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Regression on non—orthogonal analvtical base functions, orthogonal analytical base
functions, and principal components.
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Juch of the utility of principal components rests upon thne theorer which siates
that a set of oraered e

igenvectors will be more efficient on average al extracting

v
variance frorn. z dependen:i data se:t tharn any other set of linear funciilons of the aata.

Iliet C 11 Technical Note lioc 9> presenic experiment
relates to 1lndependent data sets, suggests that i a

conditions of wvalidit; and practical range of applicatior for this theorem.
Principal components have attracted wide interesi since they were intxroduced into
lieteorologs in the fifties, but at a fundamental theoretical level there is a grer
area containing questions which have remained largeli;” undiscussed. This liote railses
one such question, the assumptions as to the nature of the residuals when principal
components are used 1in rezresSion.,
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2 Estimation using non—orthogonal analvtical base functions

Let there be a data vector b_ = _b_ (h,, hz, aalg hm) and a set of

analytical base functions F. ’F,_,.-.._.., o . These analytical base functions
can then each be evaluated over m discrete points of a physical domain to form the

N .r 1 1 3 ha " ”
m x 1 base vectors Fi1 o F2 4,03, ~~ f.n . It may then be supposed that the "true

relationship between the datza and the base vectors is givern by

— /AN
h=Fwa + 2 )
mi "N =i sl
where T 1t the matrix of column vectors
~ mn
1 1 ’
- ] P o= - - |
F- (f'nle \..F’") {n
mn mi m, ™mi -

& is the coefficient vesctor
r is the vector of residuals whichk arises because we are considering the Case wnere

1

> n and so the functions cannot it the data exactlye

The belief that (1) is the true structural model for the dazc ma;
rnvsical reasoning, on some previous experimental evidence, or it may” Simply O
postulated faute de mieux., Whatever the reason the problem arises o estimati
“or z itsel? is generally unknown. 2 well=imnown and much used estimate is the
ordinar; least sobgres estimate (OLS) 2 given by
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If the residuals in (1) are such that, in the population
E(z)=2¢ (2
and
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where I is the unit diagonal matrix, E is the expectation operator, and & is &
-scalar, then

E(a)=a (6)
and

E(:‘_-- e-)(é-“ _a_-)~ s a Mminimum 1
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(6) states that 2 is unbiassed, whilst (7) states that the sampling variance -
co-variance of the difference between the estimate a and the true unknownvg is a
minimum amongst all such linear unbiassed estimators. Clearly (6) and (7) are very

desirable properties for an estimate of a for they minimize the risk thal one has a
bad estimate.

). are such that (4) holds but ir place of (5) we have

o » - - = 1 AT v 4 P - e /- N ~

where Qﬂ is = more general matrix than I then the OLS estimate = given p; (3, does
- N /- \ \ -

not have the propert:- (7,. Tnh
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solution vector whicl: does have tne desirable minimur
sampling variance provert: A

S N b .
will aenote b & anc il is given oy
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a=(F-n-F)-F-L2-h (9
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Under the conditior (&) i: iz the solutior vector - whick has the propers:

E(’Q’v s Q—)(g - _q.)~ s a mnimum (10)

*

1s the fact the least-squares solutior tc 2 transformel version

2 o the "{rue"
relationehip {1). The transformation is

0O%h=0%F.a + 2%z (1)

Thus if it is known, assumed, inferred or believed that (8) holds then the leasi-
squares fitting procedure must be applied to solwe (11 ) not (1) if the minimum
variance solution is to be otained. This transformation of (1) by taking the
scalar product of the somare-root of Q%' throush (1) is inown as prewhitening,

and the whole process of finding 2 1s referred to as generalized least-squareB(GLS}
and = 1s known as the GLS estimate of a,

It should be noticed that getting the best solution vector is dependent upon making
a correct assumption as to the nature of the residuals. Furthermore, it 1s the
residuals in (1), the "true" model equation, about which assumptions have to be made,
not the gisidug}s which are obtained as a result of the fitting, i.e. as the result
of using a or &. With laboratory data it may ve that a scientist can be reasonably
sure of his assumptions bpecause the data have been produced oy a well understood and
controlled process, but with meteorological data often produced by processes which
are only imperfectly understood and over which we have no control the difficulty is
a very real one. The resiauals from the fitted process have to be used somenow to
infer the validity or otherwise of the assumptions on the true residuals. That is to

say for example that if it is assumed that (1), (4), and (5) hold then the residuals 2
in
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have to be used to test the validity of the assumptions (4) and (5) about the unimown
residuals r in (1), It is something of a chicken and egg problem and it has a

voluminous literature.

The OLS solution to (1) may be specified by the following two equations

A A
h = Fea + ~* (13)
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This follows since, by~ virture of (14), taking F. through (13) leads in effect |
4 & - e . A\ 3 o - G
the OLS solution (3). Equatior (14) requires the residual vector T

straight to

to be orthogonal to the columns ol F. The fact thas (12} and (14) togetner specify
the OLS solution to {1) 1s of central importance tc the theme of this Note, as will
emerge in Sectilon 4.

Estimation usin~ orthogonal analvtical base functions

)

The model (1) is now replaced b

‘1 = §Z§' b + T (15)
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where é is the matrix of orthonormal coiumn vectors

mn

B=(8:¢:i2:}--—18.) (16
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the ﬂﬁ.vectors being orthonormal in the simple sense that

~
@'é =TI (17)
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The OLS estimate for b is then

= - (18)
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which is computationally convenient in the sense that each coefficient in 0 1s obtained

by a simple scalar product

‘b.. (=1,2 --=-,m (19)
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The use of orthogonal base vectors has done nothing to change the considerations
as to the nature of the residuals. The arguments of the previous Section still apply

and D will be the unbiassed minimum variance estimate of b if and only if ':(42
and 75) Hold. Indeed in most applications (1) and (15} will be the same model because

the (P - matrix will be obtained from the F matrix by some factorization process such
as the Gram-Schmidt or Householder dlgorithms so that

F=®-C

(20)
N A ; 5
and b and a, and b ané & will be relatec oy the simple linear transformation
A A
C. a = b C. Qa = b (91
e — , — i &
However the use of orthogonal base vectors coec give rise to z useful artifice.
Wie can generate & full sel of n @ - vectors to form the m X m matrix
-
&= (¢! @ &) X
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Bhs Sy Ly =" (22)
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with the ¢ - veciors orthonormal in the simple sense tha-

3.3 - I (23)
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The data vector h can now be completely represented ir terms of these ¢4 as

b_=b,¢,+ b3¢2+----+bm9m (24)
i i =Y mi

There is no residual vector as the data is fitted exactly. We can now suppose that
‘l:.he 15erms in (24) have been ordered according to some principle and we can then
decide to discard all but n of these terms and represent the data as

h = b,¢, +b,?_5:+“"*b,.9n (25)

This is quite legitimate mathematically as the orthogonality of the ¢4 makes their
individual contributions independent of each other. Furthermore the ';rdering and
selection principle which has decided the terms to ve retained in (25) may have some
apparently quite sound physical reasoning behind it and we may feel justified in
arguing that the discaraed (m — n) terms can contriobute litile out noise. Nevertneless,
this artifice needs to be examined more closely,

Although the representation of h in terms of n vectors is often written as in (25)
above, yet (25) is not strictly correct. Since n € m the terms can no longer fit
the data exactly and a vector of residuals must be introduced. Thus strictly speaking
(25) has to be written as

Ne
”b':: b.g, + bag.3+—---+bﬂgﬂ + ;'t: (.26)



where the use of the different diacritic i’ over the I merely indicates an absence

of any gommitment, at this stage, as to the nature of the r in (26).
of the r in (26) can in fact be elicited, for if the representation (24) fits the

datz
that

vilil v

But the nature

exactly whilst the regresentation (26) fits it leaving a residual

this resiaqual vector I ic itself represented by the discardec 9 ¥

g?n+a" i k%w»abﬂh
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Now, since all the @ —vectors in (2
gvectors in (27) are orthogonal to all the
r itself in (26) is
This fact, and

are orthogonal each other, all the
This. means that
orthogonal to all the ¢ Thus if we express

(26) itself, in matrix—vector forr we have

b -

-vectors in (26),
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But these two eguations have
are the analo
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familiar loox and refe
_ gues, for the orthogonal case, of equations (13) and (
an¢ {29) are in fact the . two conaitions which

rring baclk it is seen that the:-
Egquations
specify ths OLS solution

This follows because taking
straight to (18).
and (22) with the appropriate

e through (28) leads oy virture of (29) and (17)
Thus we may drop the non-committal diacritic

- . \
and rewrite (28]
diacritic as

i >

This Section brings out the fact that the artifice of selecting from a complete

set of orthogonal base vectors
coefficients of a data set representation
equivalent to the OLS process and implies
This 1last point is crucial, for it is not

A
e

or ordering and truncating

the sety and forming the
v taking scalar

products (19) is fully
the same assumptions on the residuals.
obvious and may easily be overlooked.

Estimation using Principal Components

In this case instead of using base vectors derived oy evaluating a set of analytical

functions over the discrete
a set of datz vectors.

these N vectors as m x 1 column vectors we ass
matrix

points of the domain we derive the base vectors

directly
Taking N data vectors

and viewing

-2
to form the dependent data

H=Ch




Now by taking the scalar product
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h;

3)

~ /0

where the b ij

5 ¥rif

into

-~

NC = H-H
mm mN Nwm

effect of forming the scalar product has been TC

components of the individual b
each vector then C is the covariace matrix

h vectore have bpeen
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The modal matrix

are m—vectors they can be used as base-vectors for the respresentatio

eH we can form the symmetric matrix C, where
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hich are the eigenvectors corresponding to
Without loss of generalit;” we can assume that
U has the property

(37)
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In particular they may be used as base vectors for the
representation of the individual vectors of the dependent data set, so that we have
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are sets of coefficients (not, of course, the same as the X

t=1,2,---, N (38)

in Section

The m equations (38) mary be rewritten in matrix-vector notation as
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From (39) and (37) it follows that
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B-B = U-NC-U
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and now, using (34) and (37) again, this comes

BB = NA

m N N

‘I~ AY
\42)

A=\

Sy

B

/\ is the diagonal matrix of eigenvalues and so it transpires that the row vectors

of B are orthogonal.

These are the pasic equations and relationships of principal component
and using them one can prove the main well-known theorem to the effect that

analysis
such a

set of ordered eigenvectors will be more efficient on average at extracting variance

from the dependent data set than any other set of linear funtions of the data.

the words "on average" in this statement of the theorem,

theorem is true for any particular individual data vector taken from the sei,

lote

It does not follow that the

In the light of this theorem it is natural to attempt to obtain an economical
representation of the data vectors of the set b~ truncating (38) on some criterion.

Thus dropping the subscript and taking h as a typical data vector we will have
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the coefficients being found by taking the scalar products

-
1 ™
lstice that since the n terms cannot fit the date exactl it has been necessary
in (45) to introduce the unspecifiec residual vector I In the general lizgra?urs
of principal components, including ihe meteorclogical literature, this residual
vector goes virtually unacimowledged in the theoretical discussion. Here t?gﬂgalr
+nesreiilcal point to be made ic that once placed plainly in evigence as 1ir (42)
o» (46} ii does not long remain unspecified. It ic clear tha! r, peing composed cf
211 the discarded . terms, is orthogonal to each ol the column vectors of’gnand we

are in fac® dealing with precisely the same situation as in the case of
equation (26) in Section 3 on orthogonal analytical base functions. The argumenz
following (28) applies equally in the case of (75) and leads in exactly the same wal”
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In ~ther words the truncation of the complets so* of eigevectors and the formation of
the coefficients as scalar products (27) leads 1> the OLS solution. We have in fact

found the OLS solution to a model

h= U-b +'2 (50)

mi m™mn "i mi

which has not been explicity postulated. The generel argumeni anl

terminology of the principal component approach somewhat obscures the fact that a
model has been postulated, but such is the case and the OLS solution b found by the
above procedure will be the desirable "best" (i.e, minimum variance) solution only
if (5) applies, just as in the cases of the analytical base functions dealt with in
Sections 2 and 2., In other words a principal component enthusiast has as much of an
obligation to state and test his assumptions concerning the residuals as does an
enthusiast for polynomials, fourier terms, exponentials, etc.

The principal components concept appears to have come over to meteorologyr fron
nsvenclegy and biology and in these sciences the basic theory, equations (32) to
(44), hos—ooon—pmesensed has been presented with a subtle difference of emphasis.
In the presentation as given in Section 4 the condition (44), revealing the
orthogonality of the rows of the coefficient matrix B, emerges as an almost incidental
consequence of the use of eigenvectors. In the presentation favoured by psychologists,
biologists, and some meteorologists the condition (44) is made a central requirement.
Indeed, it 1s sometimes referred to as the "principal component property". It is then
shown that the eigenvectors of the sample covariance matrix are the only base vectors
which permit this. Nathematically there is nothing to choose between the two
approaches. The argument and terminology accompanying either of them tends to obscure

the point made in this Note,
1
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