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Numerical integrations of the Navier-Stokes equations for flow
past a smooth, three-dimensional, surface-mounted obstacle are
presented. The variation of the flow with Reynolds number, and with
geométric ratios such as the maximum slope of the obstacle, are
investigated. The separated flow is investigated using visuslisations
of the surface-stress patterns, and also particle trajectories through
'the flow.
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1. Introduction

Fluid flow past three-dimensional surface~-mounted bluff obstacles

is a subject of considerable interest in many fields. In the widest
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context, atmospheric flow over bluff topography or buildings, flow
over protuberances on sircraft or vehicles, and internal flows over
obstacles in pipes and ducts all demsnd an understanding of the general
phenomenon. Sedney (197%) presents a review of the subject, and
indicates the complete lack of detailed knowledge of such flowé. The

principle difficulty is the problem of the measurement and visualisation

of the enormous amount of information necessary to describe a complex
three-dlmen31onal flow. Hunt et al (19785 present a pureiy kinematical
study intended as an aid to interpretation and comprchensicn -of three-
dimensiopal separated flows, underlining the shortcomings of

experimental results; the data is often incomplete or ambiguous, and

requires interpretation to give a complete description of the flow field.

Except for the simplest geometrics, even the most general features such
as separation lines may be unknown.

In many physical problems, numerical computation is used as & means
of obtaining greater detail, complementing experimental results. The
present speed and size qf digital computers maokes the numericel
solution of some three-dimensional flow problems possible. In contrast
to experimental methods, numerical solution of the equatibns of ﬁotion
provides a complete description of the velocity field, but suffers
stricter restrictions on the parameters and geometries which can be
gtudied.. In this paper, some numerical solutions of the Navier~Stokes
equations for flow over surface-mounted obstacles with simple geometry
and moderate Reynolds numbers are presented. If the results of this

study are to correspond with the continuous solution of the differential



- the Reynolds numbers for which a solution can be obtained. This

equations then, at the very least, the resolution of the finite

difference model must always be finer than any scales of the
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continuous solution. It is this requirement which sets a limit to

computational requirement proves to be very stringent for objects
with sharp corners, such as cubes, and the present work deals with
smoothly shaped obstacles. It is hoped that the thorough flow
visualisation obtained from these calculations will not only be of
interest in its own right, but will also help clarify the mechanisms

at work in more complex flows.

Before describing the numericél techniques and results, some
general concepts of separaéed flows are worth considering. In two
dimensions, separation is unambiguously defined by a streamline
detaching from the surface, generating a closed circulation.
Unfortunately, the situation is not s0 simple in three-dimensions.
Separation at very large Reynolds number is identifiable by the
boundary layer leaving the surface, but a useful definition of
geparation valid for ell Reynolds numbers is not so obvious.
Lighthill (1963%) considers the singular points in the gurface =

gtress field, ie the points where the vector tangentiel stress

vanighes, and suggestis that gsoeparation end attachment lines must begin

and end in singular points. The nature of those points has been
characterised in terms of ‘nodes' and 'saddle points', applying
topological principles to determine constrainis on the possibdle
gtreamline patterns (see eg Lighthill (1963), Hunt et al (1978)). These
gingular points are undoubtedly the most striking feature of a flow
pattern vhen they are present, and we shall relate our numerical

results to the recent regults of Hunt et al (1978) where possible.

However, singuler pointe are shown notto be necessary for separation to




occur, and in section 4 we shall present an example of a separated flow

without any singularities in the surface stress field.

It is, of course, difficult to discuss sgeparation without a
firm definition of the phenomenon. Throughout this paper, we use the
term in an intuitive manner. By a separated flow in the context of
surface-mounted obstacles, we mean & flow in which fluid particles
originating close to the purface upstream can be transported some
distance away from the surface. Thus, particle trajectories are used
to determine whether the flow is separated. It may be possible,
following Maskell (1955), to form a strict definition, based on the
above, be defining 'close to the surfece' as the limit as the point
of origin of the particle approaches the surfece. Then a separated
flow would be one in which a particle originating axrbitrarily close
to the surface upstream, was displaced by a finite distance from the surface
at some point on the trajectory. Tho definition could be rade more
gencral by removing the constraint that the point of origin be upstreen,
any point on the surface would suffice, allowing flow over free obstacles
to be included. It is not clear whether this definition would
contain all the known separations, since the detailed structure is only
known in very simple cases. The point is not pursued here, since any:
definition involving such limits is impossible to apply strictly to a =

finite-difference solution, and is even more academic in experinmental

investigations.




2. Equations of motion and boundary conditions

The equations of motion governing the integrations reported in

this peper are the Navier-Stokes equations for an incompressible,

. rotating fluid, ie

i’% Ve = = VD 22 u + » Vi )

Ve =0 @)
vhere ¢ = (U, vy WB is the velocity, f) is the pressure, Y is the
kinematic viscosity, and ZEZ‘ is the basic rotation. As we shall
see later, the basic rotatimis dyﬁamically negligible in the inte-
grations to be presented. The Coriolis tefm,«ggl,a ., is
necessary to obtain a horizontally homogeneous boundary layer; this
point is discussed below.

The geometry and coordinate system are illustrated in figure 1,
showing the lower boundary defined by Z = ’1(1;5:). The boundary

conditions on the upper and lower surfaces are

Q_‘iza‘/:w:o on Z=D
9% e

=0 on %= h(my)

respectively. Thus the upper surface is a slippery, rigid lid; although
this was located sufficiently far away to effectively simulate an infinite
fluid in the integrations below.

In both horizontal cdirections, the domain of integration is taken
to be periodic. The main reason for this choice, apart from its
simplicity from the numerical aspects, is our interest in the tofal

drag due to presence of a hump. The drag is composed of a pressure

force on the obstacle together with the viscous stress on the surface.
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The influence of the hump on the viscous stress may extend véry far
downstresm, and is consequently very difficult to calculate accurately,
unless the domain is self-contained as in the periodic case. The
results of the force calculations are described in Mason and Sykes
(1979), but since the integrations demand a great deal of computation
it has proved impossible to calculate a similar range of flows without
rotation. The basic rotation is necessary if periodic boundary
conditions are specified, since a horizontally homogeneous background
state is required. The Ekman boundery layer (see eg Greenspan 196%)
satisfies this condition, but the direction of the velocity swings
through h5° between the surface and the free streams A non-rotating
boundary layer grows in the downstream direction, thus periodicity.is
precluded. '

Although it has some geophysical relevance, the non-parallel
incident flow complicates the flow around the obstacle, and the periodic
boundary conditions sometimes mingle upstream and downstrezm effects.
Thus, a small number of integrations have been made using different
boundary conditions in order to study parallel flow past an isolated
obstacle. In these cases the rotation frequency &2 =:<:) , and the
Blasius boundary layer profile is used to define the velocity at the
inflow boundary. A simple outflow condition, described in the next
section, is specified at the outflow boundary, allowing di;turbancea to
leave the domaine.

For these integrations, in order to economise on computer resources,
the flow is assumed to be symmetric sbout the centre line of the obstacle,

y = O . This may ertificially stabilise the flow, eg by preventing
time-dependent éddy shedding, but the results still serve their prihe
purpose of giving a clearer picture of the flow field. In the y-direction

slippery, rigid walls are imposed, ie
é—u-'-:.'é_“‘_.')¢\/zo on @’-‘-Oaﬂjl-y
ba b&
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vhere 1‘3 is the width of the integration domain.

3. Numerical method

The numerical techniques available for the solution of the Navier-
Stokes equations on an orthogonal mesh of grid points are well-documented
and plentiful. The most difficult aspect of the present work is the
inclusion of an irregular lower boundary. The method used here is a
crude but simple technique which allows the equations to be solved
accurately on the normal Cartesian mesh, provided certain restrictions
are met. A complete description of its application to two-dimensional
flows is given in Msson and Sykes (1978), but a brief discussion is in
order here.

A Cartesian mesh of grid points is defined, without regard to the

position of the surface; thus a number of points in the domain of integration

will be below the lower boundary, and consequently outside the physical

dbmain. The velocity on all such non~-physical points is mainteined at
gero throughout the integration. Derivatives involving points near the
boundary must be considered separately, since the actual surface lies
between grid points. The simplicity of the method is due to the fact that
only the viscous term is modified near the surface. Whenever a viscous
stress term, ie viscosity multiplying a velocity gradient, is calculated
using velocity values from both sides of the boundary, a modified value
of viscosity is used which ensures that the stress has the same value as
the stress calculated essuming zero velocity on the surface. Figure 2
illustrates the situation when a vertical derivative of the x-component
of velocity is beiﬁg calculated. The grid length is lﬁ y 80 the
stress calculated by the model is

)%né -(Qlc)—'(lp,> = Via eﬁ?

A

since ==C). V’L—is an interpolated viscosity value, chosen to
P tn
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make the stress equal to Y (19'/(A—'7> , which is the value obtained

assuming X  Vénishes on the surface. Thus

Vei. Alivs A4

bl
Other components of the stress tensor are calculated analogously. Note
that these approximations are only first order accurate, thus the error
willl be O(A /A> where f\ is the scale of variation of the
stress. No attempt to modify the inertial term is made, thus the errors
,1.n this term will be O(7> . However, since the velocity vanishes on
the surface, the inertial term is very small and is shown in Mason and
Sykes (1978) to be @) (4//\ )Q relative to the viscous term,
hence the. errors ere elso negligible. :

The length scale of the stress variation, /\ , is not simply the
boimdary layer depth, but must be obtained from a ecale analysis of the
dynemical equations. For the situation we are considering here, the
balance near the surface must be between the inertial snd the viscous
terms. The stress has a magnitude of order Y uo / & vhere l//o
is the free stream velocity, and o is the boundary layer depth.
Hence the viscous stress gradient will be rv Vuo / SA . In the flows
considered in this paper, all length scales will be of order (S )
thus the inertial term within a distance of O( ,\) of the surface will
Se ~ X ug / s , assuming A <& , Thus equating the

two magnitudes gives

5 Y -
N ()78“'/6(0>3 = 5K

vhere Q& = aog / Y , the Reynolds number of the boundary layer.
This provides the restriction on the grid spacing which must be satisfied
for this method to give accurate results. If a no-slip boundary is

required, this method is not very restrictive, since the scale /\ is




a dynamical scale near the surface which must be resolved in Qny model.
The only problem with the Cartesian mesh is that the grid points must be
distributed throughout the height of the obstacle rather than in a layer
on the surface. However, in a separated flow, the resolution is
required in the lee of the hump to resolve the shear layers there,
therefore the grid points away from the obstacle are not wasted.

This Taylor series approximation for the terms near the boundary
is not new, indeed some workers have also approximated the inertial
terms by a similar technique. The novelty of the method used here is
the ability to solve the Poisson equation for the pressure in the entire
Cartesian domain, rather than the physical domain. It is shown in Mason

and Sykes (1978) that pressure can be defined below the boundéry in such

a way that the continuity equation (2) is satisfied everywhere. This

qllows the use of fast numerical techniques for the solution of the
elliptic equation, which, together with the fact that only the viscous
term is modified necar the surface, makes our mefhod‘computationally
very fast. The execution time is essentially the same as that for a
Cartesian model with plane boundaries.

The basic model used in this work has a mesh of upAto LoxkL0x32
points in the (x, y, z) - directions respectively, with the ability to
stretch the grids in all three coordinate directions. Spatiél difference
are second-order accurate provided the mesh size does not change too
rapidly (Kalnay de Rivas 1972), and the stretching allows grid points to be
concentrated in the area of interest. The temporal derivative is
approximated by the 'leapfrog' centred difference, and the inertial
terms use the‘conservetive form due to Piacsek and Williams (1970 ).
Varisbles are stored on the usual staggercd mesh, see eg Williams ‘
(1969). The viscous terms are in the Du Fort-Frankel form (see eg

Potter y 1973 Y to avoid the unconditional instability associated with



the 'leapfrog' timestep. The Poisson equation is solved on the non-uniform
grid by a direct method due to Farnell (1975). This method is an
extension of the Fourier analysis technique, and uses eigenvectors of
the finite difference operator to effect a direct solution in two of the
directions. The final solution is then obtained by line inversion in the
third direction. With a full mesh of grid points, the execution time is
Ss per timestep on an IBM 360/195; this figure includes transfers
between backup store and main core. The non-rotating model is identical
in its formulation but has more flexibility in the number of grid points
in each horizontal diregtion. The total number of points in a horizontal
section must not exceed 1280, but may vary between 64x20, and 40x32 in
the (x,‘y) - directions; the smaller number of péints in the t%anaversé
direction being due to the transverse syumetry condition.

Finally; ve describe the outflow condition in the non-rotating
model. If the normal component of velocity at the outflow boundary is
time-dependent, then an extrapolated value on the boundary must be set
before the Poisson equation for pressure can be solved, and the velocity
fields advanced. Sophisticated techniques are available to calculate
the extrapolated value in a way which minimises the reflectivity of the
boundary, eg Clark (1977). The extrapolation used here is extremely

simple, but is stable and effective. Ve set
Tl el t
: o t
‘{A/ = I'Q L(A,_, g O"D “U-S

vhere the superscript denotes the time level, and the subscript denotes
the x-coordinate. Thus the boundary value on the Nth point at the
advanced time-level is a linear extrapolation using the current values
on the adjacent interior grid point and the third point upstream. This
extrapolation formula prevents the build-up of energy in grid-scale

modes. Other velocity components are similarly extrapolated in space,




but need not be extrapolated in time, so all the quantities in the

formula will be at the same time-level. This outflow condition was
found to be stable but reflected some of the incident disturbance.
Hence the temporal evolution of the flow was affected bY the initial
velocity field interacting with the outflow boundary. However, we

are principly interested in the steady state solution, and the boundary
condition does allow an arbitrary velocity profile at the outflow, thus
the extreme complications necessary to achieve better transparency were
not considered worthwhile here.

The fields used as the initial conditions for these integrations
must be chosen to satisfy continuity. The Blasius profile as a fupction
of distance from the flat boundary, X = (O , is set at each point
above the physical boundary, X = héx;g) « The x-components of velocity
in each vertical column are then adjusted by the addition of a velocity
independent of 2z, to give the same volume flux as that in the upstream
profile. A vertical (W) velocity component is then calculated from
continuity. This initiel disturbance extends throughout the depth of
the fluid,; ie up to % t]:), and has to be convected out of the domain
before a steady solution can be achieved. .

4. Results
All the integrations use a smooth obstacle with circu;af symmetry,

and sghape
\
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hx,y) =

&0 hc, is the maximum height, and a is the base radius. Any flow is

effectively defined by three dimensionless numbers, viz a Reynolds
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number, Re= ua 5/»7 , and two ratios of scales, llo /(S and Q/g

As before. {lo is the free-stream speed, and O is the boundary layer
depthe The Rossby number, Ro= LQ>Q/«2 y is strictly a fourth parameter,
but in the integrations Ro is larger than 10, usuvally about 100, implying
that the basic rotation plays no part in the dynamics of these flowst

In all cases, the depth of the integration domain, D, is taken to be

large enough to approximate to an infinite fluid. The computational
efficiency of our model has enabled us to carry out enough integrations

to study variations of all three independent parameters. Each integration
vas .continued until the solution was steady, or until the initial

transients had disappeared in the case of unsteady flows. This usually

required about 1200 timesteps, representing an actual time of about kOc{/Qﬁ)-

Apart. from cross-sections of velocity fields, two other methods of
flow visvalisation were employed. The surface stress pattern is
displsyed by calculating trajectories on a horizontal plane using the
two horizontsl compénents of tangential surface stress as the velocity
field. A uniformly spaced array of 40x30 points in the horizontal plane
vas used as starting points for the trajectory calculations. From each
point, trajectories were calculated numerically from thevsurface stress
field, using a 4th order Kutta-Merson variable step technique (see
eg Williams 19732 ). Values of the stress at intermédiate
points were linearly interpolated from grid point values. Trajectories
were calculated both forward and backward for a short distance, which
slightly randomises the end points of the lines. The resulting pictures
are very similar to the oil-streak surface etress data obtained in
expériments. The second display method is a perspective view of the
three-dimensionai trajectory of a fluid particle, calculated from the
numerical velocity field. The integration and interpolation techniques

are precisely the same as in the surface stress patterns.



We first present the results of our integrations of rotating flows,

divided into sections describing the variation of each independent
paraneter. Finelly, some data from non-rotating parallel incident flow
integrations are described.

(a) Variation of Re

For the four integra'ions in this section, the geometric ratios are
held constant at AD/QS': a/s = 1 « A mesh of LOx32x32 points was
used, with a grid spacing in the vicinity of the obstacle of about Lo/ﬁﬁﬁ
The free stream flow is in the x-direction from left to right in the
disgram, implying the surface flow is at hﬁo as indicated by the bold
arrovis.

Figure 3 shows surface stress patterns from flon at four different
Reynolds numbers. At the lowest Reynolds number, Re=20, which is
iliustrated in figure 3(a), the flow remesins attached, although the
surface stress vectors are clearly deflected over the hump. At
Re=60, figure 3(b), separation is evident with reversed flow in the lee
of the obstacle. This pattern exhibits the simplest combination of
singularities, namely one node on the back slope, and one saddle point
downstream, see eg Hunt et al (1978).

Increasing the Reynolds number to Re=200, figure 3(05, changes the
character of the downstream separation. The enhanced reversed flow
causes the nodel separation point in figure 3(b) to split in the transverse
direction giving a separation line connecting a rumber of singularities, with
the suggestion of a spiral node at one of the extremities. The length of
the reversed flow region is also increased. Figure 3(c) also shows upstream
separation, with flow near the surface diverging at the upstream saddle
point, and-reversed down the front-facing slope from the node.

Finally, figure 3(d) shows the surface stress pattern with Re=600.

We must emphasise that this integration ie strictly beyond the capabilities

12



of our numerical model. The restriction on grid length imposed by the

requirement that the nonlinear energy cascade to short wavelengths be
closed, ie that there is sufficient dissipation in the system, is not
satisfied here. (This restriction is actually stronger than that

implied by our method of including the curved boundary.) There is

energy on the shortest scales in the numerical results with amplitude

of about 20% of the maximum perturbation. This is principslly due to

the thin shear layer leaving the rear of the obstacle, and moving
diagonally into the stretched mesh. The short waves have been

numerically filtered in figure 3(d) , therefore the results
must be regarded with caution. The flow is not steady at this Reynolds
number, and the separation line has clearly rolled up into vofticeé, which
appear to_break away downstream periodically. Figure 3(d) illustrates the
surface stress pattern att=3‘}a/c£, showing a vortex moving downstream on the
ﬁpper half of the flow, with a néw vortex forming on the rear slope of the
obstacle. This is precisely as expected at higher Reyﬁolds numbers es

the separation lines become the edges of vortex sheets which will tend

to roll up from the ends.

Information about the nature of the flow in the separated regions
can be obtained from plotting particle trajectories. Figure 4 shows two
perspective views illustrating the steady rear separation in the Re=200
case. The four trajectories originate at a height of h; //3C)
above the surface upstream of the obstacle. Fluid approaching close
to the base of the hump is deflected around the side, and then travels
up the rear slope in the reversed flow. After reaching the separation
lines, fluid particles move away from the surface almost horizontally,
and clearly do not reattach downstream.

Figure 5 shows similar views of the upstream separation in the

same flow. Flow attaches to the front slope at the upstream node in

13



figure 3(c). From this point particles spread over the surface of the

obstacle. One of the trajectories moves back down the forward slope,
then continues around the side and into the rear separation close to
the surface. It finally separates there, and moves away downstream at
a similar height to its point of origin. The other trajectories are
deflected more simply over the summit and around the sides, wﬁere they
separate from the upstream side of the separation line.

(b) Variation of !% /0L

In the integrations in this section, the Reynolds number Re=200,
and ko /5 = 1 s while the slope parameter /)o /Q is varied.

Figure 6(a) shows the surface stress pattern when ho /Ol * g 4
while figure 6(b) is identical to figure 3(c), ie }19 o = 1
The decrease in radius of the obstacle clearly restricts the separation
line to a point, probably due to the decrease in Reynolds number based on
the horizontal dimension. Figures 6(c) and 6(d) show the stress field
with f}o/a = l/z  ,end b /a- {/9 respectively. The asymmetry
of the flow is more pronounced at these parameter values, and the flvid
is only entrained into t};e reversed flow regionn from one side only. An
interesting feature of these flows is that there are no singularities
associated with the separation line. Figure 7 shows trajectories for
the case !1;,. /q = // 3 4 clearly illustrating that the flow is
indeed separated. Thus, the presence of singularities in the surface
stress field are not necessary for the occurence of separation.

(¢) Variation of he /8

In this section, the Reynolds number Re=200, and Q / o = {

The results for increasing ,),,/ 6  from % up to 2 are shown in figure 8.

It is clear that separation is becoming more violent as llo/ 5 increases,

in fact the instantaneous flow shown in figure 8(d) ie very unsteady and strongly

influenced by the periodic boundary conditions. However, it appears that the major

14




effects are due to the change in effective Reynolds number

where U; g Uy ('73 dz.

Qo
layer profile. As ! /o decreases, the obstacle becomes submerged in

and ug/z) is upstream boundary

the boundary layer, and the average velocity impinging on the obstacle
is reduced. This must be borne in mind in the interpretation of

figure 8.

(a) Persllel flow results .

Since the Ekman layer and periodic boundary condltions make the flow
structure more difficult to interpret, a small number of integrations
were performed using a non-rotating model with a Blasius boundary layer
upstrean. This allows both long jtudinal and transverse cross-sectioﬁs
of the flow to be usefully exemined. whilst the gross features of the
separation are visible in the previous integrations, the more subtle
details of the work are impossible to distinguish. This is because the
moderate Reynolds number implies that disturbances are damped fairly
quickly downstream, therefore the trajectories are rapidly dominated by
the streamwise velocity component, and appear straight. However, at
higher Reynolds numbers, details of the secondary flow in the wake becone
much more pronounced. Features such as horseshoe vortices can dominate
at high Re, producing spiral trajectories in the wake.

The boundary layer thickness, > ' is>defined as the displacement
thickness of the incident Blasius profile throughout this section. The
first integration has Re=200, l)o /5 = '{ ) and| q/8 = 1/3 y B8O
corresponds with the flow jllustrated in figure 6(a). The surface
stress pattern for the non-rotating flow is illustrated in figure 9, and

has a similar structure to that of figure 6(a).

Figure 10 shows the velocity directions in the long itudinal section

through the plane of symmetry, él O These are produced in precisely
the same manhér as the surfasce siress patterns, using lineaxr intexr-
-polation %o obtain velocities between grid points. Thig is the cause

of the slightly peculiexr behaviour of the gtreamlines very close to
15
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viscous stress, so linear interpoletion near the surface is not

aocurate. However, streamlines more remote than the nearent grid
point fo the surface are completely unaffected by this inaccuracy.
Figure 10 clearly shows that the rear separation does not reattach
but that fluid moves away horizontally downstreen. Thus, in
accord with Hunt el al (1978), both singularities upstreem are
attachment points, the pattern being elmost symmetric about the
centre of the obstacle.

Figure 11 shows a transverse cross—section just behind the hump
The streamwise velocity component shows a slight shear layer associated
with the separation. This diffuses very rapidly downstream. The
secondary flow direcfions show two vortices outside the shear layer,
one at the top in the centre and thé other low down at the side. Both
vortices rotate counter-clockwise. These are produced by the horseshoe
vortex mechanism, ie upstream vortex lines being bent around the obstacle.
From the surface stress pattern in figure 9, it can be séen that flow
near the top of the obstacle flows around it, and flow near the surface
is swept wide around the base. These two components appear to produce
the two vortex centres in figure 1l. Flow at intermediate levels upstream
is entrained through the upstream separation into the rear separation,
and thus emerges downstream on the inside of the shear layer. This part
of the cross-section is dominated by the rising motion although a
component of vorticity in the clockwise sense is visible.

The final integration is for Re=300, l»o /8 = ,?, dhd B/e P
This integration has a mesh of 64x20x32 points, and grid lengths in the

vicinity of the obstacle a:e about _ko //lC) again. The principal source

of grid scale features in the similar flow in figure 6(d) was the fact
that the shear layer did not remain within the region of fine grid.

In the present integration, the grid length variations are below 10%, and
the data presented contain no numerical emoothing. The flow is
unsteady, with oddiés travelling downstream and leaving the domain.

The outflow condition does not seem to imduce much upstream influence,

end appears to transport the disturbances @learly across the downstream
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boundary. Unfortunately éhe.imposed transverse symmetry almost certainly

affeets the dynamies of the eddy shedding; this must be borne in mind

when interpreting the rcsults. The rear separation, as illustrated by T
the surface stress pattern, shows the usual saddle point on the axis

downstream of the obstacle splitting into a saddle on either side (only one

éide shown in the figure) and a node on the axis. The separation line

cleafly passes through a number of singularities, and is rolled up at its
extremities. The surface stress pattern is relatively steady; the time-

dependence is more obvious in the vertical sections presented below.

Figure 17 is a transverse cross-section immedietely dowvnstreanm
of the obmstacle, showing that the shear layer is much thinner than
that in the previous flow. It is resolved by about three points at
its nerrowest section. The horseshoe vortex outside the ghear layer
is much stronger than in the previous flow, and has only one centre
of rotation.

Figure 14 shows the streamlines in the long itudinal section
through the centre-plane, g = (7 s, &t a sequence of five different
times.

The most striking feature of figure 14 is the rolling up of the
flow leaving the top of the obstacle. As might be expected, the thin
shear layer is not very stable, and temporal variations seem to be due
to "flapping" of this vortex sheet. The sequence of streamlines shows
swirle in the velocity fiecld being generated irmmediately dowvmstream of
the obstacle, where the ghear layer is thinnest, and travelling downsiream
end decaying. This eddy shedding is a regular phenomenon, and the Strouhal
number, @ A / = 1 . @ is the frequency of the eddy shedding. The
ckange in the downstream surface singulerity from a simple saddle point
is further envinced in this vertical section. The pattexrn of the

upstream separation has also changed, developing an apparently cloeed

coirculetion. It is impossible to determine whether the streamlines
are actually closed, since the results are numerical, but it is clear

that there is a singulerity away from the surface.
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Returningrédrthe spiralnodé; assoéi;tod with the downstrea; shear
layer, . figure 15 shows the long itudinal section of the streamwise
velocity component. The shear layer leaving the back of the obstacle
can be'clearly seen. The dramatic spiralling flow visible in the
streamlines is associated with minor perturbations of the shear layer;
there is no rolling up of the shear layer itself.

-Conclugiggg

The numerical integrations of flow around a surface-mounted
obstacle have demonstrated a number of features of three dimensional
separation.

Firstly, there are no closed stream surfaces in any of the
flows presented here. The separating streamline does not reattach on .
the surface, but remains at some finite height downstream.

Singularities in the surface estress field are not a necessary
condition for separation. A separation line can begin with a simple
convergence of the limiting surface trajectories, and end with a
cessation of that convergence.

In the integrations we have performed, it appears that Reynolds
number® of about 500 were necessary for the rolling up of sireamlines to
occur. This is a characteristic feature of high Reynolds number flows,
wvith spiral nodes in the surface stress patterns, and also in fluid
trajectories.

The results presented here demonstrate the utility of this numerical

method in the study of flow over obstacles. With the number of grid

points available in the work reported here, there is an’upper bound on
the Reynolds number of about 500. This restriction on Reynolds number
is not basically due to the method of representation of the irregular
lower boundary, but results from the more general requirement that
small scale flow features are adequately resolved.
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Figure 1
Figure 2

Figare 3
Figure 4

Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

B e e e il

Schematic diagram of domain of integration.

Illustrating the infetseckion of the curved boundary and
& line of grid points.

Variation of surface stress pattern for Elman boundary layer
flow with Reynolds number; (a) Re= 20, (b) Re = 60, (¢) Re = 2%

and (d) Re = 600.
Two perspective views of paxrticle trajectories

illustrating the vear separation flow in the case Rz = 200.

Two perspective views of particle trajectories
11lustrating the vpstream separation flow in the case
Re = 200.

Variation of surface stress pattern with h,/a for
Re = 200; @ ho/a = 3,() ho/a=1,{) ho/a=1%,(d
ho/a = 1/9 :

Two perspective views of particle trajectories illustrating
the rear separation flow in the case Re = 200, h./a = %.

Veriation of surface stress pattern with hs/S; &) h./d=
) ho/§=%6) hy/§=1,8) ho/S =2, The effective
Reynolds numbers (see text) are R = 6, 24, 100, and

300 respectively. i

Surface stress pattern for parallel flow integration
with Re = 200, ho/S = 1 and ho/a = 3.

Long—itudinal (atream&/ise) section showing velocity
directions in the centre plane for the flow shown in

Figure 9.

Trangverse sections taken at the dovnstream extemity of
the obstacle for the flow shown in Figure 9. (a) shows
contours of the streamise velociky component and (b)
secondary flow directions. The velocity contour

values refer to a dimensionless free stream speed of 10.
The vertical scale is plotted with a wniform grid epacing;
the actual grid point coordinztes are indicated by the
arbitrary height scale on vhich ho has value 1000,

Surface stress pattern for parallel flow integration
with Re = 300, h,/8 = 2, ho/a = 1.

Transverse sections taken at the downstream extremity
of the obstacle for the flow showm in Figure 12. (a)
ghowa contours of the streamwise velocity_ component and

(b) secondary flow directions. The arbiqgry scales are
as with Figure 11. ;



Figure 14

Figure 15

Long itudinal (streamwise) sections showing velocity
directions in the centre plane for the flow shown
"in Figure 12 at different times. The dimensionlens
times, in units of @/Us are (a) 68.9, (b) 70.5,
(e) 72.1, (a) 73.7, (e) 75.3.

Long itudinal (stireemwise) section showing contours
of the streamwise velocity component for the flow
shovn in Figure 12.
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