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ABSTRACT

Starting with a phase-space duality principle for finite element
solutions of the semi-geostrophic equations a Hamiltonian representation of
these equations is derived . It is shown that a natural extension of these
equations from the f-plane to a variable f and non-Euclidean horizontal
domain, such as the spherical surface, leads to the finite element form of
Salmon's (1983, 1985) equations, which preserve an analogue to the law of
conservartion of potential vorticy in their continuous form.

The duality principle may be exploited by way of Legendre
transformations to give reciprocity relations of some dynamical

significance in both finite element and continuous solutions
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1. INTRODUCTION

This note explores certain properties of the semi-geostrophic (5G)
equations of Hoskins and Bretherton (1972) in their finite element form
which can be deduced from the underlying variational principles . The use
of a finite element approach to study the solutions of these equations in
the context of frontogenesis began with Cullen (1983) and the theory was
developed further by Cullen and Purser (1984), henceforth abbreviated to
CP. More recently Chynoweth (1987) has developed numerical code to study
both static and evolutionary aspects of the finite element solutions,
mainly in two dimensions, and the code has been extended by Shutts et al.
(1988) for application to axisymmetric flows in which angular momentum is
the conserved quantity instead of geostrophic momentum. For conventional f-
plane SG theory it was recognised by CP that balanced (i.e., symmetrically
stable) solutions are associated with a convex function of space. This
solution may also be obtained at any instant by minimising the total
(kinetic plus potential) energy with respect to fluid parcel rearrangements

that conserve mass, potential temperature and geostrophic/angular momentum.

In independent investigations of reduced forms of almost geostrophic
flows derived from Hamiltonian theory Salmon (1983, 1985) discovered a
Hamiltonian formulation of SG theory enabling it to be generalised in a way
that retains the conservation laws of energy, mass and potential vorticity
to domains over which the Coriolis parameter and basic state density vary
widely. In developing the variational method as it relates to the finite
element formulation of SG dynamics we clarify the geometrical
interpretation of Salmon's system in the case where the fluid is
partitioned into finite element cells within each of which the two "dual
space” (Purser and Cullen, 1987) coordinates that generalise geostrophic
momentum are constant, as is the potential temperature which forms the
third coordinate dual to the altitude z. We also discuss how the finite
element form of Salmon's system generalises naturally to a curved
horizontal domain such as the surface of a sphere. It is argued here that,
from the geometrical modelling perspective, Salmon's generalisation is the
most natural framework for extension of the adaptive finite element codes

envisaged by Purser (1988) to more general domains. It follows from the
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Hamiltonian expression of the finite element dynamics that a Liouville

theorem pertains to these systems, that is, there is a dynamical phase
space within which the density of a hypothetical ensemble of states is

constrained to be conserved

In addition to the Hamiltonian aspects of the dynamics it is shown as a
bi-product of the variational structure that the sensitivity of centroid
motion at one cell to a mass source and sink couplet at two other cells is
connected by way of a reciprocity relation to the sensitivity of the
geopotential difference at the two latter points to thermal and momentum
changes at the first cell. This reciprocity is naturally evident in the
continuous solutions also where it is associated with the self-adjoint
differential operator that figures in the SG tendency equation (Schubert,

1985).
2. BASIC SEMI-GEOSTROPHIC DYNAMICS

The reader is referred to CP for an outline of the finite element
structure of SG solutions and the geometric interpretation of solutions in
terms of convex functions. The notation adopted here is that of Purser and
Cullen (1987), which we henceforth abbreviate to PC, Chynoweth (1987)
provides a discussion of geometrical algorithms that have been implemented
and Purser (1988)> discusses a potentially fast method of adapting
geometrical solutions to small perturbations. We shall begin with a
discussion of the formal geometrical assumptions and consequent properties

for the SG Boussinesq dynamics on the f-plane.

Define,

= )
x=(x,y,2), 2. 1

to be the spatial coordinate. The SG solution may be expressed in terms of

the geopotential, ¢(x) or, as in CP, by the modified potential,

P - -4’?2¢(5)+-2‘-(°‘z*52) ; (2. 2)



in which case the geostrophic momentum coordinates (X, 1Y), together with the

scaled potential temperature (Z) form the "dual" coordinates:

e Sy,

(QP oF DP (:u_ y-Ys , gouy (2.3)
Ix 29 27 -F {:‘80

where the geostrophic wind vector ug has components
139=('~33,V9,o)—(—$_¢ JF ,O) : (2. 4)

In the continuous SG equations (Hoskins, 1975; Hoskins and Draghici, 1977)

the dual coordinates evolve according to
P
e =gy (2:5)
Dt

which, together with the continuity equation,

Y'B St : (2. 6)

where u is the ordinary velocity:

= iZ? ; (257
Dt
imply the Lagrangian conservation of a SG potential vorticity q, where q is
defined:
o Je{: bx = Jef[ ]
‘1 ] = 2, Dx : 2.8)

?x
It can be shown that these equations are also consistent in their treatment
of energetics provided the kinetic energy density is obtained using only

the geostrophic wind components

ke - 3‘_-5_19-93 2.9

The potential energy density can be written in Boussinesq form:
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PEz‘“j[‘Zz.

(2 10y

As shown by Hoskins (1975), the energy conversions expressed by

E.(ME?PE> = =N {ud) :
Dt (2. 11)

imply a global conservation of energy for such inviscid, adiabatic flow

within a fixed bounded domain.
3. FINITE ELEMENT EQUATIONS AND HAMILTONIAN DYNAMICS ON THE f-PLANE

In the f-plane finite element form of these equations it is necessary to
adopt the "ceniroid convention" in place of (2.5) in order to preserve
energetic consistency. Essentially this consists of prescribing the change
of X for each element as a whole in terms of the geostrophic wind U, at

that element's centroid'g, the latter defined as
e o
fdp M

where dpy = dx.dy.dz. Note that u, = u,(X) by the linearity of u, across an

2

R

element of constant X. Each finite element o is associated with a

hyperplane in the extended (P, x)-space defined by the linear equation:

Plxds 85 3 X vk

(3, 2>

where s, are the intercepis of the hyperplane at the x-origin and, as
discussed by PC, are the negatives of the corresponding dual potential,
i.e., s, = -R,. Hence the moments M, Mf, can be expressed as partial

derivatives of the (convex) function

K ({R, %) = K(x) = XP(;)J,, )

D

with respect to the 4N individual components

e ]




x involving N finite elements within the domain D:

X Y e : ik L 3‘< Eﬂﬁ; ) ;l£S ) élﬁ
(P4‘ > qu 3 P1x ; P1“ ) he ( ,3:2‘ 'B>(“ 9 )1 :):Z“ ) \

for a "configuration"

(3. 4)

Since in adiabatic solutions the mass of each element is conserved the

momentum equations may be written for finite elements in the form:
b
-‘\-(M,( = M‘(X(>

(3::5)

MY = F(-M2 + MXe)
It

In order to get a scheme more closely resembling canonical Hamiltonian form

we apply a Legendre transformation to obtain from K a new potential, L:

L (X)) = KR XD + 2 MR = [Xox dy,

D

from which it is evident that

N
- 5 (-MadR + HE AN, # MR 4 RN,

z=1 632 F)
= e B )
Thus <=1
R - oL
IM,
(3. 8)

so that, in adiabatic mass—-conserving motion, the horizontal momentum

equations may be written:

4% ol M
qu JE ’F §;L « >

o =L MaX
MJt ¥(3X«+ )

which now requires the trivial transformation

- 6 -
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& 2 3
yx'FMo(Xx
to obtain the canonical Hamiltonian equations:

J)ﬂ: = alﬂ

/

It By
/
e, M
Jt o
Hamiltonian H is defined:

He F-L +4 2 m 00 0| + E eyl

or, in physical terms

H - jkng Iy

(3. 10)

(3411 )

(3, 12)

(3. 13>

as in Salmon's "L,-dynamics" (Salmon, 1985). Adapting his action integral

for finite element solutions, we note that (3.11> are obtained by

minimim&sing,
b

I &
subject to constant M, and Z., where,

[ = 2 M AR ~|H
w=! = Jt 3

and A is any constant vector field in X-space satisfying

si\, e 4?
X 3Y 2

A= 0 :

Liouville's theorem follows immediately from (3.13):

J o2 W
Frsitisy 4R ¢ 5 AMi It

t,

(3. 14)

(3199

(35167
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as does conservation of energy:
N % -
{_Hz‘[‘j_)_(“b_f' +‘J_Z/«S\H )
Jt A=! J{ 3X& Jf QYj 3.18)

Although we have demonstrated conservation of energy directly from the
Hamiltonian (i.e., by a global method) it is useful to see how energy
consistency comes about for an individual element, since the pattern of
cancellations that occurs in the case of an f-plane suggests the forms that
most naturally generalise the finite element model in more general domains.
We are at liberty to choose our coordinate origin in X-space to be the
point that makes X, = 0 at time t = O for the element a of interest. Let
the element occupy the region D, and have boundary ®D.,. Defining the total

kinetic energy for the element to be E., then

Ek = [ £1[(X~x)l+(>/—9)z],1’, ; }i;l(xz_sz) J’,‘

: €5-19)
D. Du
With this choice of origin the potential energy,
- 2
Ep - ) e Iy = O, (3. 20)

Dy

and remains constant for all time. Now consider the rate of change of E.:

2
SLAX ) d Y- <ty 4
%{k :\g‘(‘r [Tt'( ) (ﬁ(H)]JF ;i'g( vible 3,20

where qu is the vector outward normal infinitesimal surface element on
dD,. (Note that although internal velocities of a finite element of
constant X are not defined the component of movement of the element
boundary in a direction normal to that boundary is a well defined
quantity). As previously noted, dE./dt = 0 since dZ/dt = O but an
additional contribution to the energy budget is the "pressure work" term
The rate at which element o does work on its surroundings is

| gude = [ [@-Fey)ode

~

9% Op. YD (3.22)



where the constant 0, is the value of ¢ attained at x = 0. Integrating

continuity equation (2.6)> and applying Gauss' theorem:

T le i
b

Hence

J_E:l( + J_EJ, [fI[Jl(_(-v() + J_y(‘yy] 0’,: :
It it D, ¢! & (3. 24)

- (3::23)

1

But

o
"

-+

~———3

b
Jt

i
i Dy

so that

€3,29)

s |
"fﬁ
Sty

v

ras

[ -~ WSS
38

‘}_gk + J_@_-,,, =6
dt Jt : (3. 26)

Thus, we have shown for an individual element that the rate of change of
kinetic energy is compensated by the integrated pressure-work when the
centroid convention is obeyed. In the next section we generalise the
relations above to the case of variable Coriolis parameter and curved

domains.

4 FINITE ELEMENT SEMI-GEOSTROPHIC SOLUTIONS IN CURVED DOMAINS WITH VARIABLE
CORIOLIS PARAMETER

The solution surface ¢(x) for f-plane SG theory can be thought of
geometrically as the envelope of a set of intersecting similar
hypersurfaces, each of the form

doo- @, - L0 =l + £2,0,

(4. 1)



 m - w

with each ¢, a constant.Considering "sections" at any constant z, the
solution forms the supremum of a set of paraboloids in (x,y,d)-space of
similar shape and with axes parallel the the ¢-axis. It is this structure
and the linearity in the z-direction that allows a simple transformation of
the solutions to convex functions, as shown in CP. Since the curvature of
paraboloidal sections depends on the Coriolis parameter f it would appear
that to generalise this construction to a domain where f varies requires
either that a form of surface more general than quadratic must be chosen or
that each quadratic surface derives its curvature from a favoured value of
the Coriolis parameter, such as that pertaining to the position where ¢,
attains its maximum on a horizontal section i.e., f, = f(za). The latter
alternative is clearly the simpler although it no longer leads to a
solution that we can naturally identify with a convex function. Simplifying

the scaled potential temperature to

7= o
O,

we modify the form of the surfaces (4.1) to

g - D - O ox v

(4.2)
%

where subscript h denotes the horizontal part of a vector. Note that this
formula is alsc valid for domains where horizontal surfaces are
intrinsically curved (e.g., spherical) by generalising the horizontal
vector (Z_E)h to lie on, and be parallel to, the geodesic arc from Xy to X,
with a magnitude equal to this horizontal distance. Henceforth in this
section it will be implicitly assumed that the horizontal components of x
and X are postion vectors rather than Cartesian coordinates to allow for
the possibility of a curved domain. Likewise, we shall modify the
definition of dp so that it still refers to a measure of infinitesimal

physical volume, not coordinate volume.

To guarantee energetic consistency for a moving finite element we ncote

that defining the kinetic energy density,

._10_
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kE = -ZLyg = ZL 3 IV?‘L\ ;

;ax) (4. 3)

-~

will ensure that, since,

i
I (¥
the boundary integral terms generalising those of the change of kinetic
energy (3. 16> and pressure-work (3.18) will continue to cancel, both in the
case of varying f and in a curved domain. It remains to determine the form
of the evolution of X that causes the body-integral generalising that of
(3.16) to vanish. Because f now varies with X this integral is a little

more complicated. Writing,
e
e (sx’s)”ﬂ

then

"

e [ 200). () + (% )/ \__l Li- 38

Jf Jt 5 X« - Jt

where the first vector in the integrand of (4.5) is parallel-transported

Pl 5)

along the geodesic from x to dual location X. Clearly the most natural
generalisation of the evolution equation for X that will cause the integral

of (4:5) to vanish is,

i oo a) il D D, &

—_—

dt ; Dy i D) : 4. 6)
(X)

= I (U9+V) l( \ZJ.‘
b"‘ Fx.)

Differentiating (4.2) with respect to a locally Cartesian coordinate

C4.=7) -

componentX and using

Bﬁ 2 Z '2_¢ 51(,- = (X'1)3_2‘ +(>/‘5)€:J + ZD_Z
}—X S 37( 3X X bX 7 (4. 8

we find in the continuous limit of differentiable functions @ that

_11_
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29,6 74 X (4.9

with a similar expression for the partial derivative with respect to Y.
Thus, in the continuous solutions,

I 2 (____“?*Vf’ o wef

=Yg

it fix

L (4. 10)
ﬁ(x 3}@ :

which is clearly identical to the L,—-dynamics of Salmon €1985).- 1kt ds
readily verified that the form of dual-space velocity field,

XL R
" i

for any scalar ¥, together with continuity (2.6, guarantees the Lagrangian

(4. 11)

conservation of a potential vorticity q of the form

? {(X) JV (4.12)

where dv is a differential volume element of X-space (i.e., dv/dp is a

generalised Jacobian).

We have shown in this section that the finite element construction of SG
theory can be extended naturally to domains with curved horizontals and
with a spatial variations of Coriolis parameter f. The generalisation
preserves the laws of conservation of mass and energy, but the geometric
construction of a convex function surface P(x) that was possible in the f-
plane case (CP) is no longer possible. Instead, finite element solutions ¢
are constructed from the envelope of intersecting hypersurfaces in (x, 92—
space that have sections in (gh,¢)'space in the form of paraboloids. The
finite element system discussed here may be thought of as the natural form

taken by Salmon's (1985) model when using discrete data.

_12_
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5. RECIPROCITY RELATIONS IN f-PLANE SEMI-GEOSTROPHIC THEORY

Since in this section we shall be dealing exclusively with f-plane
dynamics we shall implicitly assume units of time t that make f
shown in section 3 for the t-plane solutions, the existence of a function L
in (4N-1)-dimensional space of configurations defined by 3N components X,

and N-1 i.‘epond@n* components M, allows one to express the vector of

(ﬂ-

f an element o by the vector ot derivatives,
) ( FOEeal e B
( WX R X«

momen

and potential R, by the derivative

= e < £ Y
oM,

As

5.1

LEsde)

where we assume that one element y has tfixed R and changes its mass in the

sense required to conserve the total,

N
22 P1x = J %J = constant,
L=1 fD

By taking a further partial derivative with respect to independent

x
components ¥. or M. we can identify certain reciprocity relations that must

hold:
aﬁf)T et
E% X,

=T

(9’\/’;) DR /4

~
2

I e

'glgf . E)E;ﬂ X A Y/ )

>

To give one particular example of the physical meaning ot these

. 33)

(5. 4a)

relations, suppose we change potential temperature Z, of element « by

_13_



heating it an infinitesimal amount &Z,. Then the concomitant change in the
geopotential difference between fixed points x. and x, in elements B and y

is proportional to &Z,

sP,— 5B, =(SRs— SRy) = ~3§Zﬁ e 5.6

but the same coefficient of proportionality (apart from a change in sign)
holds for the sensitivity of z-moment Mi of element o to the injection of

mass into element B:
-
Re - M

xX
Note that the vector moments M, can each be expressed as a product:

X —_—
M I\/ID( }a(

ol

T

¢85,

where’g; represents the centroid position of a«. Thus (5.3a), (5.34a) are

equivalently expressed:

(Lot . 2%
M/j )2(/{ M,( gxx (5. 3b)

e Lk
TB—'\_"-/; Mg X, (5. 4b)

in which form they more directly generalise to the continuous reciprocity

relations discussed below.

The example of a mass source(f) and sink (y) couplet might represent a
simple model of penetrative convection (Shutts, 1987). Then ascent or
subsidence at « induced by a unit rate of transfer of mass in such a
process is in identical proportion to what the sensitivity of geopotential
difference ¢z - ¢, would be under the influence of a unit rate of heating
of the parcel at «. The other reciprocity relations implied by (5.3)-(5.5)

involve various combinations of geostrophic momentum and horizontal moments

....14_
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as well as potential temperature, vertical position, mass transfers and

geopotential differences.

Clearly we should expect to see continuous solution analogues of the
above relationships in the limit of vanishing small elements. Let P be a

given solution in D associated with a data distribution p(X>:

f(?((ef)) = (1 [Je/t Q'.J.]-l : (5. 8)

where

1D :
Q.. = 9. z bX. . (5.9

7 ki dx;

|

Suppose that, gauged according to some convenient parameter T, a
variational adjustment of this solution is carried out by a combination of
K—space rearrangements, expressed by a vector field,

w.

}f ~ ,
and by mass sources and compensating sinks, expressed by the scalar field
S(x) which is equated to the divergence of the resulting movement u(x) in
physical space:

S(J,() = V"J

> (5. 10)

&
X

I ey v (5.11)
I

Note that T is not time, and u is therefore strictly not a velocity,
although its effect resembles what we should expect from a velocity field
and the rate of change of P is to the same degree similar to a true

"tendency” and will be referred to as such:

/ D
P(X) = ‘—J—’ (5. 12)
s ‘

The construction of the resulting "tendency equation" for P' follows

closely the standard SG derivations (Schubert, 1985; PC). Since



J,[ % (513

.2 Qo — O P

b o ) (5. 14)

it follows by taking the divergence,

V- Q‘.|?PI: AV-Q“-)/“ o (5. 15)

with conditions on the boundary, where the normal vector is n, given by
= P
n . (:2 f§7f> = 0

A5 N : (5. 16)

~

Let P,' be a solution induced by a data-displacement field V only. Let P

be the solution obtained by a unit mass source at x, and unit sink at Rt
S, ()= SCx-2) — 8(x-xy)

The rate of change of geopotential difference ¢,' (x.) - $.' x.,) of the

first solution can now be related via a form of Green's theorem the

solution P..' as follows:

Ad =B (x5) — B (%) = i[g(¥“¥p>— S(zc—acy)}l?/J,z ,

=Wy lve B p Y
D

which, by integrating by parts twice becomes:

el olve )l
] :

)

(5. 18)
B T >/
| R (v
b
integrating by parts again:

?

“Vv)

))(@

_16_
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.—..g\/-g,_ J,, (5. 19)
g

where u. = -Q7.VP. is the x-space rate of displacement associated with the

source-sink solution P.'. In particular, when
M(x) = € S(x~x4) (5.20)

then

Dg = Bl ~ B (x) = ~Ye(x)-e

{521

which is essentially the continuous analogue of reciprocity relation
(5.4b). Corresponding continuous analogues of (5.3b) and (5.5) may be

constructed in a similar manner,

We note from (5.19) that if the rate of perturbation of the data forcing
tendency P,' is a field x bounded in magnitude un%formly by a "norm" W,
then the maximum rate of change of geopotential difference A¢,' = [¢,' (Xg)
- ¢.' (x,2] provided by such a field V occurs when |V| achieves its maximum,
W, and is parallel (or anti-parallel) to the displacement field u=

everywhere (u. being associated with solution P.' as before). Then

Al -0 W“E’l”l’ : (5. 22)
D
Furthermore, since Uz integrates to a net "flow" of unity over every fixed
surface separating x. from x,, the integral of (5.22) is just the flux-
averaged length of the streamlines of U In the case of two dimensional
solutions in a simply connected bounded domain with perimeter |dD| this

mean flux length U is conjectured to satisfy the inequality,

L 2D
[ = [lgllJ,, < l.___.__ : (5.23)
7 .2

A proof of this conjecture has not yet been found. However, if it is

true, it would effectively place a definite upper bound (namely the semi-

_17_
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perimeter of the domain boundary) on the rate by which the geopotential
difference between any fixed pair of points in the domain can change when

the material rate of change of X is everywhere bounded by unity

6. CONCLUSION

An examination of the geometrical properties of the f-plane semi-
geostrophic theory reveals a new duality principle coupling the "vector" of
all components (R, X., Y., Z,) to the "vector" of all moments (M., M=, M¥, M=)
of the set of finite elements. The duality structure is shown to be
intimately associated with a Hamiltonian dynamical structure when the
evolutionary equations follow the so-called "centroid convention". It is
argued that the most natural way of extending the finite element model to
domains with curved horizontals and varying Coriolis parameter leads to a
dicrete form of Salmon's (1985) L.-dynamics which he constructed explicitly
to preserve analogues of the conservation laws of mass, energy and
potential vorticity. The existence of a Liouville theorem places an
important consiraint on the dynamical behaviour of the finite element

system, in particular, it precludes the possibility of chaotic attractors

in the model phase-space.

The suggested generalisation of the finite element model to domains of
varying Coriolis parameter no longer preserves the correspondence between
solutions ¢ and the convex function P introduced by CP. However, the
solution ¢ is still represented as an envelope of intersecting paraboloidal
hypersurfaces, but now with curvatures in each (x, y)-plane characteristic
of the Coriolis parameter at the dual space location with which each
surface is uniquely associated. Thus, if element volumes M and dual space
coordinates X are given for all elements, an iterative solution procedure
along the lines of the one suggsted in CP and implemented by Chynoweth
(1987) should still provide a unique solution for all but the most extreme
combinations of data. Furthermore, typical finite element solutions in
three dimensions will continue to display the characteristic pattern of
four elements meeting at each interior vertex except momentarily at
topological transitions of the vertex connectivity, as discussed by Purser

(1988). Hence, locally at a vertex the pattern of joining edges can still

_18_
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be identified by a "tangent dual space" pattern represented by a particular
tetrahedron . Likewise, the local transition of connectivity is represented
by a transition in the tangent dual space pattern of adjoining tetrahedra.

It would therefore appear that the essential characteristics assumed by the
"panel beater" algorithm of Purser (1988) remain and may be exploited, even
in a non-Euclidean domain, to effect the solution of finite element models

efficiently

In addition to its relation to a Hamiltonian, it is also demonstrated
that, on the f-plane at least, the duality structure implies a family of
reciprocity relations among various modes of solution sensitivity. It is
conjectured that the sensitivity of geopotential to changes in the
underlying data is bounded, at least in two dimensions, by an amount
depending only on the linear dimensions of the domain and not on the basic

solution being perturbed.

._.19._
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