochastic coalescence and the effects of gravitational settling between
neighbouring levels. The mean dsd is defined at each level by summing the
contributions from all the trajectories terminating there, weighted by
their probability of occurrence, p. The model therefore predicts the mean
dsd's at each level within the cloud layer at each timestep. Solutions for
the next timestep are developed in terms of the same ensemble of
trajectories (the turbulence statistics do not vary with time) originating
from solutions obtained at previous times. The model is run forward in
time from prescribed initial conditions until a steady state is eventually
reached where drop growth is exactly balanced by gravitational settling.

The component parts of the model are now described in detail.

3. THE TURBULENT DIFFUSION MODEL

3.1 Description of the basic method

The method used to simulate turbulent diffusion is based on the
integral equation, or IE, method (Pasquill & Smith, 1983). This stochastic
representation is related to the Markovian random walk technique (Thomson,
1984), but by introducing probability distribution functions and
integrating over all possibilities rather than explicitly following several
thousand individual trajectories, is computationally much faster. Coupled
diffusion and stochastic coalescence calculations are therefore a feasible
proposition. As with the random walk method, the IE technique places no
restrictions on the velocity distributions which can be used (actual
measurements can be used directly) and because the Lagrangian integral
scale of the turbulence can be varied as a function of position, boundaries

can be specified in a relatively natural way.

The description of turbulent diffusion in the IE method is analogous to-
that of Browman motion on a molecular scale. The velocity of a marked
fluid element or parcel, which is determined by a random process, is
assumed to remain unchanged for a time t, but is then altered in an event
in which all Lagrangian memory (or history of previous motion) is lost.

The parcel and its properties are then indistinguishable from the mean
state. The probability of an event occurring is related to the local value
of the Lagrangian integral scale, T, The probability of an event
occurring in a time interval t is t/rL. Note how this description is

fundamentally different to that employed in a single parcel model.

To illustrate how the evolution of a vertical concentration profile may
be determined, suppose there exists some initial concentration
distribution, Co (z), of an inert tracer which follows the air motions. 1In
a time &t which is small compared with Ty, at all levels, the fluid elements
composing the turbulent layer can reasonably be considered to move with

unchanged velocities and the new concentration profile will be given by




-~v‘-<_-|-<~

USSR NN T 840
N e DAk Mk L s 1 +

Cy(2) = S Colz') Qq (z,2') dz!' (1)

when considering discrete vertical levels,

Cqi(z) = & [ Culz') Q (z,2%). ] (2)
% LA ;
Here,
Q(z,z') = f:* D (w,z') dw (3)

where D(w,z') is the probability density function of the vertical velocity,
w, at height z' and

e = s Bk S/ 24): (6B ()

S e e ) (5)
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the concentration profile at time 26t will be given by

Ch(z) = (1 - 1) R(2) Colz) + 1 R(1) Cq(z) (11)
L L : : :

The first term represents the contribution from all those parcels which ;
have not yet experienced an event and continue to move with their original
velocities. The second term includes the contributions from that fraction
of parcels which did experience an event at t = §t when the concentration
profile was given by C,(z) and have subsequently moved with new velocities
for a time §t. After n intervals, the concentration profile is given by

Cplz) = (1 - %>"“‘ R(n) Cq4(2)

+ "E‘ (15 %)9'1 R(P) Cpp-(2) (12)
p=1

-

The first term still accounts fog that diminishing proportion of ﬁareels
which have not yet undergone an event and are still meving,witn,their‘
The second term includes all 90351ule
combinations of parcels which have experieneed one or more eventg in the |

original, unchanged velocities.

interval nét expressed in terms orfghe“eqpcguggpt;onggrqfilea'3& 3
intermediate times C;(z), i=1 ... n=1.

If 7, is now allowed to vary with pesxtjgn, &tftktandihen0%~
functions of z. When a parcel moves from z' to z with an unehnsed A
in a time nét, the chance of an event oeeurﬁtng beeames

n 5 <
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still remain less than 1, at




where the two terms are interpreted as before. The solution, C.(z), is

therefore built up from a sum of weighted contributions from all possible

Lagrangian trajectories. A certain proportion of the concentration

existing at a particular level at time (n-p)ét, which is determined by the
local velocity probability distribution, will set off at a constant
velocity to arrive at another level at time nét. Only a fraction of those
initially setting off will actually complete this trajectory. This
fraction depends on the values of the local Lagrangian timescale which are
encountered along the trajectory. The others experience one or more events
and 'forget' about the initial cbncentration distribution, Cn-p (z). As
time proceeds and n increases, the total contribution to Cn(z) from Cy(z)
therefore decreases as

n-1

I (1—1/Li) > 0
i=1 ;

This implies that the series expressed in egqn (14) may be truncated.

Indeed this is necessary if eqn (14) is to be evaluated for large values of
n since the number of terms in the second part of the equation increases

approximately as n?

and every previous solution C;(z), i=0 to n=1, must be
retained. If only contributions from the preceding r timesteps are
retained i.e. all explicit memory of concentration profiles prior to the

time (n-r)ét is lost, eqn (14) becomes

Cdz) = ) [’Tx“ (1=-1/L:) Q.(z,2') C._ (z')J
n S gt i=1 , 1525 n-r

% rel p3l o : £
al% % [ pL {%p i1 Q@ 11‘) Qp(z,2') Cppy (2 )}] (15)
- : i

for all n > r. The coefficients Q and L are now independent of n and may

be evaluated as functions of z and z' for each of preceding r timesteps.
Eqn (15) is then

r

l C = ' '

; 9% allzz' pzl fpreee ep 121) (16)
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where Pp(z,z') is a three dimensional matrix of fixed coefficients which
express the probability of a parcel, originating from level z' at time

(n-p)ét, moving with a constant velocity to level z at time nét.

Starting from an initial concentration profile Co(z), the subsequent r
solutions are determined using eqn (14) which involves recalculating the
coefficients on each timestep. When n=r, the coefficients Pp(z,z') are
retained. For solutions when n > r, eqn (16) is used, the coefficients

remain the same, and only the preceding r solutions need be saved.

3.2 The treatment of boundaries

A general feature of turbulent flows adjacent to a boundary, whether a
solid wall or a density interface, is that the integral length and time
scales of the flow decrease as the distance from the boundary decreases.
Since the scheme described above allows T;, to vary with height, the
boundaries can be specified in a natural way. Egn (15) shows that if L
approaches the value 1 along any part of a trajectory, the probability of a
parcel continuing on unaffected becomes very small as the coefficient
(1-1/L) » o, unless p=1. Thus, if a parcel trajectory encounters a region
where L is small, the probability of an event occurring is so high that
little memory of previous concentration history is retained. A region
where L = 1 therefore provides an effective barrier to all those
trajectories whose duration exceeds ét. The only contributions to C, (z)
in this region arise from Ch-1 (2), indeed if L=1 everywhere, egn (15)

reduces to

Cn(z) = ) Qy: (2428 11C g f28) (17) |
all z!

and there are only contributions from the preceding timestep. An
impervious boundary can therefore be specified by reducing the value of L
to around one, coupled with some form of reflection applied to the

contributions arising from diffusion from the preceding timestep.
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ection of these trajectories which would otherwise cross the

i cary;s achieved by calculating the time (ie. the fractional timestep)

taken to reach the boundary where an event is assumed t
remainder of the timestep, the parcel is assumed to move with a velocity

given by the appropriate positive or negative half of the

o occur. For the

probability

density function D(w,z)f

Thevﬁain drawback of specifying boundaries in this way is that where L
= 1 8t = 1, which conflicts with the assumption that 6§t € 1y, everywhere.
The motions in this region are therefore poorly resolved, a disadvantage of
the IE method compared with random walk techniques where the timestep can
be adjusted along an individual trajectory in response to the local value
of 1L;-.Other‘disadvantages associated with the specification of boundaries

are discussed in section 3.4 below.

3.3 Choice of grid interval and timestep

'1mmhvalu§3¢ot §z and 6t should be chosen to be sufficiently small to
?esulve the nctions as well as possible, yet sufficiently large to limit

( 1. Using eqn (10), this may be

R 9'[1

leading to the condition

6z € L (gg.z) =3 (20)

for well resolved motion. Furthermore, if artifical numerical diffusion
due to too large a grid spacing is to be avoided then

§z £ wm 6t (21)

Eqns (19)-(21) may be combined to give

6z € W, 6t € L ( ) (22)

However the number of computations sets a lower bound on §z. The number of

terms required to calculate the next concentration profile 6y egn (16) is

(8} e B

o=

approximately

where Z is the maximum height of the domain. Also, to ensure that egqn (16)
is not truncated prematurely,

e oy TLm



3.4 Examples of the Method in Use

a) Homogeneous, isotropic turbulence

In this special case, the velocity distribution and 1 are the same

everywhere. In this example, the velocity probability density function was

specified as

Dy (w)

12 fv E§%2 for = vp S W S Wy
16

W,
"m g (26)

= 0 for |w| > Wp.

The velocity distribution is symmetrical about a zero mean and has o, =
0.378 w, (Pasquill and Smith, 1983). The other specified parameters are

listed below:

R ms~ ! 6t = 1 min
T, = 6 min 6z, = -10'm
Z = 2 km (200 levels)

The series in eqn (15) was truncated after 15 timesteps (r=15) so that
explicit memory of the initial conditions is lost after a time 2.5 T, -

These values satisfy both egns (22) and (25) if T = 2.5 102,

The evolution of the concentration profiles from an initial horizontal
sheet 26z thick is shown in Fig 2 together with the velocity distribution,
Gq(w). The profiles vary smoothly and the spreading of the concentration
confohms closely to the results of Taylor's (1921) theory with an

exponential Lagrangian correlogram:
0,/0,1, = {2 (t/rL +  exp [—t/TL] - 1) }1/2 (27)

The evolution of 0, and values from eqn (27) are shown in Fig 3 together
with the asymptotic limits from eqn (27) which are that 0, « t when t € 1,
and 0, t1/2 when t » 1;. The model gives a good representation of
diffusive spreading although truncating the series at r = 15 causes 0y
be slightly underestimated for t > 2.5 T,- The model domain limits are

to

reached at t = 20 ét. In this example where L is constant with height, it
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is straightforward to show that the total concentration is exactly
conserved. This is confirmed by the numerical results within the limits

set by rounding errors.

b) Inhomogeneous turbulence

In the following examples, boundaries are imposed by varying 1, with
height as suggested in section 3.2. The chosen vertical variation of L (=
/4 ) is shown in Fig 4. The distribution is symmetrical about the
midpoint and is used in all the examples presented below. Some
observational evidence supporting such a distribution is given in section

6.1

Two vertical velocity distributions are used in the examples: the
symmetrical distribution from eqn (26) shown in Fig 2 with Wy = 1.0 ms'l,
denoted G,(w), and an arbitrarily defined distribution, Go(w), shown in Fig
5. Both distributions have a zero mean and similar width (049 = 0.38 ms‘?,

oy = 0.36 ms~ ') but Go(w) is negatively skewed (skewness = -0.68).

G(w) is not allowed to vary with height because of the additional
complications this would incur, requiring at least the introduction of
'bias' or small non—-zero mean vertical velocities. This is a general
problem for stochastic diffusion models which admit varying velocity
distributions and is necessary to avoid unrealistic concentration gradients
building up. The compensating velocities required may be related to the
vertical gradients of moments of G(w) (for further discussion see e.g. Legg
& Raupach, 1982; Thomson, 1984). In any case, variations in G(w) with
height are not thought to be of central importance to the growth of
precipitation sized drops, especially since observations show that large
variations in ¢ are not commonly found within stratiform cloud layers
except very close to cloud top (eg NL). However, the absence of any
reduction of o, close to the boundaries in the model does lead to some

unrealistic concentration increase there for reasons discussed below.

14
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Fig 5 shows the evolution of the concentration profile from an

initial state to that shown in Fig 2. All the other parameters

identical ) ) )
hat example except that L(z) is as shown in Fig 4 giving 72

remain as in t
levels and the velocity distribution Gz(w) is used.
e the value obtained if the initial total

The concentrations are

scaled by Cx which would b
ted uniformly amongst all levels. As time

ile develops smoothly, the asymmetry

concentration was distribu
proceeds, the concentration prof

resulting from the form of G2(w). When t 2 10 T > the profile tends

towards a stedy, well-mixed shape (which is independent of the initial

concentration distribution) where the concentration is distributed

approximately evenly throughout the domain. However, close to the
boundaries the profiles display unrealistic maxima due to the poor

resolution of trajectories within this region. Eqn (22) is only satisfied

when

L > d. w, &t (28)
dz

and in this example (d/, ) w, st = 2.5 within a distance of ~10 éz from
the boundary. Fig Y4 shows that L is less than this value within a distance
of ~ 5 6z of the boundary which closely matches the region where the
concentration increase is observed. The problem is most acute immediately
adjacent to the boundary where L ié smallest, &t = T, s and the motion is
clearly not properly resolved. Even so, only the two levels closest to the
boundaries are strongly affecﬁed, concentrations throughout the rest of the
domain are constant to within 104 and in the central region (> 10 §z from
boundaries) to within 1%. As suggested by eqn (28), the size of these
concentration maxima (fob a given specification of L(z)) are reduced if wy
or 6t are decreased, provided eqn (21) remains satisfied. This suggests
that allowing 0, Lo decrease near the boundaries, in line with
observations, could reduce these unrealistic maxima considerably. An
associated limitation is also that total concentration is no longer
conserved, varying typically by a few per cent per hour of modelled time.
However, these drawbacks should be kept in perspective and C - Cx over the
great majority of the domain. The method described above clearly offers a
more powerful and realistic description of turbulent diffusion capable of
being coupled to microphysical calculations than has been tried before. AS
a final illustration that the model is capable of reproducing known |
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characteristics, Fig 6 compares the concentration profiles at t = 20 &t
from the example (shown in Fig 5) which uses G2(w) and an identical run
with velocity statistics specified by G1(w). The upward displacement of
the concentration maximum in conditions where G(w) is negatively skewed is

clearly apparent,

4, CLOUD MICROPHYSICS

Along any one of the ensemble of trajectories defined by the turbulent
diffusion model, an initial distribution of drops within a parcel will be
modified by condensation and evaporation, coalescence and the vertical

transport of drops by gravitational settling between adjacent layers.

The dsd's are defined in terms of concentrations in 49 classes on a

logarithmically increasing scale. A drop in the ith class has a mass given

by

m = mg 5(i=1)/2 (29)

so that successive classes contain drops whose radii charge by a factor
21/6. A value of my was chosen so that the smallest class corresponds tor
= 1.6 ym and the largest to r = 400 pm. As discussed by Jonas and Mason
(1974), this representation enables a whole range of drop sizes to be
covered with a reasonable number of classes and also enables the SCE to be

solved in a reasonably rapid, accurate and economical way.

4.1 Condensation and evaporation in cloud

A rigorous treatment of condensational effects requires the
calculation of the parcel saturation as a function of time together with
detailed knowledge of the cloud condensation nucleus activity spectrum.
Furthermore, the computation of saturation implies a complete specificétion
of the thermodynamic state of the parcel as a function of time which, in a
fully turbulent flow, is inextricably linked with the pressure and velocity
fields. This alone would require a considerably more complex

represéntation of turbulence than is considered here and the addition of

16




explicit microphysical calculations would render the probl em

computationally intractable. However, the main interest of this study is

the growth of precipitation sized drops which permits considerable

simplification.

It is well known that the relative importance of condensation and

evaporation as mechanisms for drop growth in clouds declines rapidly for

drops with r 2 25 um, so the growth of larger drops due to coalescence is

largely independent of the local saturation (provided it is maintained

close to unity). The growth rates of these larger drops are not sensitive

to the manner in which the small (r < 25 um) drops are formed, just to the

resultant size distribution. The importance of condensation and

evaporation lies not in influencing the growth rates of large drops
directly, but in controlling the numbers and sizes of the smaller drops.
Therefore, if the distribution of the numbers of these small drops can be
externally specified in some way, the need for explicit calculations

involving the parcel saturation may be avoided.

Observational studies of the microphysical structure of stratiform
clouds often show a well-=defined unimodal small drop spectrum which varies
in a fairly straightforward and repeatable manner throughout the depth of
the cloud except when in close proximity to the boundaries (eg Slingo et
al, 1982; N84; NL). Furthermore, variations about the mean at a given
level in horizontally uniform conditions are quite limited eg. differences
in spectra between updraughts and downdraughts are small (again, if
measurements close to cloud top or cloud base are avoided). Because of
these features, it is possible to approximate the small drop distributions
measured on particular occasions fairly realistically by a single empirical
function which varies with height above cloud base (an example is given in
section 6.1 below).

In the model, the concentrations within the first iy classes are
therefore set to the appropriate prespecified values which depend upon the
current height of the trajectory (iyx also varies with height). This
procedure largely determineg the liquid water content of the parcel which
is contained mostly in the smaller drops (i € iy) and which is little

17

affected by the addition of larger drops. Thus on a rising (descending)
trajectory, the parcel liquid water content increases (decreases) according
to the specified rate and the effects of droplet growth (loss) due to
condensation (evaporation) are represented in a realistic way, through

changes in the small drop spectrum.

While this representation is admittedly crude, it has the advantage of
extreme simplicity and because it is based on observations, always ensures
that realistic distributions of smalldrops are used in the coalescence
calculations. The main disadvantages are that this empirical description
requires detailed observational input which is valid only for that set of
conditions prevailing when the measurements were made,and that no account
is taken of the possible effects of fluctuations in liquid water content
along a trajectory since this is constrained to be close to the specified
value. No explicit account of effects due to the entrainment of inversion
air at cloudtop or possible enhancement of drop growth due to radiative
cooling (Roach, 1976) are considered except insofar as these processes

influence the mean (observed) small drop distributions.
4,2 Coalescence

Disregarding for the moment drops which fall from greater heights,
drops appear in radius classes i > iy due solely to coalescence. The
development of the drop size distribution within an air parcel along a
trajectory is calculated by solving the SCE. According to Jonas and Mason
(1974), the concentration of drops in class i, denoted g(i), changes with

time according to

3 (=]
3 gl) = fl 2 ¢ gliy) g(1")K(ig,1) di' - jg(i')g(i)K(i.i') ai'  (30)
at 1 1
where ¢ = (1 - 2(1'""1)/2)=1 and i = i - 2 1ne/1n 2. The first term of egn

(30) expresses the increase in g(i) due to the coalescence of two smaller
drops while the second term represents the reduction in g(i) through
coalescence with other drops. The values of the collection kernels, K, are
the same as those used by Joﬁas and Mason (1974). Values of g(i,) are
obtained by third order interpolatioh of 1n(g) uéing the values of i

nearest to i

c- Concentrations less than 1073" m™3 are assumed to be zero.

18




used to integrate eqn (30) is governed by the

The timestep which may be .
s tail of the size distribution: too large a

behaviour of the large radiu

value results in unacceptably large oscillations in the numbers of the

largest drops, too small a value increases the number of computations. A
’

method involving two timesteps was finally adopted as offering the best

compromise between accuracy and speed. A basic timestep of dtc = 20s was

selected for all but the four classes containing the largest drops where a

timestep of &étc/3 was used. In tests, this gave results which were very

similar to those obtained using a single 5s timestep bu
Tests on a closed parcel showed that total liquid

t was considerably

faster computationally.

water was conserved within 4% over a period of an hour during which time

drops of radius ~300um appeared and the total concentration was reduced by
30%. The length of the timestep 8t, was also chosen to be a submultiple of

the diffusion timestep &t.

4.3 Gravitational settling:

Drops are assumed to fall with terminal velocities, W given by Beard
(1976) at a temperature of 5°C and a pressure of 900 mb. If a trajectory
starts at a time (n=p)ét and terminates at time n§t, the concentration of
drops in each size class, g, is adjusted to account for gravitational
settling occurring during the preceding timestep at the intermediate times
(n=j)ét where j=1 to p-1. This change in drop concentration is given by

6g = Wwp 23g 6t (31)
8§z

The vertical derivative is evaluated at the level reached halfway
through the timestep and uses the appropriate mean values of g at the
timesteps (n-j-1) and (n-j) which have already been determined. However,
the mean concentration profiles at time &t are not yet known,vso for the
final timestep at the end of the trajectory, the distance fallen by the
drops is calculated explicitly and the concentration in each class
distributed amongst the appropriate levels as follows. If the parcel
contains g_ drops in class i at time (n=1) 8t and g, at time nét, the

number of drops falling from the parcel during the timestep is
approximately

.5 o (8- + g,) wp 6t/6z
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or
6g = (8. + o«8t) wp 6t (32)
2 8§z
where & Z (g, - g-)/8t is the mean rate of increase in drop concentration

during the timestep. If eqn (32) predicts é6g > g,, then 6g is set equal to
g, ie. all the drops have fallen out. In order to redistribute the drops
falling out of the parcel amongst lower levels, the following assumptions
are made. If & > 0, drops represented by the first term of egn (32) are
assumed to have existed throughout the timestep and would therefore have
fallen a distance wpét. Drops represented by the second term are assumed
to have been formed at a constant rate during the timestep and are
distributed between the final level of the trajectory and a distance wrdt
beneath. If & < 0, all the remaining drops are assumed to have been
present throughout the timestep. By redistributing the drops in this way
at each level, the concentratioh profile at time nét can be determined for
each size class. Although this procedure incurs some artificial numerical
spreading of the concentration, especially when wp 6t/6z € 1, this is
always much smaller than the diffusive effects of the modelled turbulent
velocity field in all realistic cases. No transport between adjacent
levels of drops in classes i £ iy is allowed. This is consistent with the
assumption that this region of the dsd is controlled by condensation and
evaporation associated with vertical motion and is already specified as

described in section 4.1.

4.4 Drop size distributions beneath cloudbase

In principle, the dsd's could be calculated at all levels below
cloudbase in exactly the same way as described above for the in-cloud
levels, except that because the parcels would be strongly subsaturated on
at least part of their trajectories, evaporation would potentially be the
most important process affecting the dsd at all radii and would need
explicit consideration. This could be implemented since the parcel
relative humidity could be obtained by requiring suitable thermodynamic
quantities to be conserved along subcloud trajectories. Unfortunately,
extending the calculations to the complete ensemble of'traJectorles in both
the cloud and subcloud layers is prohibited by the number of calculations
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this would require (see section 5). A simpler approach was therefore

taken, designed mainly to provide a reasonable initial dsd to those

trajectories commencing below cloudbase but terminating within the cloud

layer.

Drops are assumed to fall from cloudbase with a velocity wp through a

static, dry adiabatic subcloud layer of constant specific humidity chosen
’

to give saturation at cloudbase. The drops are assumed to be

non-interacting ie. coalescence is ignored in comparison to evaporative

effects. This is reasonable since the evaporative decay rates are quite

large even for the largest drops and because the total number density is
y rapidly reduced as the smaller drops are evaporated completely within
The changing radius of a drop initially located

ver

a few metres of cloudbase.

at cloudbase is calculated as a function of time by solving an approximate

form of the growth equation (eg. Rogers, 1979).

r a0 = (s-1)f/(Fg + Fp) (33)

dt
where s is the ambient saturation ratio, fv the ventilation coefficient
(Pruppacher and Klett, 1978) and Fy, Fp are slowly varying functions of
temperature and pressure. Also,

B s = S e n) (34)

dt
and since both s(z) and wp(r) are known, egns (33) and (34) can be solved
to give r(z). By repeating this calculation for initial radii on the size
class boundaries, drops contained in each class at cloudbase can be
redistributed into the appropriate (smaller) classes at a lower level. By
summing the contributions from each of the classes, the size spectrum
resulting from a steady state dsd at cloudbase may be found at any subcloud

level.

All parcels rising into the cloud layer are initialized with a dsd
calculated by this method at a distance Z, below cloudbase. The choice of
Zy is not critical (the sensitivity of the cloud layer results to this
choice is discussed in section 6.2) provided it is greater than a few
metres, which ensures most drops with r < ~10um are totally evaporated, and
less than ~ 100m where significant modification at all radii means the
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spectra no longer representative of conditions just beneath cloudbase. A
value of z, = 15m gives acceptable results and is used in most of the'

examples discussed below.

5. THE COMPLETE MODEL

The turbulent motion field is decomposed into an ensemble of
trajectories as described in section 3 and the evolution of the dsd's along
them is calculated as described in section 4. The mean dsd's for the next
timestep are obtained, as a function of height, by solving an equation
similar to eqn (16) except that the scalar concentration C(z) is replaced

by the drop size spectrum S(auyz):

Sn(i,Z) - z

Pp (z,2') S'n-p (i,z") (35)
all %z p

TR s e

1

Here S'n_p (i,z') represents the drop size distribution which has evolved
from an initial value Sn—p (i,z') along the trajectory between levels z'
and z and between times (n-p) 6t and n§t. However, as discussed in section
3, the turbulent diffusion scheme tends to produce unrealistic
concentration maxima close to the boundaries of the domain ie. at cloudtop.
To avoid this causing a corresponding build up of liquid water, which could
significantly affect the microphysical interactions, mass conservation is
enforced at each model level. This is achieved by concurrently computing
the vertical distribution of a scalar quantity which is initially constant
at all levels. From this a correction factor B, (z) can be derived which
ensures the recovery of this initial profile at all subsequent times. If
Co(z) = 1 everywhere initially, then .

Bh(z) = Cpoq (2) (36)

Cnh (2)

With this correction, eqn (35) becomes
r

Sn (iiz) = Bn(z) z 2

Pp (2.3') S',5 (1.27] (30
alkl z! p=1

which provides the basis for all the solutions discussed below.
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ealistic conditions the number of trajectories implied

; t to permit explicit microphysical

by eqn (37) is still too grea

calculations along each one.

section 4, solving the SCE (eqn 30) involves
is the largest size class containing

ple discussed in section 3.4b, the total

th the simplifications discussed in
2

Even wi

calculating about im separate

terms every timestep §t, where ip
drops (typically -40). In the exam

number of possible trajectories contributin
If the cloud layer is allowed to occupy the top 30

y calculated within this region (necessitating

g to the solution at the next

timestep is T = 6 10%.
levels and the dsd's are onl
the simplified treatment of subcloud
T is reduced by a factor of -3. Since the averae duration of a trajectory

is~ 7 6t (r = 15 in this example), the total length of all the
Thus each timestep would

layer dsd's discussed in section 4.4),

trajectories, 7 0ot~ 100 days if &t = 1 min.
require eqn (30) to be solved for 2 total time of ~ 100 days involving ~

5.102 steps (if §t, = 20s) each consisting of - 1600 terms. This amount of
emputatlon is currently not feasible, SO further' simplifications had to be

sought.

A reduction by a factor of about two is achieved by reducing r from 15

to tﬂ since both the numbers and average duration of the trajectories are
reduced. However, a much greater reduction was achieved by calculating dsd

volunm ‘along only selected trajectories and interpolating the remainder.
In m Mplel ‘discussed below, values at the two levels adjacent to the
undari '”md ema'y subsequent third level were computed using

hﬁ ?h 03 (z.z + 162)  (38)

e e i AP A
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P

where a; j = (1~|i|/3)(1 o |J|/3). The summations in eqn (37) now run over :
this restricted set of points, which in this case reduces T by a further
factor of ~15. A comparison of steady state concentration profiles

calculated using these simplifications with those obtained using the

complete description (Fig 8) shows that the solutions are not significantly
degraded.

In the example under discussion, T is reduced by these additional
simplifications to manageable proportions (~ 800) and the total length of
all the trajectories is ~60 h per timestep (1 min).

6. RESULTS

6.1 Description of the case to be modelled

The case chosen to test the model is based on an observational study
of extensive, horizontally uniform stratocumulus cloud over the North Sea
on 22 July 1982. Details of the aircraft data obtained on this occasion
have already been published in N84 and NL. The comprehensive nature of
this set of data which includes measuremeﬁts of turbulence structure as
well as cloud droplet distributions in the range 2 < r < 400 um (using ASSP
and 2D-Cloud probes) and liquid water content (Johnsonﬁwilllams) make this 28

a good choice for testing the model.

The mean depth of the cloud was determined to be 450 m, the maximm

il

horizontally averaged liquid water content was about . 6 m 2 am'm-me«» :

The modelled t
aistributmn fune% .




d in any case could not be attempted during the experiment in question,
an

the usual P
quantities is followed here.

ractice of making assumptions to relate them to Eulerian

If an aircraft flies through the turbulent, cloudy layer at a speed V,

the integral time scale measured in a reference frame moving with the
aircraft, T1p, will be given by

At the same time, the Lagrangia
where o, is a characteristic turbulence velocity scale,

2/V where % is the integral length scale.

n integral timescale, 71, will be

approximately &/0,
The ratio of these two timescales, TL/TA is th
may be estimated directly from the aircraft vertical velocity

erefore of order v/ow. The

timescale T

measurements since

'[A = _l _-1 (39)
e £5

where f, is the frequency at which the peak of the vertical velocity

spectrum, f S (f) occurs. An expression for 1, is therefore given by

BB di il (40)
A survey of the theoretical and the very limited observational
estimates of the ratio tLow/VTA in a variety of flows by Pasquill and Smith
(1983) implies a 'best' value somewhat less than one (~ 0.7), although the
uncertainties are considerable. Thus eqn (40) might overestimate 1
although it will be shown that the final results are not particularly

sensitive to changes of this magnitude.

With a timestep of 1 min dictated by the constraints discussed in
section 3.3, the values of L resulting from the measurements of fA and eqn
(40) are shown in Fig 9. These are found to increase downwards beneath
cloud top in a similar ﬁanner to that implied by the measurements of fA by
Caughey et al (1982) in similar, radiatively driven stratocumulus. It is
also encouraging that the derived values of T, ~ 6 min in the lower parts
of the cloud layer imply that vertically moving elements will maintain
their identity throughout a considerable fraction of the depth of the cloud
g .= ?30 m with ¢, = 0.36 ms“?) which is consistent with the
observation of 'adiabatic"regions (ie. measurements consistent with
unmixed ascent from cloudbase) deep within the cloud layer.
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The variation of L within the model domain was chosen to match the
observations within the cloud and to provide suitable boundaries. Two

representations used are also shown in Fig 9.

A domain consisting of T4 levels with a 15m spacing was selected for
most runs with the cloud layer occupying the uppermost 29 and L(z)
specified by the solid curve in Fig 9. L(z) is reflected in the lower half
of the domain to provide a reasonable lower boundary. The vertical
velocity distribution function, G(w), was determined directly from
measurements made at a height of 730m and is similar to the G1(w)
distribution shown in Fig 2 although it is slightly negatively skewed
(skewness = -0.1) and o, = 0.36 ms~'. Other measurements confirm these
values are characteristic of this cloud layer (N84). The series in eqgn
(37) was truncated at r = 10 (ie. after approximately 1.5 TLm) for most
runs. The sensitivity of the solutions to this choice is discussed in

section 6.2.

b) Specification of the small drop distributions:

It was found that a single empirically fitted curve gave a reasonably
good approximation to the shape of the horizontally averaged spectra
measured with the ASSP (2 < r < 24 ym) at each of the levels where
horizontal runs were made (730m, 610m, 475m). Shifting this curve towards
larger radii with increasing height above cléudbase was found to
approximate the observed mean spectra quite well at all measurement levels.
As discussed in section 4.1, these spectra are defined only for drops in :
classes i £ iy and iy is here defined as

ig = ipeak +5 (41)
where ipeak is the class containing the peak of the dsdf The numbers of
drops in each class are reduced by a constant fraction (up to 10%) in the
top 30m of the cloud to match the observations reported by NL. This is

believed to reflect the effects of dry air entrainment on the mean dsd's at

these levels.




this specification and observations (from the i) Computing spectral evolution along every trajectory, not just those

selected by the reduced method described in section 5 (ie. i=j=o in egn
38)0 :

_Comparisons between
lysis presented in NL) are shown in Fig 10.
. produced as is the variation of the total

Both the mean dsd's at 739

Jia

" and 475 m are well re

concentration (N), the mean volume radius (r‘v) and the liquid water content

(py) with height.

filie 1 gurse alisb sriovs' the values of these parameters ii)  Truncating the series in eqn (37) after 13 preceding solutions rather

once larger drops have been formed and a steady state has been reached In than 10 (ie. r = 13).

eem;ifaring}%these-quantlti%, it should be noted that the observations ,{:F(

include only drops for which r € 24 ym in calculating N and ry while the o iii) Defining the small drop distributions over a slightly reduced size
Johnson-Williams probe probably underestimates the liquid water content of il range (iy = ipeak + U, cf,_ eqn m).'

drops with r > 30 um.
i iv) Changing the vertical grid interval from 15m to 22.5m.

6.2 Results and sensitivity tests

V) Changing the specification of L to that shown by the dashed curve in

The medel was run forward in time from the initial conditions Fig 9.

gribed ablwef : M*. first there are no drops larger than those in class iy
vi) Changing the depth of the subcloud layer by specifying the 1ower
boundary to be just (60m) beneath cloudbase.

ny level but drops subsequently grow by coalescence, are transported

eally by turbulent diffusion and eventually fall out of the cloud.
1t after 1-2 hours of simulated time, equilibrium is attained at
vii) Initialising trajectories commencing below cloudbase with a dsd
calculated using z, = 30m rather than 15 m (see section 4.4).

d the mean dsd's reach steady values. The initial and
‘at four selected levels within the cloud layer are shown

variation of the total concentration, mean volume
r content at equilibrium were shown in Fig 10. i

None of these changes was found to produce significant changes in the
calculated mean, equilibrium dsd's. At cloudbase, the concentration of

drops in a fairly large radius class (r = 141 pm) were found ﬁn“varxﬁiﬁnﬁ
more than +20% from that obtained in the vefermeewm shown

| are typical of those produced by the model

, formed are about 250 pm in radius and

are found in concentrations of at
between the concentrations at this radi

Fig 11 (ie. Om and 120m) is almost exa




(= 0.36 ms 1) and also with no vertical diffusion (o, = 0). Othepr
wrer »

w ‘were kept the same as in the reference example. The resulting

quilibriu dsd's at cloud top and clo

the cloud. This arises because at some level the numbers of drops in
"p,-.‘{);‘

classes i S iyxp .. are fixed. These values are subsequently transmitta&

udbase are shown in Fig 12. throughout the rest of the cloud layer by diffusion, so the numbers of

drops in classes iy < i £ ixp., at other levels are influenced to some

The most obvious result is that increasing o, leads to a greatly extent by the concentrations imposed at the level where iy = ixpax- Thus
increased concentration of larger drops at all levels in the cloud. For i although the effects of phase change are explicitly taken into account at
example including turbulence with o, = oyper increases the radius of the any level by specifying concentrations in classes i < iy, they also have an
1argest drops found at cloudtop from 71 um (no turbulence) to 224 um and indirect influence on the concentrations in all classes up to and including
from 141 um to 252 um at cloudbase (see Table 2). Furthermore, the ’ ixpax- However, drops in the next largest class can only be formed by
concentration of drops at 126 um radius at cloudbase is increased by a o coalescence and this rigid division can give rise to a rather abrupt
factor of 4. 107. These effects increase progressively as the turbulence v g change.

intensity is increased and are very much larger than the 20% changes
observed during the sensitivity tests discussed earlier. . Returning to Fig 12, concentrations in the range 5um < r < 20 ym at

cloudbase are relatively insensitive to o,, variations because the losses

The distributions of smallest drops also respond to these changes in N incurred through processes i) and ii) are compensated by the diffusive flux
0, especially lower down in the cloud layer (as seen at cloudbase in Fig = (iii). However, in the range 20 ym < r < ~ 50 pm, process iii) is no
12), although these changes are not as marked as those at larger radii. In : longer operative (i*max occurs at r = 20 ym in this example), increasing oy

increases the losses due to i) and ii), so the numbers of drops are

depleted. This leads to the discontinuous feature at r = 20 uym. Although
this feature is an artifact of the model formulation, sensitivity tests
have showed that the large drop concentrations (r > ~ 50 um) are quite :‘Q-
insensitive to its presence. It should also be recalled that because the

small drop spectra (i £ iy) .ar-e defined empirically by reference to

observations in conditions whose o, = o pers tests at other o prasyr Q‘;
cannot reflect any modification to this part of the spectrum which m@g%

reaulls ‘ i o SO R s i . S ke
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importance downwards from cloudtop until at cloudbase, this
This is consistent with the observational

25 mﬁm{w is dominant.
results discussed in N84.
ineluded does this binodality appear. As o, is increased the size of the

‘ peak at large radii increases relative to that at smaller radii and alsg

Table 2 shows that the peak value of

Only when significant levels of turbulence are

st

oceurs at progressively larger radii.
: 5 at‘“clondbase moves from r = 20 um when oy =0tor =79 um when ¢, = 2
°wref ﬂowever, this table also shows that the concentration depletion in
the rmge 20 ul < r < 50 ym, discussed above, largely offsets this
increased contribution to the total rainfall rate at cloudbase and actually'

causes the total to decrease at the higher o, values.

Beneath cloudbase, the dsd's are calculated by the method described in
section 4.4. Fig 14 shows the results obtained at four subcloud levels

rrcﬁ'%he:l;érerence'exaple discussed above. As anticipated, the
mmt«rat‘ions of small drops are strongly reduced within a short distance
‘ d‘aloudb&ewhﬂe the larger drops are progressively less affected at a

~ given level because of their larger volume/surface ratios and their greater
fanvﬁeas.“-“ In i:his case, where cloudbase is at a height of 380m (Table

= iém"‘ period around noon, as described in N8A4. 4
dsd's measured at flight levels approximately 100

relatively insignificant for drops with r > ~ 50 ym (Ouldridge, 1982). The

observations are terminated once the concentration falls below a.limll'.l!._ﬂm..;.;, 5
level of detectability (set at 1 count per size bin per 5 min flying time)
which corresponds to ~ 1 m™3 pef' model class for drops in the range 60 ym <

r < 200 um. %

The curves in Fig 15 show the corresponding modelled dsd's for these
two levels from both thé reference example and the case with 0y = 0. The
results from the model which includes turbulent diffusion agree reasonably
well with the observed concentrations of larger drops (given that the
measured concentrations are probably underestimated in the range 25 uym < r
< 50 um) especially when compared with the results when ¢, = 0 which
grossly underestimate the concentrations of the larger drops at all levels.
However, the reference model still produces fewer large drops than were :
observed, especially in the lower levels of the cloud. Some specific
comparisons (listed in Table 3) show that in the clasé at v =126 pm
(arrowed in Fig 15), drops were observed in concentrations of i50 m;3 at
475 m while the reference model yields only 3. 5 m”3. Nevertheiess, this

figure is an increase of a factor of 108 over the case where g, = 0.

Similarly, the largest drops appear'ing in measurable quantities (> 1 m 3

;.‘W"' SE e A
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class™!) at the two levels are both smaller than observed when o, =

but are seriously underestimated when o, =

The sensitivity tests discussed earlier showed that changing those
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listed in Table 3. Furthermore, the observed values are possibly slightly

underestimated since the Johnson-Williams probe is believed to

underestimate the contributions from larger drops (see section 6.1) which

tant near cloudbase. The model derived quantitjes

become increasingly impor

include all drop sizes.

Second, cloud thickness was found to vary with a standard deviation of

+ 65 m about the mean value of 450 m. Two further runs were therefore

carried out to test whether increasing r, and the liquid water content
closer to the observed levels could result in the formation of
significantly greater concentrations of large drops and to assess the

sensitivity of the results to changes in cloud depth.

In run A, the same small drop spectral shape defined previously was
shifted to slightly larger radii to give better agreement with the observed
values of r, and py (see Fig 16 and ¢.f. Fig 10). This was also used in
run B, where in addition, the values were extrapolated upwards to increase
the cloud depth by 90m. This results in a maximum liquid water content of
0.8 gm_3 (Fig 16) which corresponds closely to the highest observed value.
In both cases, the specification of the other parameters was unchanged from
the reference run discussed previously. These two runs therefore
correspond to the maximum likely liquid water content for a cloud of the
same depth (450m) as the average observed value (run A) and for a cloud
with the maximum observed depth (540m, run B). Run A provides a closer
approximation to the observed mean state than‘the reference run, while run
B represents the thickest cloud consistent with the observations, as

reflected in the values of £ listed in Table 3.

Results from the two runs are shown in Fig 17. Both runs have
significantly higher numbers of larger drops than the reference run (cf Fig
15) which are in better agreement with the observed concentrations,
although the gap between the measured and predicted values at moderate

radii (r ~ 50 um) widens somewhat . Overall, run A predicts the
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concentrations of the larger drops quite successfully at both levels while b

run B predicts numbers higher than the observed mean levels. However, run

B does successfully predict the maximum sized drops, as listed in Table 3.

If, as seems likely, the conditions in which the observations were
made varied between those specified during the reference run and those of
run B with an average close to run A, the sensitivity of the model to
changes in cloud depth and liquid water content is sufficient to explain

the main features of the observed dsd's within the cloud.

As £ is increased, the liquid water flux due to gravitational settling
(or the rainfall rate, R(z)) is predominantly carried by the larger drops
whose concentrations increase most rapidly, as seen in Fig 18 (ef Fig 13).
Because of this, R(z) is quite sensitive to £ as shown in Fig 19.:ilsd
changes by a factor of 2 between the reference run and run B (see Table 3),
the rainfall rate at cloudbase changes by a factor of 10. The results from
the reference run and run A show reasonable agreement with the observed
values in cloud (taken from N84), especially as R is approximately a fifth
order moment of the size distribution. However, beneath cloudbase the
vertical gradient of R(z) is much larger than the observed value, implying
that the simple treatment of section 4.4 results in too rapid evaporation.
The effects are seen more clearly in Fig 20 which compares modelled dsd's.
from run A at 300m and 90m with their observed counterparts. Although
there are some similar features, for example at each level the
concentrations at larger radii are progressively less reduced, the
reduction in numbers at any given radius is much greater in the model than
is observed. This is believed to be caused by ignoring the effects of
turbulent diffusion in the subcloud layer. The evaporation of drops
falling under gravity through an adiabatié layer is highly non-linear: in
the examples above, all drops with r < ~ 140 pm at cloudbase are completely
evaporated before falling the 380m to the surface while all the larger
drops survive. If the stochastic effects of turbulent diffusion were
included, theﬁ some drops would be transported downwards with velocities

significantly greater than their terminal fallspeed. Reducing the time

exposed to the ambient subsaturation in this way would mean that many drops

which would otherwise have evaporated completely, will now reach the
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surface. The inclusion of this process would be expected to lead to
increased numbers of drops beneath cloudbase, reduced vertical
concentration gradients and better agreement with observations., It jg
essentially the reverse of the process modelled in the cloud layer where

diffusive effects lead to enhanced drop growth by prolonging the lifetimeg

of certain drops within the cloud.

7. DISCUSSION

The strong sensitivity of the rainfall rate to £ implied by the model
suggests that this process could be the most important factor limiting the
water content of thick cloud layers. The results for run B (see Fig 19)
show that the effect of rainfall growth is to deplete the liquid water
quite strongly within the cloud layer, at a rate given by
3R(z) = -0.23 gm™3 hr], (4l)

9z .
with a corresponding moistening of the subcloud layer. However, the
current model does not permit consequential changes to the total water
budgets of either layer. Cloud liquid water is simply maintained by
continually replenishiné the numbers of small drops to prespecified levels.
Therefore it is implicitly assumed in the model that the resupply of liquid
water by vertical turbulent transport and continued condensation is always
Just sufficient to maintain the steady, specified levels of liquid water in
the cloudf In reality, however, the upward turbulent water flux into the
cloud layer is constrained by other considerations eg. the size of the
surface water vapour flux, and it may not be possible to maintain the cloud
liquid water against the 1osses due to coalesence and subsequent
gravitational settlingt In the case described in N84, both the rainfall
::i: ::fIfh:u::::z?n:a:::tvapour fluxes through the subcloud layer were -
; : steady values could have been maintained, but
had the cloud thickened sufficiently (to give an average value of £ similar

to tha
t used in run B) it is unlikely that such a balance would have been
possible.

the smali

rate,

Then £ would have decreased with time, accompanied by changes in
drop size distributions, leading to a reduction in the rainfall
LU0 dadel ts not capable of responding in such a manner, but
nevertheless these results do suggest that to maintain a moderately thick

3

(> 500m) layer of cloud requires either large fluxes of water vapour into
the cloud to balance the significant losses by rainfall or a significantly
different microphysical structure to that employed in these examples to
reduce the growth of precipitation sized drops. The latter category could
include liquid water contents reduced further from the adiabatic values,
narrower small drop spectra or colloidally more stable dsd's (higher
concentrations of smaller drops in preference to fewer larger ones). In
this regard, it is intended to model other cases with some of these
different characteristics in future to assess whether the model is capable

of reproducing the correct sensitivity.

Improvements to the model formulation could also be tried, in two
areas in particular. Firstly, the trajectory calculations could be
extended into the subcloud layer. The associated probabilities are already
defined in the current version and only the response of the dsd's to
ambient subsaturation would need to be included. This would be expected to
lead to a more realistic representation of the dsd's below cloudbase, but
the increased number of trajectories would incur a serious computational
penalty. Secondly, the current extremely simple method of representing
condensation/evaporation effects in cloud could be improved by
differentiating between up- and downdraughts. ALthough this would allow
the liquid water content to be correlated with vertical velocity as is
observed (eg NL), it is expected that a greater benefit would be an
improved representation of evaporation in downdraughts. As discussed in
section 6.2 earlier, the current all-or-nothing approaéh in which drops in
classes Siy respond to evaporative effects while those in classes >iy do
not, results in rather discontinuous distributions especially around i*max‘

A more realistic, gradual response in classes around iy could alleviate

this difficulty.

8. CONCLUSIONS

This paper describes how a stochastic model of turbulent diffusion can
be combined with explicit calculations of drop growth due to stochastic
coalesence to produce a model which is applicable to the study of

precipitation growth in warm, layer clouds. With the small drop
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‘ﬁﬁﬁ&f’f"’d fogm-observations, 2 steady state distribubivh O | Further work is planned to investigate the response of tﬁeeéap,.mg_ ’
n%vmtuﬂly achieved which represents a balance between to changes in the small drop distributions and to compare results with
transport by turbulent RRSEPISE SRmRSSE Ry ' , other case studies to find out whether the model is capable of displaying
The formulation enables the stochastic nature of / the correct sensitivity.

an cul“étions' ol" this type, Previously this important aspect of turbulent

ﬁi’ét*e marmer- The description employed here is consistent with

‘_stéé,j‘ad%i-*sﬁate concentrations of precipitation sized drops are found
eﬁ%‘éd"ﬁy”éa@' orders of magnitude when realistic levels of

b’éﬁb bo‘ﬂt‘ent. This explains why even shallow
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Average cloud top height

Average cloud base height

Cloud base temperature

Cloud top temperature

Cloud base pressure

Details of the case studied

Table 1




Largest drop at cloudtop

R

(radius, um)

Largest drop at cloudbase

(radius, um)

Concn, in class at r=126um 1.8.10716  6.5.1078 1.4.107"  u.1.1072 _'6'9‘__;‘
at cloud top (m™3) ' : e - AR s

Conen. in class at r=126um 1.0.10°7  9.9.1073

at cléudbase (m~3)

Radius of class containing peak
rainfall rate at cloudbase (um)

Rainfall rate at cloudbase
(ms™!) x 10°




ot Rl e

'Reference' run

9y=0 0w~ Oyref

Largest observable
drop

(radius, um)
Concn. in class at
r=126 um

(m~3)

£ (gm™2)

50 112
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number. The inset shows the velocity distribution used in this
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Fig 3. Evolution of o, with time in homogeneous turbulence from the model
(®) compared with the theory of Taylor (1921, full curve).

Fig 4. The specified vertical variation of L used in the inhomogeneous
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Fig 5. Evolution of concentration profiles in inhomogeneous turbulence

from an initial thin sheet. Curves are labelled with timestep
number. The inset shows the velocity distribution used in this
example.
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1 variation of droplet concentration, N,

and liquid water content, pg, defined in

zmean ‘volume radius. Pys
he reference run at t=0 (—) and at steady state (...) compared
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with observations (®).

waer panels. Compari sons .
spectra (=) and observations (=+=-) at two levels in cloud

. f(stavtisucs from the measured spectra are indicated by X in the

upper panels).

of prescribed average small drop

The relevant values of iy are also indicated.

"‘ﬂ  Equilibrium drop size distributions at four levels in the cloud

ig
laye“r ‘The initial distributions at the same four levels are

shmm displaced downwards twenty units for clarity.

Ourer (lOwer
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distributions at z = 475 m and T3

Fig 18.

Fig 19.

= Fig 20.
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Contribution to rainfall rate as a function of drop size aﬁ:’
height for run B. :

Rainfall rate as a function of height for the reference run, run
and run B compared with observations (- -X--=). The position df

cloudbase is indicated by a horizontal line on each curve.

Equilibrium drop size distributions at two levels below cloudbase
(z = 300m and 90m) from run A compared with observations made at 4
the same heights.
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