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Part I

¥ Short Summary of the Main Features of the Atmospheric Model

Basic conditions

The atmosphere is taken to be a baroclinic fluid bounded below by the 1000 mb pressure
surface and above by the 200 mb surface. It is separated into two layers by the 600 mb
surface. In each of these two layers the thermal wind is taken to be constant in direction
and to have a speed varying linearly with pressure through the layer. Pressure is used as
vertical coordinate and the hydrostatic approximation is used in deriving the equations of
motion thereby eliminating sound waves from the solution. The vertical velocity, which is
in fact the rate of variation with time of the pressure acting on a moving particle of the air,
is assumed to be zero at 200 mb and to be related at 1000 mb to the horizontal velocity at
that level by conditions dependent on surface friction and topography. The vertical velocity
is represented by a separate parabolic function of pressure in each of the two layers. These
parabolic functions are in two parts. One of these is the same for both layers and has a
coefficient proportional to the vertical velocity at 1000 mb. The second part has different
coefficients in the two layers. The two functions are of course continuous at 600 mb, the
upper boundary of the lower layer and bottom boundary of the upper layer,

Area of Analysis

The computations are made over an area of the earth which is a rectangle when project-
ed stereographically on the tangent plane at the North Pole. The centre is near 74°N 13°W
and the comers of the area are in the Bay of Bengal, in Cameroon, in Columbia, and near
Hawaii. This area on the stereographic map specified is divided into squares by 47 lines

. parallel to one side and 41 parallel to the other to give 1927 points of intersection termed
grid points. This array of points defines the horizontal coordinate system and the elements
concerned are specified by their grid point values. The distance between the grid points is
326.68 km at the North Pole decreasing southwards to 179.25 km at the most southerly point
in latitude 5° 35°N.

Fundamental dynamics; vorticity equations

The basic dynamical equations are those for the time rate of change of the vertical com-
ponent of vorticity and the equation of continuity. The latter is used to eliminate the hori-
zontal divergence from the former to give an equation specifying the "total" derivative of
the vertical component of vorticity in terms of the vertical variation of vertical velocity.
This last equation is integrated with respect to pressure over the whole depth from 200 to
1000 mb to give the so-called "equation of mean motion" in which the basic terms are the
time-rates of variation of the vertical vorticities of the 600 mb wind and of the thermal winds
of the two layers, The vertical vorticity is a function of horizontal derivatives of the hori-
zontal components of velocity, The geostrophic approximation is now used to replace the
thermal wind in each layer by the spatial gradients of the corresponding thicknesses, The
geostrophic approximation is not used at 600 mb, At this level the flow is roughly non-
divergent and the horizontal components of velocity are written as derivatives of a stream
function as is appropriate for non-divergent flow. The stream function is not given by
observation and is obtained from the spatial gradients of the 600 mb surface by means of
the so-called balance equation. This is obtained from the equations of horizontal motion
at the 600 mb level by using the stream function expressions for the horizontal velocity
components and writing the condition for the total derivative of horizontal divergence to be
zero. It has been found that derivation of wind on the 600 mb surface through the stream
function gives superior forecasts to those obtained by using the geostrophic relation at
that level. The equations are non-linear partial differential equations. They are of the
elliptic type so that for solving them it is necessary to prescribe values on the boundary
of the analysis area in advance. The boundary condition used is that there is no change
~ in the heigh;p; of isobaric surfaces on the boundary during the period of the forecast.

ance for topography and surface fricion | -
It has been stated earlier that the %éﬁ-ﬁc&lﬁelo'clty at the 100 mb level is ielgted o
the horizontal components there through the effects of topography and surface friction. The

effect of topography is introduced by supposing the air has the vertical component to be
expected if the geostrophic wind appropriate to the contours of the 1000 mb surface were




forced up or down along the ground, The ground topography is approximated by taking at
each grid point a height equal to the mean height over a symmetrical surrounding square of
side one grid-length. Surface friction produces a horizontal component inwards to low '

pressure across the contours of the 1000 mb surface leading to an up-flow at the top of the
friction layer over low pressure areas and down flow over high pressure areas. The vertical
velocity at the top of the friction layer is proportional to the divergence of the horizontal
velocity integrated through the friction layer, This integral is evaluated from equations of
borizontal motion involving a constant coefficient of turbulence, a procedure which gives
the Ekman spiral variation of wind with height in the friction layer. The surface wind is
supposed over land to blow into low pressure at an angle of 30° to the 1000 mb contour and
0°35 times the corresponding geostrophic wind speed and over sea at 3° angle and 085
geostrophic speed, This completes the specification of vertical velocity in the two layers
and so the specification of the equation of mean motion and its boundary conditions at
1000 and 200 mb.

Fundamental thermodynamics; rate of change of thickness

The next step is to obtain equations for the time rate of variation of thickness of the
two layers given by advection and by both adiabatic and non-adiabatic changes of tempera-
ture, These equations are obtained from the first law of thermodynamics and express the
time rate of change of thickness in terms of thickness gradients, velocity at 600 mb, an
integral over the depth of each layer of the product of vertical velocity and the difference
between the actual lapse-rate and the dry adiabatic lapse-rate, plus a term giving a measure
of non-adiabatic heating. In evaluating the integral, the difference between actual and dry
adiabatic lapse-rate is taken to be a constant through each layer; the difference is 0+4 x
dry adiabatic lapse-rate in the lower layer and 0°25 x dry adiabatic lapse-rate in the upper
layer. The only non-adiabatic heating or cooling effect taken into account is heating over
the sea in areas where the sea is warmer than the air. This term is, over the colder sea
areas, taken to be proportional to the quantity — an artificial 1000/600 mb thickness com-
puted from mean monthly sea temperature minus the acwal thickness of the layer — when it
is positive and zero when negative, The formula giving the artificial thickness from sea
temperature was originally computed for the sea area between Iceland and Scotland and has
been found to give excessive values of artificial thickness and correspondingly excessive
heating over the warmer seas of the area. Accordingly over the warmer seas the artificial
thickness has been replaced by the climatological mean monthly thickness.

Two final equations are obtained by subtracting the vorticity equation for the top of
each layer from that for the bottom and substituting as before described for the horizontal
components of velocity,

Final equations for rates of change and method of solution

In this way five equations are obtained in which the five unknowns are the time rates
of variation of the two layer thicknesses and the 600 mb stream function and two basic
coefficients in the formulae for vertical velocities in the two layers, These equations are
solved by replacing the derivatives by their finite difference approximations to give a
series of linear equations, one of each type for each of the 1927 grid points, The linear
equations are solved by an iterative technique. The 600 mb heights are obtained from the
ancillary stream function at the required times by solving the balance equation in the
*opposite sense” to that referred to under " Fundamental dynamics".

Computation of forecast values of heights and thickness

New values of heights and thicknesses are computed from the rates of change at inter-
vals of time termed time-steps, The time step employed at present is % hour but in certai
ituations a time s r may be necessary. It is desirable to make e-st




process is gone through again and again using newly computed heights and thicknesses to
compute new rates of change, Heights at an even number of time steps from the start are
deduced from the last previous even values by using the time rate of change computed at
the intermediate odd value. Values at an odd number of time steps are computed similarly
from the last odd value and the rates of change computed from the intermediate even time
step. This gives two "leap frogging" sets of values. This method is essential to maintain
stability of the solution. The surface pressure is obtained by multiplying the 1000 mb
height in decametres by 1-2 and adding 1000 mb. At intervals of six hours the height
fields are smoothed by substituting for the "raw" directly computed value one which is a
weighted mean of the "raw" value and corresponding "raw" values at adjacent grid points
using weighting coefficients which have been determined to ellmmate unrealistic small
scale distortion of the patterns.

Final forecast

The elements forecast at present are:

Surface pressure, 500 mb and 200 mb heights, 1000/500 mb thickness: At 24, 30, 36
and 48 hours from initial time,

Mean Vertical Velocity in the lower layer. Zero, 12, 24 hours.

These are liable to change depending on operational requirements.

Snmga_rx

Basic conditions

Baroclinic atmosphere, hydrostatic in the vertical.

Boundaries in vertical: 1000 mb below, 200 mb above.

v~ %

Layers: Two, separated by 600 mb surface.

Thermal wind: In each layer constant in direction and speed varying linearly with
pressure.

Vertical Velocity: At 1000 mb has value produced by effect of topography and surface
friction on surface wind (but see section on method below); zero at 200 mb; represent-
ed in each layer by a distinct parabolic function of pressure.

Area of analysis

Rectangular grid on stereographic projection on tangent plane at North Pole containing
1927 grid points. Corners Bay of Bengal, Cameroon, Colombia, near Hawaii. Grid length
327 km (203 st. miles, 176 nautical miles) at Pole decreasing southwards to 179 km in lat.
S235°N.

Fundamental dynamics

Basic equations: continuity, rate of change of vertical vorticity;

Equation of Mean Motion obtained by int egratmg vorticity equation over whole
depth of from 1000 to 200 mb. >

Relation between wind and height qf xsobuicsurﬁce: e




Vertical velocity: These two effects determine a vertical velocity at 1000 mb used in
specification of vertical velocity in the two layers.

Fundamental thermodynamics; rate of change of thickness

Formulae for rate of change of thickness of each layer in terms of lapse-rate, vertical
velocity, and non-adiabatic heating. Only non-adiabatic heating; air over a warmer sea.

Two final equations obtained from differences of rate of change of vorticity at top and
bottom of each layer.

Final equations and method of solution

Five partial differential equations for five unknowns; time rates of change of thickness
and stream function and two coefficients in vertical velocity formulae. 600 mb height
obtained as required from stream function by solving balance equation "in reverse".

Boundary condition: no change on perimeter of analysis area,

Solution method: Derivatives replaced by finite difference approximations and result-
ing linear equations solved by iterative technique. y |

Computation of forecast heights and thicknesses and surface pressures

General procedure is to obtain heights and thicknesses at T + 2 time steps by adding |
to values at time T twice the rate of change computed for equations containing values for |
time step T + 1; the value at T = 1 being obtained from the initial values and the rates of |
change computed from initial values.

Smoothing: linear weighting formula applied to smooth at six-hourly intervals,

Surface pressure: obtained from 12 x height of 1000 mb}‘in decametres s@sfmre plus
1000 mb.

Pare 11

Dynamics and Thermodynamics of the Model with
Table of Constants and Bibliography

This Part contains a mathematical summary of the dynamics and thermodynamics of the
numerical forecast system in use in December 1965. It does not deal with the initial data
extraction or analysis of the observations or the programming for computer operations and
only very summarily with the methods of numerical solution of the differential equations.
The symbolism of the original papers has been preserved in almost all instances; notes
have been included where symbols have been altered and also of symbols with more than
one meaning.

L. Basic Assumptions




included in the formulation is heating of air over a sea warmer than the air. No account is
taken of cooling over a colder sea, of heating or cooling over land or ice, or of condensation
processes.

II. Coordinates
The horizontal coordinates are orthogonal curvilinear distance coordinates on the spheri-
cal surfac'e of the Earth. They are symbolized by r and s. The basic vertical coordinate is
pressure, p. The function of pressure employed in the mathematics is a, where

B *+ Priss ZP.
o= Sadtest - |

a =

a varies from -1 at p, to 0 at p and 1 at p,.

In the later work horizontal coordinates on a stereographic projection of the Earth from
the South Pole to the tangent plane at the North Pole are used; they are denoted by x and
y. Vector quantities are underlined V, the scalar product is denoted by . and vector
product by A.

III. Horizontal Velocity

The horizontal velocity vector is denoted by V and the horizontal components in the
r and s directions by u and v respectively.

The assumption for the thermal wind is expressed by the formulae:

A4 V. + aVy for -1<axg0 veaas (2)

v V, + aVfor 0gagl sasee (3)

Where V,, is the vector wind at the mean level and Vg, V;" are the thermal winds in
the lower and upper layers respectively.

The (;) and (7) symbolism is employed systematically to denote differences of height
as well as velocity between the top and bottom of a layer — suffix 0 denoting the layer
1000-600 mb and suffix 1 the layer 600-200 mb.

Caution. In reading the paper by Bushby and Whitelam (Ref.1) it should

be noted that this symbolism is wrongly printed (1) : except at the top of
p.379 of their paper, '

1V. Vertical Component of Vorticity

From the expressions (2) and (3) it follows that the vertical component of the w}onicity,
{. in each layer is given by:

¢ = ¢, + alj for -1 ag0 ceene (4)

{n + aff for 0g TRl




@ is taken to be a separate quadratic function of pressure in each layer. These
functions are written:

= 2 1 - a\? ;
® = -a + ba + (a+ ba® + q e for ~1<ag0 PR ()
1-al’
® = -a + ba + (a-bk® + o 2 for 0<ag1 vesss 1 CT)

@, is the value of ® at the lower boundary, isobaric surface Py and is related to the
geostrophic velocity there by formulae set out in section VIII.

In these formulae:
a = 0‘125 (po o pl) (div Y(; + div Y;) -0'25 (Do YT (8)
b = 0125 (po - Pl) (div Y(; - div y;) Seten (D)

The operator div denotes in this Note the divergence of a horizontal vector. The
quantities a and b are constant only in the vertical at any point. They vary with time and
from point to point.

The formulae (6) and (7) make:

o = o, at a = -1 (1000 mb)
@ :

Do +T°at a = 0 (600 mb)

a = 0ata=1 (200 mb)

The horizontal and vertical velocities, taking into account the values of a and b of
(8) and (9), satisfy the equation of continuity:

do
divV + — =0
gpmls el R e e R e (10)
The mean value of vertical velocity in the lower layer omitting the contribution of
1 - a\?
mo( is one of the forecast elements.
2

Integrating (6), omitting the term in’ @ from — 1 to 0 this mean value is found to be
given by

5 2a b
@0 = - —3— + -6- ..... (11)

VI. Fundamental dynamics




f is the Coriolis parameter 2wsing, and ¥ is the horizontal gradient operator of compon-
ents:

do
Replacing div V by ~ 3p from the equation of continuity to obtain the vorticity equation

in a form amenable to approximation from the geostrophic wind relation we obtain:
U e e T T LR aohs ey RV T 9o SIG
at ap dp

We can pow substitute for £, V, and o in (13) from formulae (4), (5), (2), (3), (6) and (7),
to obtain a vorticity equation for each layer in terms of a instead of p.

The vorticity equation for the lower layer is now integrated with respect to a from -1

to 0, the one for the upper layer integrated from 0 to 1, and the two integrals added to give
the equation, termed the "equation of mean motion" which is, as used:

a-i{<,,+ 3¢ - 4,;)} . ym.v{c,, £ 2= L) f}

v Loy - wov s 0 x Hwva » woval

= @ f : Sesea (LAY
Py - P

fis the mean value of f over the area of analysis.

The complete mathematics gives an additional term,

da(gs + ) + b - &)
3(po - pl)

on the left-hand side of (14) while the complete expression on the right-hand side is,

e s | e 0 00 1+ (’)).
(Po’pl)( 640 :

The additional term on the left-hand side is ignored for the reason that it is biassed
towards one sign as explained in Bushby-Whitelam (Ref.1, page 376). The right-hand side
is approximated by f because the departure of f from f in combination with the other quanti-
ties is biassed (verbal information from Mr P. Graystone).




Here hg is the thickness of the lower layer and h{ of the upper layer. ¥? is the Laplacian
horizontal operator

aﬁ ai bl

The wind at 600 mb on the other hand is expressed in terms of a stream function /.

In vector terminology,
ym e k/\ v'/’. sosse (17)

where k is the unit upward vector. In Cartesian form
. gjé,
o s

L

o or

=
]

<
L[}

.with an obvious notation.

The initial values of the heights of the 1000 mb and 200 mb surfaces are derived from
observations at these levels. 600 mb heights are not reported and for the numerical fore-
cast programme are derived from the formula:

h, = 08h,, + 02h

m 1000°

This gives a sufficiently good approximation (Ref,1 page 378) for the purpose of computing
derivatives. The same formula is used to obtain forecast 500 mb heights from the forecast
1000 mb and 600 mb heights.

The stream function is not given by observation and so a relation linkjng it with an
observed quantity must be found. The relation employed is the "balance equation" which
is a partial differential equation for the stream function as a function of the Laplacian of
the 600 mb height field and the Coriolis parameter and its latitudinal variation.

The balance equation is obtained by writing, as shown below, the condition for the
"total" variation of horizontal divergence on the 600 mb surface to be zero.

The equations of horizontal motion on the 600 mb surface are:

du du dh
.é_tE i uma 1.5 vmf ~fv, = - 79.;91 seses (18)
.?_v_m +u ﬁ’_'!.‘ M .L" i fum = ogio 0 seave 1 (C19)

dt ™ or s ds




The right-hand side of (21) is then zero since the left-hand side is zero from (20). Express-
ing the component velocities u Wi - in terms of the stream function, the balance equation
" is obtained in the form:

Iy Y a=¢) :
. R S~ - e v A - 2h = . ssene
Bp = o sl e 89 L VARG O Rt 2 22)

Given h  and f this has to be solved numerically for ¢.

The use of the geostrophic approximation for the thermal winds in the two layers and
of the stream function for the wind at the middle level eliminates "noise" due to vertical-
transverse gravity waves from the solution while retaining the synoptically important
horizontal-transverse Rossby waves. Reference should be made to Thompson (Ref.3 Chap-
ters 4, 5, 6 and 11) for a full discussion of the problem of filtering out the non-significant
sound and vertical-transverse gravity waves which, if not excluded, give rise to computa-
tional instability. Sound waves were excluded by the use of the hydrostatic assumption.
The same filtering of gravity waves can be obtained by using the geostrophic approxima-
tion for the wind at the middle level but it is found in practice that the streamsfunction
method gives a better prediction of the significant changes in pressure distribution.

An important point regarding the balance equation is that for numerical solution it must
be of the elliptic type. Using the theory given by Piaggio (Ref.12, pages 183/184) of this
Monge-Amptre type of partial differential equation the condition for ellipticity is found to
be:

gvzh,n - vlﬁ-vf + f’é > 0 sseee (23)

This condition is not always satisfied over the whole area. The difficulty is overcome by
making small modifications to the 600 mb heights. It will be seen that the condition (23)
strictly involves the solution ¢y. However, ¢ is approximately equal to its geostrophic
value, gh m ¢ Entering this approximation in (23) the condition becomes

f
e L:’(th.w) Pl vosns (24)

which involves only known quantities. The values of h_ are checked for satisfaction of the
inequality (24) and over areas in which it does not hold the 600 mb heights are modified
slightly to values which do satisfy it. This procedure is termed "ellipticization".

VUL Allowance for Topography
and Surface Friction

The effect of topography is to produce a forced vertical component of motion at the
lower boundary. It is supposed that most of the air is forced to move over mountains and
ridges. ; »

lf H is the height of the underlymg surhce aborve sea level and u, v, w are components




denoting topography, we have

0t i

gp
so that *

@, = = 8p Yo-VH sesnu i (20)

where V is the vector horizontal wind on the mountains.

Taking V, as approximately given by the geostrophic wind appropriate to the lowest
pressure surface, p, of height h, above sea-level, we have:

g [ oh, oH oh, oH
-O.VH = - — — ow— — c——
i ; ds oOr Jr Os

whence using the relation (26) and introducing the Jacobian notation

- 9p dq _dp dq
Jod = = %

we derive:

g’p J(H, bo) Secss AZT)

)
0
t

f

In the model used the topography H is mapped‘by assigning to each gridpoint a height ‘
equal to the mean value of the true heights taken over a square of one gridlength side
centred at the gridpoint. The density p is taken to be constant in the model.

Turning now to the effects of friction the basic equations of motion in the friction
layer are, in the r, s, z system of coordinates:

f(v - vs)

Ao
- sasse 28
A2 (28)

f(u - ug) —A- -@iv- sveee (29)
p

0z?

in which up and vg are horizontal geostrophic wind components and A is an "Austausch"

coefficient supposed constant through the friction layer.

Suitable solutions of these equations are:

u - u8 = e'qz(Kcosqz + Bsinqz) ssanailB0)

8 C e % B cosqi - K sinqz) AR () )

and B, K are quantities independent of z but variable in the horizontal. ;

wbeté q’ =

5.




cVg cos @ + x)

=
]
-t
1
<
]

chsm(G + X)) - Vg

where V8 is the geostrophic speed.

Hence, since Vo cosy = ug etc.,

g

cu_cos ) - cvgsinO —g = (ccos - 1) = cvgsinG casi(32)

S g

B Wi (33)

cugsine + (ccosf - 1) S

It is supposed there is a level of height Z which can be termed the top of the friction
layer and at which the wind sufficiently attains its geostrophic value.

The vertical velocity @_, in pressure coordinate terms produced by friction at the top
of the friction layer is given, integrating the equation of continuity, as

z
W = gpdivVdz.
o
Now consider
Z 74
: (u - ug)dz and (v = vg)dz.
o o
Z Z
(u - ug)dz hr (1 - e 9%cosqz + e~ 9%sinqz) + B(1 - e %%cos qz-¢ 9%sin qz)
; 2q 2q
% :
4 e S e'qZ(K cosqZ + BsingZ + BcosqZ - KsingZ).
2q 2q

The term in e9Z s supposed to be negligible, leaving,
PP

z
Gl ugde s B2 Ry
g 2q
(o]
Similarly
Z
v =ivde =B K e
g 2q

o

Hence, taking the divergence of the sum of these two integrals and using the fact that

the divergence of the geostrophic wind is zero we have,



Similarly, B -K = - ulFl + vg(F2 ot ) TS LB S S (38)

where . F; = c(cos @ - sinf) - 1 )

F, = c(cos@® + sinf).

Hence,
8p 6ug JF, dF, OJu dF, dF,
= aem {—8 (F -1 — + Ve = —_EF ooy o
Pot 2q g dr o e, dr v‘ax gs T ds T ds

avg Ap
s /

{_ is the vertical component of vorticity of the geostrophic wind which, as in the derivation
of the forced ascent produced by topography, is taken to be the geostrophic wind associated
with the 1000 mb height field. The quantities Ey and F, are functions of the horizontal
coordinates. In the present forecasting model c is taken to be 0:35 over land and 0-85

over the sea while the angle of inflow into low heights, 6, is taken to be 30° over land and
3° over sea. The term F, {g has a value all over the chart but the terms involving gradients
of F, and F, have non-zero values only at coast lines. It is possible that these values may
be changed as a result of operational experience.

It is now supposed that @, which in the derivation was vertical velocity at the top of
the friction layet’is with sufficient accuracy, the vertical velocity produced by friction at
the 1000 mb level. Reference should be made to Graystone (Ref. 2, page 256) for a justifi-
cation of these approximations. The suffixes t and f to @, are not used in Graystone’s .

paper.

The final vertical velocity, @, of Section V, at the 1000 mb level is the sum of the
vertical velocities produced by topography and friction. @ is, in this way, expressed in
terms of the gradients of the 1000 mb height field and of constants depending on position
over land, sea or coastline.

Values of the constants concerned are given in the Appendix.

IX. Thermodynamics: Equations for Rates of Change
of Thickness of the Layers

The thickness, h, of the layer between pressures P, and p is given in terms of pressure
and temperature T by the formula, based on the hydrostatic assumption:

R [Po
e et
g

=
[}




Now dl 20T
= ek VAV D gy

de dt dp

Hence for the rates of change of the thickness we have, using expressions (2) énd (3) for
the horizontal velocities in the two layers:

ais R f% [1 40 yo 9T
e Vel Ly — — — - V.VT + aV'.VT - @ — }dp
dt 8 cp dt gp & » : op
pIII
‘ P 1 ® aT
.‘23.‘,.5 o -‘_19+Z-- Y 9T + aV..VT - o — |dp
t 8 cp dt  gp = i dp
P

YR

Transforming tq ¢ from p these integrals become

0 - en y
dh; R(p, - p,) 1 dQ y ' 9dT\\da

= _-—L——L ] —— — .v b, 2 vl.vT e Y N - saess 40
dt 8 2 '/; dt Ym_ T aV, . + O 0 ap ( )

S8

1
dh: - R - 1 d . d
-—l = -(Lp'i S —-Q’ - vmov’r G aVl'.VT + @ -y__ ? —:ooooo (41)
d¢ ¢ 1 €p de = gp  9p/) p

: 0

Now collect terms in (40) and (41),

The non-adiabatic heating terms are symbolized by Q, in the lower layer and Q in the
upper layer, i.e.;

R(py - Py [ dQ da

Q, = : —_—— eess (42)
y 8 2¢ : dt p ‘
1
R(p, - Py dQ da
Ql = - ﬁ"-—P—!— —Q— escon (43)
g 2¢ de p
0
R - d
The term - —(l,, - Py yu.vr—f isequalto -~V .Vh  in the integral for the
8 . ) P '

lower layer and to —V,_ .Vh{ in the upper layer, since V- is constant through each layer
and the thickness of each layer is




Now to obtain the thermal wind of components u.., v, in say the lower layer, we con-
sider the height z as measured upward from the lower pressure surface, p,.

Then,
R [P, (a'r) dp
e _—) -,
f P ds o p ;
R (R (a'r) dp
ne ) el
P 27 B
Hence du, R (GT)
5 b\ 0.
P P s p

hosk o & G
1+o-
soaVs.VT, ’\the scalar product of thermal wind and temperature gradient in the lower

la'yer,is equal to

o
ol

ie % -ffu’rf 2y
AR P\u; 2

which is zero because of the constancy of direction of thermal wind through the layer.
The same method applies also in the upper layer.

aT
The quantity — = which is proportional to the difference between the dry-

P 8p
adiabatic lapse-rate and the actual lapse-rate is taken to be constant in each layer and

denoted by I, in the lower layer and I"1 in the upper.

In the following text these quantities I" are termed the "lapse-rate" in the layer follow-
ing the terminology usual in the literature.

The equations for the rate of change of thickness have now taken the forms:

0
ET% b5 )RI‘/ do
28 i (B = BORD e
dt Yo - Vhy 2g o) wp *Q (4

dhj - p)RI [ da
——l = - Vm .Vh; - (’i’__P-l'—'—l/ Q;"‘ by Ql sesse (45)
0




which reduce on integration to:

Aa + Bb + E'mo and

Ca + Db + F'o, respectively where

A= -I_{_I;. __9.?.0_"4_. log, Po * Py + (pQ o5 3PL)
2g | (pg - Py)? 2p, (Py ~ Py)

(This quantity conventionally denoted by A has, of course, no connection with the
"Austausch" coefficient of Section VII.)

Bl e e
(Py - Py)?

TPy = W
5 8(Po R Pl)

8pyP,

. log
(p5— p)

- 4p (p, + Py)
e R4
(po-.Pl)z

5P — Po Plz

8(Py - P1) (Py = P;)?

The numerical values of these quantities are given in the Appendix. The quantities
denoted here by E” and F” are written in some working papers Epp and Fo ..

The final equations for the rates of change of thickness are thus:

dh; ] :
3:'“!:::°Vho+ Q, + Aa + Bb + E'a,

dhj . .
3;—= i -V-lll' Vhl + Ca + Db e F mo seeee (47)

X. Development Equations




and for the upper layer,

a§;+v V¢ i+ V. V(L +{+ f) = ~
-m" 1 3-8 m 1 =

{Z(a By e
dt Po~ P

+(a-b)§;}-_ﬂ°__ {¢m+f+

Po = Py

[

1

S } cesee (49)
2

The equation of mean motion (14), the equations for the rates of change of the layer thick-
ness (46) and (47) and the development equations express the basic dynamics and thermo-
dynamics of the model. The horizontal velocities and the vorticities which occur in them are
expressible in terms of the two thicknesses and the 600 mb height through the geostrophic
equation for the thermal wind and the balance equation. The two other unknowns are the co-
efficients a and b of the vertical velocity formulae. Thus there are five equations for five
unknowns. The following sections describe the transformations of these fundamental equa-
tions to equations for the elements required in the forecast.

_X_I. Introduction of Middle-Level Stream Function
and of the Geostrophic Approximation
for Thermal Winds

Entering the stream function representation of middle-level wind in equation (46) the
term- =V _. Vh(; becomes

ST
<

¥

l

b, — dy b
‘ e
EE

s Jr ds

DB

that is,~ ] (¢, h(;). The corresponding term in (47) becomes~J (¢, h ;).

Now transform to the stereographic projection from the South Pole on the tangent
plane at the North Pole in which the horizontal coordinates are x, y. This involves

d a d a
replacing = and o by B = and BB 57 respectively where [ is the map magnifi-
2
cation factor 1___._¢ (¢ latitude) from Earth to plane. S is, of course, a function of
+ sin

position on the plane. J (¢, h) thus becomes B?]J (¥, h) with the partial differentiations
in the new | taken with respect to x and y.

The equations for the rate of change of thickness can now be written in a form suitable
for future elimination as follows:

%:—H+A a.;.w_o + Bb, where H = B’J(¢,h/) - Q, - |E - =] o
3 y 0 0 4 0

+ Db, where I = B*J(y,h]) -




It may be noted at this point that in the British Meteorological Office contribution to
W.M.O. Technical Note 67 (Appendix 3,c, pages 37/38) the equations (50) and (51) appear
as equations (4) and (5).

ds

by substitution from the development eqnanons (48) and (49) which gives the equation,

The next step is the replacement of —— and -é_. in the equation of mean motion (14)
t

3¢ 1 1 1
A"’ v .V( o f) - —-— v' .v i R vl ov % T T cem————
at el cl 12 -0 co 12 -l cl Z(Po & Pl)

% 4b({, + f)

- ML+ LD+ ML= LDY = % 4°+¢‘+z? :
2(py - Py) 4

Now write the vélocity at the mean level in terms of the stream function and the thermal
winds in terms of thickness gradients.

’

{, becomes v*¢, {, becomes -: V’hgand (;7-:- V?h]. Transforming to the stereo-
graphic projection multiplies these quantities by B8”.
The term V. V({_ + f) becomes

0
8;/: ﬁ?—(ﬁ vy +f)+p._.ﬂb.y(ﬂ’v’|/:+f),

thatis, B J (¢, B2 V¢ + f).

The term V, . V {; becomes

B

E

Performing these operations throughout and clearing a common factor B? we finally derive
the equation:

d ;
v? (_5%) + J(,B VY + ) 4+ I;'f’ (P:—‘v’h;,ho)

=1 f
= 4b (v’¢ + ‘.)
2(po - Py b




The same procedure is now applied to the development equations (48) and (49).

The term V,_ . V{j in (48) becomes

Ay 9 Bl o Y O fgB L
o e (Frn) e 5 a5 ()

2
thatis B J (l/l, s—fﬁ-v’h‘;) . Theterm Vg.V({, - {; + f) becomes
By on; B3 (. _. 88"
G TR S Rty | SRt v B g
£ 9y ox (ﬂv'ﬁ+ fv_h°)

8B’

Bg dh; B9 ;
. a-y (ﬁ’V’l,ll e f——f—V’ho

2 2
which is ?] (hé; B*Viy + f - E-?—V’hé) g

The corresponding terms in (48) transform similarly into Jacobians.

Collecting terms and clearing a common factor 3? the development equations become: 2
LY f : .
V’( > =3 '/” B = v’h(; +. 3 h(;» Bzvz'/' 52 f""—"ﬂ : Vih
dt 8 f f 9 :

dn’ f : g
and v’(—l) - J(tﬁ,ﬁ—fiv’h') +J(h;,- B’V’¢+f+ﬁ_ffvh;)

: (. Fie b) 2 (i vy e )+ V*h’ (54)
= - —_— — - p— o S— ennee
(P~ Ps) 4 8 8B ;

Equations (53) and (54) are equations (2) and (3) of the British Meteorological Office
contribution to W.M.O. Technical Note No. 67.

We now substitute for a + ;? and b from equations (50) and (51) to obtain the final

. 3¢ ane
.simultaneous partial differential equations of Helmholtz type for ‘a't'q and 27

Using the notation of Bushby-Whitelam (Ref. 1), extended to include the topography and
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The balance equation (22) retains its form identically on transformation to stereographic
coordinates as

Py 9 2y \?\ V.V
v’l/,=f.v’hm-;2. o (a;,/,) - TOEe
f

Ix? dy? dxdy f

XII. Computation of Heating Term Q,

As already stated the only non-adiabatic heating effect allowed is heating of the air over a
sea warmer than the air.

The method of computation uses the thickness of the lower layer as a measure of the
air temperature and the rate of heating is taken to be proportional to the difference between
an artificial thickness representing the sea temperature and the thickness of the lower
layer. :

Over the colder seas of the area the formula employed is

Q, (metes/hour) = 2068 x 10~ (h) - b e (58)

19




for h > h, where

in which T is the mean monthly sea temperature at the point concerned in degrees Fahrenheit,
Thus it is supposed that when the sea is warmer than the air it

is heating the air at a rate tending to cause the lower thickness to increase at a rate proportion-
al to the difference between the artificial thickness and the actual thickness but if the sign of

and Q is zero for h/

h;(metres) = 12.97 (T‘ + 282.5),

< b

this difference is negative it is taken to be zero. The heating formulae (58) and (59) were

derived by Bushby and Hinds (Ref. 13) who state it is based on the work of Craddock (Ref. 14)
and on a statistical survey which they made of the relation between sea surface temperature

and 1000/500 mb thickness at Ocean Weather Stations I and J.

The formula (59) is now (1966) suspected of giving excessive heatihg over sub-tropical
seas by giving an artificial thickness which is too high as a measure of the sea temperature,
It is thought the formula may be valid only where the artificial thickness it gives is less than

the climatological mean thickness. Over sub-tropical seas the thickness computed from

formula (59) certainly gives appreciably higher values of thickness than the climatological
mean. It is intended to make a trial of using whichever is less of climatological mean thick-

ness and the artificial thickness of formula (59).

The computing system forecasts among other elements heights of the 1000 mb surface. The
pressure at mean sea level is obtained by multiplying the (signed) 1000 mb height in deca-

XIII. Surface Pressure

metres by 1.2 and adding 1000 mb. This procedure is equivalent to supposing the mean
temperature between the 1000 mb level and sea level is 10°C. The error caused by diver-

gence of the true mean temperature from 10°C is not large since at 30°C the factor is 1-13

and at 0°C it is 1-25.

XIV. Analysis Area

The computations are made over an area of the Earth which is a rectangle on the stereo-

graphic plane described in Section II. The North Pole is the origin of rectangular Cartesian
coordinates on this plane in the forecast system. The projection is conformal so that angles

- between directions at a point in the Earth are preserved in the projection. The positive x

axis is along the meridian 55°E and the positive y axis along meridian 145°E, The number

of grid-points is 47 x 41, the range in x being 21 to +25 and in y, -25 to +15.

| >

+25
+25
-21

The corners of the area are at:

5735 15" N,
16° 25 N.

22°59° 24" N,

10°6 “ 24" N.

Long.

10°E.
85° 577 50" E.

160° 327 15" W.

75°1742" W,

Country or Sea

Cameroon Republic
Bay of Bengal
Pacific, near Hawaiian Islands

Columbia.

cssse. (59)




XV. Computation of Forecast Values of 1000/500 mb Thickness,
500 and 200 mb Heights and Surface Pressure

The final equations used in forecasting the 1000/600 mb and 600/200 mb thickness and the
height of the 600 mb surface are (55), (56), (547, (54% and (52).

The first stage in the procedure is the calculation of the set of initial values of 1000 mb,
600 mb and 200 mb heights and the thicknesses of the two layers. This is the analysis
problem which is not considered in this note.

The stages of the solution of the equations are, in outline,

a. Compute the stream function ¥/ from the 600 mb height field by means of the balance
equation after ellipticizing the 600 mb height field as described in Section VII.

b. Compute ®, and the derivatives of the height and thickness fields such as V' hg,
This will provide all the quantities required for computing the coefficients E, F, G,
L, M, N of equations (53) and (54) for the rates of change of thickness.
55 &b
c. Compute the initial values of E, F, G, L, M, N from initial values of @, thickness
fields and stream function.

d. Compute rates of change of thickness from equations (55) and (56).
e. Compute a and b from equations (50) and (51)

f. Compute the rate of change of i from (52); this requires a and b in addition to the
initial values of ¢ and the thickness fields.

g. Compute new values of thickness and ¢ from initial values and rates of change.

h. When required for output compute values of 1000, 500 and 200 mb height, 1000/500 mb
thickness and the mean vertical velocity (excluding the effect of o) in the lower
layer. The 600 mb heights are computed from the balance equation which, given i, is
a Poisson equation for h . The 500 mb heights are obtained by using formula
h = 08hy, + 0:2 hioo0®

The balance equation, the equations for rates of change of thickness and the equation
for rate of change of stream function are elliptic partial differential equations. In order to
solve them it is necessary to prescribe in advance values on the boundary for the whole
period of the forecast. The boundary condition used is that there is no change there in
heights of isobaric surfaces. The partial differential equations are solved by replacing
the derivatives by their finite difference approximations to give a series of linear equations,
one of each type for each of the 1755 inner grid-points. These linear equations are solved
by an iterative technique which is a combination of the Liebmann and alternaring-direction-
implicit techniques.

The equations provide rates of change which are added to the initial values to obtain
new values used in turn as new initial values. The system is described in Part 1 of this
Memorandum under the heading "Computation of forecast values of height and thickness".

XVIL. Smoothing

The isopleths of heights and thickness computed in the manner described are found to
contain an unrealistic small-scale waviness caused by mild computational instability.
This small-scale waviness is removed by replacing the "raw" values at six-hourly inter-
vals by smoothed values. The smoothed values are a weighted sum of "raw" values at
the grid-point and at grid-points distant one and two grid-lengths away in both the x and
y directions. The basic theory is explained by Wallington (Ref. 4) and Shuman (Ref. 5).
They show how by forming such weighted sums of fields represented by a sum of trigo-
metric functions of position it is possible to eliminate waves of particular wave-length.
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Smoothing is applied during the course of the computations as well as to the final output in
order to provide smoother sets of coefficients of the equations thereby facilitating the
iteration process and minimizing computational instability. The smoothing system used
leaves waves of length of more than three grid-lengths scarcely changed while reducing the
amplitude of those of shorter wave-length at a rate increasing sharply with decreasing wave-
length.

To set out the formulae, suppose that H;, is the "raw" value to be smoothed and H ,H_,

H_,, H_, are the corresponding "raw" values at grid-points distant respectively +1, +2, -1,

and -2 grid-lengths away in either the x or y directions. The smoothing formulae:
Hj = 3-8798 Hy - 1.77097 (H_, + H_) + 0-331065(H,_, + H_),

; Hy = 0:375H; + 0.25 (H ,+ H))) +0625(H , + H),
are applied successively. Each is applied first in the y direction and then in the x direction
The final smoothed value is H | obtained after the x direction smoothing.

The formulae clearly cannot be applied at grid-points on rows and columns adjacent to
the boundary since some points of type + 2 and - 2 would be outside the area. Values on
the boundary are fixed in any case. The method used for smoothing at points one grid-
length inside is to substitute ZH+l -H for H_'_2 if +2 gives a point outside the area and

2H_, -H, for H_, if - 2 gives a point outside.




AEEndix |
SYMBOLS

General
latitude
Coriolis parameter

acceleration of gravity’
vertical vector i
dry-adiabatic lapse rate

differentiation following the motion

orthogonal curvilinear coordinates on the Earth

horizontal coordinates on a stereographic projection

Pressure
el X

1000 mb, p, 600 mb, p 200 mb, p,

Po. =Py = 2p 2 '
- — 1 ____ , representation of pressure

Po =Pt in the mathematics

Height and Thickness

General, h 1000 mb, h, 600 mb, h

1000/600 mb thickness
600/200 mb thickness

Thickness of 600/1000 mb
layer representative of
sea temperature

Top of friction layer

Smoothed height | T




Horizontal velocity (contd.)

V3 Geostrophic wind of 1000 mb surface
u_ v,  components

\Y speed

uy, Vo wind at ground level components

ur, Vo Thermal wind, general components

\ ' Vector Thermal wind 1000/600 layer
VvV’ Vector Thermal wind 600/200 layer

Vertical velocity

d
T @ ®at 1000 mb, o

Value of @ at 1000 mb due to topography @,
Value of @ at 1000 mb due to surface frictionAa:_o‘

a, b coefficients in expressions for o as function of a

Friction and Topography

ol
Austavsch Q‘\)'*J(t/*u—‘/\"x
= pf
2A

£, > B W

@)

ratio of ground level wind speed to geostrophic speed
angle between geostrophic and ground level wind

x angle between geostrophic wind and axis Or

Vertical component of Vorticity

¢ General
¢, 600 mb level

¢, ¢ of 1000/600 mb thermal wind

{; ¢ of 600/200 mb thermal wind

Lapse Rate and Heating




Lapse Rate and Heating (contd.)

Q0 Rate of heating of lower layer over warmer sea

T, Mean monthly temperature of sea surface

Constant Coefficients in Basic Rate of Change of Thickness Equations

v vl i e ool ) TR

E’and F’are denoted by E_ . and F ... in some working papers

Variable Coefficients in Helmholtz equations for
Rates of Change of Thickness

Byl 26y e e ML N




Appendix II

Table of Numerical Values, Constants and Coefficients

The units of the basic elements of length, time and temperature used in the operational
system are metres, hours, and degrees Celsius. Pressure is expressed in millibars. The

dimensions of the quantities are included. The dimensions of absolute temperature are
written [K] and of pressure [P]. The numerical values are those in use in the programme

in December 1965.

Quantity

Acceleration of gravity

Gas Constant

Lapse-rate

Lower layer value

Upper layer value

Multipliers

Lower layer value

Upper layer value

Symbol

8

Dimensions

Ll [T

1 8 bl 0
or

(p]1 [L*] (M™] [K™]

[K] tp~‘]

or

k] [L] [T [MY]

(L] [P-1]
or

(L1 [1T4] M7

Numerical value

Constant at 127 137 600 m/hr?

3719908800 m*/hr® °K
(equivalent to 2°8703

% 10° c.g.s. uaits or
2:8703 x 10° mb/(grams/
cm’) OK)

-0+0422222222 °C/mb
(equivalent to -38°C/

* 900 mb)

-0-0511111111 °C/mb
equivalent to ~46°C/
900 mb)

-1+23538 m/mb

-149548 m/mb




Coefficient, F;

c(cos@ - sinf) - 1

Coefficient, F,
c(cos@ + sinf)

Coefficient F;g /Ap
2

Difference, land-sea

Difference, land-sea

- (A + B)
(C + D)

(D - O
(A - B)

A

Friction Constants (contd.)

Pure number

Pure number

i o
w7

Fzg

4y 2

-0.87189111 (land) s
-0:195650725 (sea)

0-47811 (land) ;
0-89332 (sea)

-16+4 (land) ;

~3.686 (sea)

-3:178

Coefficients in Equations for Rate of Change

of Thickness

L] [P

(Pl (11

(AD - BCO)

B

(AD - BCO)

[

(AD - BO)

D

(AD - BQ)

(A + B)

~0.4465490669 m/mb
-0-1042706009 m/mb
0-3483 m/mb
-0-9372539997 m/mb
0-02632612258 m/mb
-0:0477 m/mb
~0-8172486215

-3.5074226111

2-0742026939 m§/m
0-4843328014 mb/m
4+3535076230 mb/m

-1:2228379473 mb/m

2.558535492:




The coefficients A, B, C, D, and the derived ones LA+ B) w (€ —D)

(C + D) (AD - BQ)
were computed on METEOR by an Autocode programme written by Mr D.E. Jones. B

Geographical Constants and Coefficients

Grid length at North Pole Ao = 326:683635 km

= 202:992 statute miles

= 1762842 nautical miles

Radius of Earth R 6367-3 km
Coefficient @’ 3.2901007 x 10~*
8R?
Coefficient g 1486-5 hr~!
af ; sing(1 + sing)
Coefficient 2R 38-983
a

Formulae for latitude ¢ and a’ (x* + y?)
 ————

longitude 6 of grid points: (1 + sing)™ = 0.5 T ; |
\
o y
a0 (07 = 55°) ==
X
Magnification factor Earth to 2
| Stereographic plane B = (—-——-—-—)
1 + sing

Grid length on stereographic
chart of scale 30 x 10° 1cm
at lat. 60°N (METFORM 2215)

Height gradient A H per grid A 5 A
length for geostrophic wind AH> Ars Rl o sihg)
to exceed one grid length 24qg 4
time-step of q hours (useful
in considering stability)

metres/grid length

On a stereographic projection
of scale 30 x 10° at lat, 60°N
on which grid length is 1 cm,

~ the above inequality is equiva-




8.

10.

11.

12,

13.
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