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ABSTRACT

The Met Office is developing a variational assimilation for its Unified Model forecast system,
which contains a grid-point model, run operationally in global, regional, and mesoscale
configurations. Key characteristics of the design are:

- development path from 3-dimensional to 4-dimensional scheme

global and limited area configurations

- variational analysis of perturbations

carefully designed, well conditioned "background" term

This paper describes the variational scheme, with some example results from a simple 2-
dimensional variational analysis which has been developed as a prototype.



1 Introduction

Over the past few years it has become apparent that variational assimilation schemes could
be made practicable, and that possibly they might make a significant improvement in forecast

quality:

1 in the extraction of useful information from satellite radiances, by three-dimensional
retrieval, allowing for errors correlations.

i in diagnosing dynamically consistent baroclinic structures, given observations that a
system is developing.

iii in using observations affected by "physical" atmospheric processes which are

represented in the forecast model.
Most of the benefit from (i) might be realised from a static three-dimensional variational
(3DVAR) system, while (ii) and (iii) probably need a four-dimensional (4DVAR) system
containing a forecast model and its adjoint.

The bulk of the effort in developing a practical assimilation scheme goes in careful design
and testing, and attention to detail in the observation processing. Currently the Met Office
has a project to do this work, building a practical variational assimilation facility for the Met
Office’s Unified Model system, which contains a grid-point model, run operationally in
global, regional, and mesoscale configurations. The project’s targets are to match the current
operational system, and to make possible the developments outlined above. I hope that we
will have finished development of the basic 3DVAR system by mid-1996. Implementation
of this will facilitate the developments necessary to get the benefits mentioned above; we
might have a feasible 4DVAR scheme by 1997.

As a prototype for critical aspects of this development, a simple 2-dimensional variational

analysis has been developed (2DVAR). Aspects studied include:

- The use of a filter and its adjoint for calculating the background penalty and its
gradient (digital and spectral filters have been tried).

- Preconditioning using the filter.

- non-Gaussian observational errors.

This paper describes the full variational scheme, using illustrations from the 2DVAR when
appropriate.
2 Variational Analysis

The "standard" formulation of variational analysis (Lorenc 1986) is - find the model state x
which minimises a penalty (J) made up from a background term (J,) and an observational

term (J,):
J@) = Sx,=x)B(x,-x) + 2(v,-5)O+F)p,-y) ¢))

where x, is a prior (background) estimate of x, with error covariance B, y , is a vector of

observed values, with error covariance O, and y is a prediction of the observed values,
given by:



y = K(x) @

F is the error covariance in the "generalised interpolation” K, which in our 2DVAR
examples is a simple interpolation, but which in 4DVAR includes an NWP forecast model.

For the practical solution of this problem we make two transformations; to increments, and
to a preconditioned control variable.

5 Analysis of Increments

Following Courtier et al. (1994), we solve instead for a model perturbation w’ , which may

be at lower resolution than x. That is, we find the perturbation model state w’ which
minimises:

Jo) = S0y w) BLWy-w) + 20,-5)0B,) i

where we use interpolation G to transform the background x,, and the outer-loop estimate

x,;, to the lower resolution of w':
w/, = Gx,) - Gx,) @

y, the prediction of the observed values, is now given by the sum of a contribution

calculated in an outer-loop, and a perturbation calculated each iteration in the variational
inner-loop:

y = K(x,) + Kw') Q)

This transformation to a variational problem in w’ is based on the belief thatx ;+Hw’

(where the interpolation H transforms from the low resolution of w’ to that of x), will be
a good approximation to the x which minimises (1). It is possible to iterate this correction

process for x, outside of the minimisation iteration which finds w’. We use the suffix ,,
to denote the current outer-loop estimate for x.

Other groups working on 4DVAR have started from a full-fields approach, which needs the
adjoint of the linearisation of the full model about its four-dimensional trajectory - usually
called the tangent-linear model. A tangent-linear model is derived by differentiating the
equations used in the full model. For a model with full physical parametrisations this is
difficult to do. Our approach is different. The first-guess estimate of the atmosphere’s four-
dimensional trajectory is going to differ from the truth by a finite amount, with a spread
governed by the background error variance. So we are designing a perturbation forecast
model which gives an approximation to the evolution of finite perturbations. For instance
if, in the trajectory of the full model, it is not raining, but nearly saturated, then some finite
perturbations will be such as to make it rain. Thus the perturbation forecast model, designed
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misfit to observations (show as y in figure variational assimilation.
1) and the background. This is done using
an iterative descent algorithm; the process is shown using solid arrows in figure 1. Adding
it, we make a new full resolution four-dimensional trajectory (show using dotted arrows in

figure 1), and can then repeat the inner incremental variational step.

4 Pre-conditioned control variable

Secondly, we transform to a variable v designed to improve the conditioning of the Hessian

matrix in the minimisation process. The Hessian is a matrix of second order partial
derivatives with respect to the control variables. e.g. for (1) the Hessian is defined as:

AJ AJ AJ

ax,ax, ox,ox, = XX,

*J *J *J
(ﬂ) - | anax, awex, T anar, (6)
ox?

&*J AJ At

ox, ox, ox,ax, o, ax,

For (3), if K is linear, the Hessian is given by

( 32_]) - B, + KT0+F) 'K @)

ow'?

The generalised interpolation K in the second term in (7) depends on the positions of the

observations being used. It is hard to analyse its conditioning in a general way, so we
concentrate on the first term, which depends on the background error covariance. It has
been observed that the errors in x, are usually balanced, and smooth. We assume thatx ,

is similarly balanced and smooth. This means that balanced and smooth modes will
correspond to small eigenvalues of B;} , while imbalanced, or rough modes will correspond

to large eigenvalues. This large range of eigenvalues means that B;} is ill-conditioned.
To alleviate this ill-conditioning, we use a filter U designed to reduce the power in
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unbalanced or rough modes, and its inverse T. We design these such that, approximately:

n

-1 T
e ®)
B UuU

w

n

Then, defining a new control variable v such that

w! = Uy (€)

our transformed variational problem is to find the v which minimises

J@) = 305~ By (7) + 30, ) (OB, ) a0)

where

v, =T w’ (11)

b

and the estimates of the observations are now given by:

y = K(x,) + K(Uy) 12)
The Hessian of (10) is given by:
(i’) - B]' + UIK"(0+F)'KU 13)
av2
Because of (8)
e | (14)

so the first term in (13) is much better conditioned than in (7).

5 Variable transforms for the full model

As well as the above conditioning consideration, we need to be able to evaluate J, and its
gradient, for which multiplication by B," is needed, so again a simple diagonal form is
desired. Note however that there is no requirement that (8) should be exactly obeyed. Any
discrepancy will lead to a discrepancy in (14), and the background penalty term in (10)
allows for this.

The transforms are to be constructed in stages: using simple physical ideas to transform
parameters (T,), and zonal and seasonal-average statistics to transform into empirical modes
in the vertical (T,), and to allow for different scales in the horizontal (T,). Statistics on the
residual covariances B, will be collected, and modelled in a simple way for use in the
background penalty term.
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We know physical relationships between variables, such as the closeness to balance, and non-
divergence, which imply that elements of w’ which are different physical parameters, e.g.
temperature and wind, are correlated’. We use these relationships to design parameter
transform T, so as to separate w' into three-dimensional fields of variables which are
uncorrelated with each other. In the first version these will be: velocity potential, stream
function, the geostrophically unbalanced part of the hydrostatic pressure, and relative
humidity.

Within each three-dimensional field there are still correlations between points close in space.
We can accumulate average vertical covariances within each three-dimensional field, for
instance by comparing forecasts valid at the same time. Making some assumptions we can
design T, so as to separate each three-dimensional field into two-dimensional fields of EOF
coefficient.

Finally we design T, to act on each two-dimensional field, allowing for horizontal
correlations. This is described further below.

6 Implementation in 2DVAR

2DVAR is designed to test the above for a single two-dimensional field on a sphere, either
globally, or for a rectangular limited area. For a single field there is no concept of
"balance"; the only prior knowledge about background errors is that they are likely to be
smooth. Thus the transformation U is implemented using a horizontal filter. It is assumed

that (8) and (14) are exactly true. The v which minimises (10) is found using a descent
algorithm.

6.1 Horizontal transform U

Horizontal correlations between grid-points are normally defined using a continuous
correlation function of the grid-point positions. Usually they are taken to be (locally)
homogeneous and isotropic, so that the correlation is a function of the distance between the
points only. In this case it is a standard result that the fourier transform of the covariance
function is the power spectrum.

Our equations use matrix notation: B, is a symmetric matrix and w’ is a column vector.
Multiplication by the matrix B, does not represent a simple physical operation on the spatial

field represented by w’; the physical interpretation of the resulting vector depends on the

grid. In contrast a filter does represent a physical process; for resolved scales the result
should be independent of the grid. So B, cannot be represented solely by a filter. In order

to relate B, to a filter, we need to define a (symmetric) inner product matrix P, ; this is a
diagonal matrix of grid box areas. We can use the "square root" of this to transform

'strictly, the expected errors are correlated
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variables. As explained in Lorenc et al. (1994) section 5, this gives:

B, -8 P, o
B, =P, 8,

We have two options for implementing S, ; either as a grid-point or spectral filter:

Grid-point filter

Some meteorological variables have error correlations which can be approximated using a
Second Order Auto-Regressive (SOAR) function. Lorenc (1992) showed that this was
approximately equivalent to two passes of a recursive filter. We assume that S, can be

expressed as two applications of a filter R, a one-pass recursive filter, followed by a scaling

proportional to the filter scale, designed to make the filter equivalent to a correlation (i.e.
filtering a unit delta function should give a correlation field, with maximum value one at the
position of the delta function). We construct the two-pass filter from a one-pass filter and
its adjoint in such a way that the result is exactly self-adjoint:

s, = RR* (16)

Using the recursive filter method allows us to vary the horizontal correlation scale smoothly
in the horizontal, for example we can have different values in northern hemisphere, southern
hemisphere, and tropics.

Spectral filter
An alternative way to perform a scale selective filter is via a spectral transform.

S, = FE F' (17)

Here F is the spectral transform from wave-space to grid-point-space, and E? is a diagonal

matrix defining the damping required for each wave. For a complete spectral transform, the
inverse is also the adjoint:

F—l = F‘ (18)

So, remembering that E is diagonal, we can define:

R

F E
19
S, (19)

R R*

Then for either the grid-point or spectral filter we get:

1

U, -RP; @0



1
T, - P R (1)

These two approaches were tested in the 2DVAR program for a limited area grid. The
spectral approach, using a double-sine FFT, proved to be more flexible; it could be tuned
to match the grid-point filter nearly exactly, or some other power spectrum could be
modelled.

FOR EVALS WITH J DECREASING

== gefouit- AF

 F— & dble sin fliter matching RF
*  isotropic dble sin fiiter

4 . 14
NUMBER OF PENALTY EVALUATIONS

Figure 2 Increments due to a single observation, for various filters.

This is illustrated in fig.2, which shows the analysis increments due to a single observation,
using the recursive filter designed to match a SOAR (top left), and a spectral filter designed
to match the recursive filter (top right). The recursive filter, as it acts along the grid rows
and columns, does not have an isotropic response; it is easy to make the spectral filter
isotropic (bottom left). For this example all methods converged in one iteration. Ina similar
test using 1000 randomly placed observations, 18 penalty evaluations were needed.
Computational costs for the two types of filter were similar.

6.2  The effect of preconditioning

The system is designed to find the minimum of (10). We also did experiments to instead
find the minimum of (3). This is referred to below as the method without preconditioning.

In the recursive filter which matches a SOAR (Lorenc 1992), a one-dimensional wave of
length 2m /k is damped by each pass by a factor given by:



1

e 2sin 5_6{ : 2
(1-a)? 2

S(k)=

where the filter coefficient o is given by:

where

1 +E VE(E+2) (23)

E ox%/4s?
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S is the horizontal correlation scale, & x is the grid-length, and Npass—l
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Figure 3 Eigenvalues of an inverse filter proportional to the inverse error covariance.

Using (15) we can calculate the eigenvalues of B;f

eigenvalues for the configuration used in most of the tests described below, for a 31by31 grid
with a gridlength of 100km, and a horizontal correlation scale of 400km. From the ratio of

the largest and smallest eigenvalues we can see the contribution of B;}

number of the Hessian. For our example this is larger than 107, and it increases rapidly as
the grid-length is reduced below 100km. So if J, dominates, the problem is badly ill-

conditioned, and we can expect convergence of minimisation routines without preconditioning

to be slow.

2 The full inverse covariance also contains a scaling dependent on the background error

variance, and the horizontal scale.

Lol

Figure 3 shows a plot of the relative’

to the condition



This is demonstrated in a simple experiment with a single observation, with value y,=1.0,
at the centre of the square grid area. The background field, and first-guess, is zero
everywhere. For this case the preconditioning is perfect, so the descent algorithm converges
in one iteration (which requires two penalty evaluations). The method without
preconditioning however needs several thousand penalty evaluations before nearing
convergence, (Convergence is judged by the approach of the norm of the gradient of J to
zero), as shown in figure 4.

20/07/94 16.54.36 AL MODEV=NO-FILTER.X-GRID4 31* 31 MEDIUM-RES POLAR STEREO 10
OL 1 W-GRID 1. 37% 31 V UNFILTEREDV-GRID SAME NORM OF GRADIENT

Bt LI S e «GBb GB>
*  «G0 GO»

«OW @AR2s (POR EVALS WITH J DECREASING)
N - - - - -

o0 %000 120 10 oo w0 2000 wn 2w 0
NUMBER OF PENALTY EVALUATIONS

Figure 4 Solid line - norm of gradient of penalty function evaluated each iteration during the
iterative minimisation (at convergence it should be zero). Dashed line & dotted line - norm
of contribution to gradient from Jb and Jo terms.

Despite the many iterations, the method without preconditioning has still not converged to
the exact solution, as can be seen in figure 5. We verified that the method with
preconditioning was indeed giving the exact solution by using it as first-guess for another
descent iteration. Neither method could improve on it.
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Figure 5 Left - solution field obtained with preconditioned method for one observation at the

pole. Right - solution field obtained with the method without preconditioning.
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