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Abstract 
Ensemble forecasts aim to improve decision-making by predicting the distribution of 
possible outcomes. Raw forecasts from a single system can be subject to deficiencies in 
climatology, spread, or the ability to resolve events, due to limitations in the underlying 
model, data assimilation and ensemble perturbations. Combining forecasts from multiple 
ensembles can provide extra samples and average over errors specific to individual 
systems. Statistical post-processing can use suitable verification data to re-shape the 
raw forecasts to improve their accuracy and reliability. This report investigates the 
impact of these inter-related techniques on ensemble forecasts of precipitation, which is 
both a key variable for forecasts users and a challenging variable for forecast models 
and statistical post-processing schemes. For 12-hour accumulations on a 1˚ grid over 
the UK, it is found that errors in climatology are relatively small, whilst errors in reliability 
and spread as a function of forecast magnitude are more significant. A calibration 
method motivated by these diagnostic results uses reliability tables to re-shape the 
forecast distribution, targeting both climatology and spread in one coherent operation. 
This produces a set of ensemble members retaining spatial, temporal and inter-variable 
structure from the raw forecasts, which should be beneficial to downstream applications 
such as hydrological models. The method virtually eliminates unreliability when verified 
against fixed thresholds, although some issues remain against more demanding 
verification using thresholds that vary with local climatology. 

1. Introduction 
Ensemble weather forecasts aim to improve decision-making by predicting the 
distribution of possible outcomes. The most useful forecasts will have a distribution 
which is as sharp as possible, whilst remaining statistically reliable, and include relevant 
probabilities of extreme or dangerous events. 

Ensemble forecasting systems seek to achieve these aims by using weather models 
which are as accurate as computationally feasible, whilst also sampling the impact of 
relevant sources of uncertainty such as initial state and model formulation. All 
forecasting systems are imperfect: they may perform better in some situations than 
others, may suffer from systematic errors in both climatology and spread, and provide 
only a small sample of possible outcomes. 

There are two broad post-processing techniques which have been used to mitigate the 
impact of these deficiencies on downstream products. Past observations can be used to 
quantify systematic errors such as bias (eg Johnson and Swinbank, 2009) or statistical 
reliability (Primo et al., 2009) and adjust future forecasts based on these results. This 
process is known as forecast calibration, and a wide variety of methods have been 
proposed (Atger, 2001; Stensrud and Yussouf, 2007; Coelho et al., 2006; Fraley et al., 
2010; Hagedorn et al., 2008; Hamill et al., 2008; see also Applequist et al., 2002 for 
deterministic input). On the other hand, forecasts from multiple ensemble systems can 
be combined into a multi-model ensemble (Park et al., 2008; Johnson and Swinbank, 
2009; Fraley et al., 2010). This increases the member count, samples over structural 
uncertainty and models that may do better or worse in different situations, and creates 
the potential for cancellation of systematic errors, all without necessarily requiring large 
volumes of past training data. There has been some debate in the literature over 
whether multimodel ensembles or calibration of the best single model ensemble provide 
the optimum practical forecasting system (Park et al., 2008; Fraley et al., 2010; 
Hagedorn et al., 2012; Hamill, 2012). At the same time, one might hope for extra benefit 
by applying both techniques together. 
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Previous work at the Met Office examined the benefit of multimodel combination, bias 
correction, and spread adjustment for variables such as mean sea-level pressure and 
surface temperature (Johnson and Swinbank, 2009). This report focuses on 
precipitation, which is a key variable for most forecast users, including the general 
public, flood protection, and water management. It is also a particularly awkward 
variable, challenging to both the underlying meteorological models and statistical post-
processing systems. The statistical difficulties include small spatial scale, strong spatial 
variations in climatology, the importance of timing errors, the tendency of error to scale 
with forecast magnitude, a non-Gaussian distribution, and the ‘nugget’ of probability at 
zero precipitation. These factors have a profound influence on which calibration methods 
will be effective: for instance, a simple additive bias correction does not make much 
sense given the special meaning of zero precipitation. Whilst the immediate focus of this 
report is on medium-range precipitation alone, the techniques presented are sufficiently 
general that it is hoped they may also be useful for other variables, and indeed for 
higher-resolution short-range forecasts. 

The rest of this report is laid out as follows. Section 2 describes the sources of forecast 
and observation data used in this study. Section 3 provides basic verification of the raw 
forecasts, and a simple multimodel combination. The next two sections investigate the 
nature of the systematic errors which a calibration scheme might attempt to correct, 
examining the forecast climatology in section 4 and the spread-error relationship in 
section 5. Attempts to directly calibrate these attributes met with limited success, but 
section 6 describes a method based on reliability tables which is generally beneficial. 
Particular aims of this method include simultaneous calibration of climatology and 
forecast uncertainty, a lack of assumptions about the shape of the underlying 
distributions, and output as a set of ensemble members retaining spatial structure from 
the raw ensemble. Conclusions are given in section 7. 

2. Datasets 

2.1. Forecasts 
Forecast data for this project have been taken from the THORPEX Interactive Grand 
Global Ensemble (TIGGE; Bougeault et al., 2010) archive, http://tigge.ecmwf.int/. This 
provides access to data from a variety of global medium-range ensemble forecasting 
systems. Like Johnson and Swinbank (2009), this study only considers forecasts from 
the European Centre for Medium Range Weather Forecasts (ECMWF), UK Met Office 
(UKMO) and United States National Centers for Environmental Prediction (NCEP). This 
triad provides significant model diversity whilst keeping data volumes manageable. They 
are the three models which could be most easily obtained in real-time by any future UK 
operational multimodel system. They are also amongst the best performing models in 
the archive, helping to illustrate the best performance which might be obtained, and also 
reducing the importance of issues such as weighting of low-skill models in multimodel 
combination. 

For simplicity, the results presented here consider only perturbed forecast members, 
without the unperturbed control forecasts. This makes each ensemble a homogenous 
unit, and creates a statistically purer target for initial investigation. In the case of the Met 
Office ensemble, including the control forecast with the perturbed members would be 
contrary to the principles underlying both the Ensemble Transform Kalman Filter (ETKF; 
Wang and Bishop, 2003) which generates the initial perturbations, and the online spread 
calibration system (Flowerdew and Bowler, 2011). Control forecasts do provide extra 
information, with lower root mean square (rms) error than perturbed members, so an 
optimal multimodel system would probably want to make use of them. However, this 
raises further questions such as how to optimally weight the control forecast, and 

http://tigge.ecmwf.int/
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whether this weight should vary with lead time. In any case, early experiments 
suggested that the inclusion or exclusion of control members makes little difference to 
the verification scores; they are after all a small fraction of the total member count. 

The main results of this report consider data covering a period of almost two years 
(September 2007 to July 2009). This provides a reasonable sample for both training and 
verification, and was the longest period for which all relevant data was conveniently 
available. To limit the data volume, only 00 UTC forecasts have been considered, 
evaluated in successive 12-hour intervals from 0 to 15 days. For convenience, and to 
avoid downloading the full global fields, data were interpolated on the ECMWF computer 
system to a common 1-degree grid over Europe. This is fairly close to the native grid-
scale of the forecasting systems during the period considered. Unfortunately, the 
interpolation routine used by the archiving system is known to have problems deriving 
accumulations across the reduction in grid resolution of the ECMWF ensemble at T+10 
days. Many of the ECMWF and multimodel results below show glitches at this lead time: 
to the extent that they affect this lead time alone, they may well reflect this unavoidable 
limitation of the archiving system rather than the actual response of the ECMWF 
ensemble to the change in grid. 

2.2. Observations 
All of the results shown in this report use observations taken from the Met Office ‘ukpp’ 
analyses. These combine gauge-adjusted radar, satellite-derived precipitation, and high-
resolution short-range forecasts on a 2 km grid over a domain slightly larger than the 
British Isles. The model forecasts are compared to the average of all ukpp pixels whose 
centre lies within each model gridbox. In the time dimension, the observations are 
similarly integrated from rain rates at hourly intervals to 12-hour accumulations. This 
helps to create a ‘fair’ evaluation, in which the model predictions of grid-box average 
precipitation are compared to observations that are genuinely representative of the 
whole gridbox. Whilst many of the techniques considered in this report could be applied 
to the problem of mapping gridbox-average predictions to individual stations, this is not 
considered here, and would likely result in lower predictive skill. 

In order to reduce statistical noise and test a wider range of regimes, it was originally 
hoped to use an equivalent ‘europp’ dataset covering a larger European domain, making 
use of the European radar network. However, initial studies indicated that the 
observations were not comparable to ukpp and led to poorer verification scores over the 
ukpp domain before 2009. The main results therefore focus on the UK domain alone. 
Some additional verification was performed against short-range forecasts in order to use 
the full European domain, but these results will not be presented in detail. 

3. Verification of raw forecasts 
Figure 1 measures the overall performance of raw ensemble forecasts via the implied 
probabilities to exceed chosen rainfall thresholds. The plots show the decomposition of 
the Brier Skill Score (BSS; Wilks, 2006) into its ‘resolution’ and ‘reliability penalty’ 
components: the latter measures the difference between each forecast probability and 
the observed event frequency when that probability is forecast, whilst the former 
measures the ability to discriminate between situations in which the event is very likely to 
occur and situations in which it is very unlikely. The reliability penalty can in principle be 
eliminated by remapping the forecast probability values given sufficient representative 
training data. The resolution score is more tied to the quality of the underlying forecast 
system, although it can be affected by corrections to the bias or spread of the underlying 
ensemble, since these will change the distribution of members with respect to 
thresholds. The overall BSS is the resolution score minus the reliability penalty. A perfect 
forecast would have a resolution score of one and a reliability penalty of zero, whilst BSS 
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less than zero indicates a forecast no better than the climatological probability of the 
event. 

 
Figure 1. Resolution (solid) and reliability (dotted) components of the Brier Skill Score for 
selected quantiles of local in-sample climatology. Forecasts use the perturbed members from the 
ECMWF (red), Met Office (green) and NCEP (blue) 15-day ensemble systems, and the simple 
aggregation of all these members (yellow). The spike in ECMWF reliability penalty at T+10 days 
is associated with a coarsening of the model grid, and may be an artefact of the TIGGE archive 
interpolation code, as discussed in section 2.1. 

The verification thresholds have been specified indirectly, as quantiles of the relevant 
month’s observations for the same time of day within a 5x5-gridbox domain centred on 
each gridpoint. This reduces ‘false skill’, where forecasts achieve positive BSS simply by 
knowing the climatological variation of the event probability with season, location, or time 
of day (Hamill and Juras, 2006). It defines the event by whether it is ‘normal’, ‘unusual’ 
or ‘rare’ for each location. The score is then uniformly representative of all locations, and 
statistical noise is minimised. When interpreting the quantile values, it should be noted 
that they refer to the climatology of the observations within each target month, rather 
than overall climatology. Thus, the 99th percentile measures the ability to identify the top 
1% of local events within each month, whereas a typical month might not contain any 
events reaching the top 1% of the overall climate. This approach focuses on forecast 
performance for the low and high precipitation events within each month, rather than 
climatological extremes which will arise in only a few months and would be poorly and 
unevenly sampled even within a two-year dataset. It also avoids the need for a long 
archive of ukpp observations from which to construct an accurate overall climatology, 
which would be of dubious value anyway given that the ukpp system has not been 
designed for long-term stability. 

Both the reliability and resolution scores rank the single-model ensembles in the order 
expected from the quality of the underlying models and the fineness of the mesh on 
which they are run. The resolution scores decay towards zero at long lead times, as the 
forecasts lose their ability to discriminate between situations in which the event is more 
or less likely. The behaviour of reliability with lead time depends on the threshold. The 
underlying reliability diagrams (not shown) all decline to a situation in which most 
forecast probabilities just give the climatological event frequency. However, the range of 
forecast probabilities narrows more sharply with lead time for the higher percentiles, so 
that the overall reliability score improves with lead time rather than declining as for the 
50th percentile. The combination of reliability and resolution makes the forecasts worse 
than climatology (BSS < 0) at long lead times for the lower quantiles, and all lead times 
for the 99th percentile. The high values of reliability penalty suggest significant scope for 
calibration of forecast probabilities, something that is much less apparent in verification 
against fixed thresholds (not shown). 
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3.1. Multimodel combination 
The yellow curves in Figure 1 consider the aggregation of all three ensembles, where 
each individual member is given equal weight (the alternative of giving each ensemble 
equal weight is discussed below). The results indicate that this simple post-processing 
strategy does indeed produce precipitation forecasts which are equivalent or superior to 
the best single-model ensemble. The advantage in resolution score is greatest for lower 
thresholds and shorter lead times. The reliability advantage is also largest at short lead 
times, but remains nonzero at long lead times and is pronounced for both high and 
moderate thresholds. 

In principle, the multimodel ensemble has two kinds of potential advantage compared to 
the single model ensemble: it samples over structural uncertainty in the modelling 
system formulation, and it simply has more samples to fill out the predicted distribution. 
To examine the relative importance of these effects, similar verification was performed 
using only 20 members from each configuration, randomly selected for each data time. 
For the larger ensembles (ECMWF and multimodel), this harms resolution at all lead 
times, and reliability at long lead times (not shown). The multimodel advantage over 
ECMWF in both resolution and reliability remains at short lead times, suggesting that it 
comes predominantly from the diversity provided by multiple distinct systems. At longer 
lead times, the multimodel advantage in reliability is not just lost but reversed for higher 
thresholds. The detriment to both systems fits the fact that high member count is needed 
to represent low probabilities. The smaller degradation of ECMWF perhaps reflects the 
fact that the restricted multimodel is trading good ECMWF members for poorer members 
taken from the other systems. 

Theoretically, one might debate whether it is more appropriate to give equal weight to 
each member or each underlying ensemble system. Model-weighted combination 
emphasises the systematic differences between the different systems, helping 
cancellation of systematic errors, and reducing the dominance of ECMWF data that 
otherwise arises from its large number of members. A member-weighted combination, 
as used here, assumes each member is an equally valuable sample of the possible 
outcomes. In practice, early tests (not shown) demonstrated that these two alternative 
choices make very little difference to the verification results, with perhaps a slight 
preference for member-based weighting. It is possible that ensemble-based weighting 
may be more advantageous in situations where forecast bias is more importance (see 
section 4 below) or where the ensemble with the greatest number of members does not 
also happen to be the one with the best deterministic skill. 

The most obvious theoretical justification for simple aggregation as a method of 
ensemble combination would be if there was one universal distribution of possible 
outcomes for any given forecasting situation, and all members from all ensembles are 
samples of this distribution. However, this is clearly not the case. Some models are more 
accurate than others, so their distribution of possible outcomes should be narrower. 
Different models may be better at handling different forecasting situations, and thus able 
to exclude outcomes that other models cannot. In the extreme case of two forecasts 
which are statistically independent, the uncertainty given both forecasts is related to the 
product, not the average, of the two PDFs, producing a distribution which narrows as 
more and more independent forecasts are added (as is familiar in the case of averaging 
over many independent measurements). However, early experiments (not shown) 
demonstrated that the errors of the mean precipitation forecasts from different ensemble 
systems are in fact highly correlated, and that simple product-like combination does not 
perform well. The general solution to the ensemble combination problem will be given by 
Bayes’ Theorem, where correlated errors are expressed through conditional probabilities 
of one forecast on the other. Without working through the maths in detail, it seems 
reasonable that the convolution created by error correlation will produce a result more 
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like averaging the component PDFs as correlation increases (although its standard 
deviation should not exceed the smallest of the input standard deviations if the weights 
are optimal). 

4. Climatology comparison 
The first type of forecast deficiency which many post-processing systems attempt to 
correct is any systematic difference between forecast and observed values. This is to be 
contrasted with systematic errors in the prediction of forecast uncertainty, which are 
discussed in subsequent sections. For instance, a simple post-processing scheme for 
surface temperature forecasts might seek to identify and remove the mean difference 
(bias) between forecast and observations (eg Johnson and Swinbank, 2009). This could 
be particularly important in a downscaling context where gridbox average forecast 
values are to be mapped to a single station which may have an atypical elevation and 
meteorological context. 

The statistical features of precipitation argue against the use of simple bias corrections. 
Overall additive terms would incorrectly affect all forecasts of zero precipitation. 
Corrections which are multiplicative or only affect nonzero forecasts do not help to adjust 
the frequency of zero precipitation forecasts. Here, a more general approach is taken, 
comparing quantiles of the forecast and observed climatologies. This provides a natural 
way to compare distributions of any shape, and identify potentially different biases for 
heavy as opposed to light precipitation. (A similar differentiated comparison could be 
achieved using the bias conditioned on narrow ranges of forecast values. However, this 
has the disadvantage of damping forecast variability by drawing towards the 
climatological mean as forecasts become less accurate). 

Here, as in the rest of this report, observation error is assumed negligible in comparison 
to forecast error. If observation error were non-negligible, the forecasts should be 
compared not to observed climatology, but to a narrower climatology of ‘truth’, derived 
so that it reproduces observed climatology when dressed with observation error. 

Figure 2 illustrates the variation of forecast and observed climatology with calendar time 
(top) and lead time (bottom). The calculation starts by finding the 95th percentile of 
values within a 5x5-gridbox domain centred on each gridpoint, for each data source and 
three-month block of data. The top plot shows results for each three-month block at a 
single lead time, whilst the bottom plot takes the mean at each gridpoint over all three-
month blocks, to summarise the overall behaviour whilst giving equal weight to all 
seasons. Thus far, the calculation produces separate values for each gridpoint. To 
summarise these spatial distributions, the plots show the 10th, 50th and 90th percentiles 
over space of their respective gridpoint results. Thus, the 95th percentile in a ‘typical’ 
gridbox follows the solid lines, whereas the dotted lines illustrate the gridboxes with 
unusually low or high 95th percentiles in each particular case. The following discussion 
focuses mostly on the solid lines. 

The top plot shows that the forecasts and observations exhibit broadly similar annual 
cycles. The forecasts tend to underpredict this quantile, but there is significant variability 
about this average result. This has two implications for calibration. First, a large sample 
is required to separate signal from noise. Recalculating the lead time plot for different 
data volumes suggests about a year of data is needed to stabilise the calibration signal. 
Second, even once this signal is stabilised, it can only correct the overall mean error, not 
the full difference between forecast and observations for any one three-month period. 

The bottom plot shows that the calibration signal is fairly stable with lead time, although 
there is some drift at short lead times, and the bias of the ECMWF model changes 
following the reduction in grid resolution at T+10 days. The fact that the dotted lines 
show less systematic error than the solid lines suggests there is an important spatial 
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component to the bias signal. Overall, similar plots suggest that the forecasts tend to 
overpredict the 15–35th percentile (~0.1mm), underpredict the 60–95th percentile (0.8–
7mm), and overpredict the 99th percentile (~12mm). 

 
Figure 2. 10th (lower dotted), 50th (solid) and 90th (upper dotted) percentiles over space of the 95th 
percentile of three-month 5x5-gridbox climatologies. The top plot shows results at T+14.0-14.5 
days as a function of the central month. The bottom plot shows results as a function of lead time, 
where the mean of the 95th percentiles from all three-month periods has been calculated for each 
gridpoint before taking quantiles over space. Red, green and blue identify forecast sources as in 
Figure 1, whilst yellow indicates the ukpp observations. 

Figure 3 summarises the mapping from forecast to observed climatology based on 11 
months of data for one particular lead time. A line is shown for each 5x5 group of 
gridpoints, testing the forecasts’ ability to track spatial variations in climatology rather 
than just its overall statistics. The series of bias trends listed in the previous paragraph 
are just about discernable, but the plot emphasises that the UK-mean biases are small in 
comparison to the corresponding rainfall magnitudes. Against ukpp data averaged up to 
the same 12-hour accumulations on a 1˚ grid, it appears the forecast climatology is really 
quite good. The scatter of lines shows larger biases for particular gridpoints, suggesting 
some potential benefit from a spatially-localised climatology calibration.  
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Figure 3. Mapping between corresponding quantiles of forecast and ukpp data at T+14.0-14.5 
days in the eleven-month 5x5-gridbox climatology covering 200710-200808. A line is shown 
joining 15,20,…90,95,97,99% quantiles for every fifth gridpoint in each direction (quantiles below 
15% were omitted since they are generally zero). Results are shown for the ECMWF (red), Met 
Office (green) and NCEP (blue) perturbed-member ensembles. 

4.1. Climatology calibration 
Having compared quantiles of forecast and observed climatology, it is a small step to 
ask whether this mapping can be used to improve the forecasts. In principle, this 
provides a very general way to correct the mean, width or shape of the forecast 
climatology. The Local Quantile-Quantile Transform used by Bremnes (2007) is based 
on the same idea. A simple test was constructed as follows. The available two-year 
period was divided into three-month blocks, where the four ‘preceding’ blocks (in a cyclic 
sense) are used to calibrate each target date. Within each block, the 
15,20,…,90,95,97,99th percentiles of the 5x5-gridbox domain around each gridpoint were 
identified, separately for each data source and lead time. The calibration uses the 
average of these quantiles over the four blocks. An average of three-month quantiles 
was chosen over twelve-month quantiles to make the result equally applicable to all 
seasons and avoid the sampling noise that might otherwise result from results being 
dominated by the most extreme seasons. The forecast values are calibrated by linear 
interpolation/extrapolation between the matching percentiles of forecast and observed 
climatology, as illustrated in Figure 3. The percentiles were chosen to explore the 
resolved shape of the climatology mapping, whilst hopefully limiting noise sufficiently that 
extrapolation at the extremes remains plausible. The detailed treatment of both zero and 
very large precipitation amounts will be discussed in more detail in section 6.1. 

Results (not shown) demonstrate that this approach is fairly effective at correcting the 
overall magnitude of the sampled quantiles, their diurnal cycle, and the ECMWF spike 
and change at T+10 days. Some straightening and tightening of the residual calibration 
curves can be seen in plots equivalent to Figure 3. For the components of the Brier Skill 
Score, there is a small positive impact on resolution, but some degradations to reliability 
in cases where bias is removed without correcting overspread. These results broadly 
support the idea that bias, even generalised to a reshaping of climatology, is not the 
most important calibration issue for the forecasts considered here. 
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5. Spread-error comparison 
Unlike single deterministic forecasts, ensemble systems aim to provide an estimate of 
case-specific uncertainty by predicting the complete distribution of possible outcomes. 
This section focuses on comparing the width of the predicted and actual error 
distributions: mathematically, whether the mean square deviation of the ensemble 
members from the ensemble mean (plus the mean square observation error, generally 
assumed small) matches the mean square deviation of truth from the ensemble mean. 

 
Figure 4. Mean square spread (dotted), bias (dashed) and the error variance of the ensemble 
mean (solid), averaged over all cases (top), and those with ensemble mean forecasts around 0.4 
mm (middle) and 5.0 mm (bottom). 

Figure 4 shows spread and error statistics as a function of lead time. Mean square 
quantities are shown rather than standard deviations so that bias and variance add 
linearly, and any independent observation error just appears as a constant offset. The 
top plot shows results averaged over all cases. This suggests reasonable 
correspondence between spread and error, consistent with a small observation error, 
and some underspread at the shortest lead times. All but the NCEP ensemble reproduce 
the diurnal cycle of error at reduced magnitude. The best ensembles have both the 
smallest error and the largest spread, and therefore the best match of spread to error. 
The multimodel ensemble has some advantage over the best single-model ensemble, 
although the gap is slight after the first few days. 
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The ensemble predicts a distribution of possible outcomes for each specific forecasting 
case, which the observations should match if that situation could somehow be repeated 
many independent times. Thus, the mean square spread and error variance should 
match not just when averaged over all cases, but over any subset of cases which can be 
identified from the forecasts alone. The remaining plots of Figure 4 consider forecasts 
where the ensemble mean falls within a relatively narrow range of values. For ensemble 
mean precipitation around 0.4 mm (middle panel), the mean square spreads are too 
small and grow too slowly. It is admittedly hard to achieve variances of 2 mm2 or more 
on means of 0.4 mm with a variable bounded at zero: this suggests the forecasts may be 
too Gaussian in this regime, with insufficiently long tails. For mean precipitation around 
5 mm (bottom plot), the ensembles become overspread after the first few days. Further 
analysis (not shown) explored the behaviour of error as a joint function of spread and the 
ensemble mean forecast. This showed that the gradient of error with respect to spread 
tends to be less than unity against observations, it declines with lead time, and tends to 
be closer to ideal for large as opposed to small values of the ensemble mean forecast. 

Overall, these results indicate that there are significant deficiencies in the relationship 
between ensemble spread and forecast error, which only emerge when that relationship 
is decomposed by variables such as lead time, location, spread, and the ensemble 
mean forecast. Some of the deficiencies may arise from sampling error rather than 
systematic overspread or underspread in particular situations. At longer lead times, 
where the forecasts have little skill, they should essentially predict climatology, and the 
ensemble mean should always equal the climatological mean. On some occasions, a 
random draw of a few tens of members from climatology will produce a sample mean 
significantly above (or below) the true climatological mean. Since precipitation is 
bounded at zero, such a sample will tend to have a smaller (or, respectively, larger) 
standard deviation than the true climatology, which is the pattern observed here at long 
lead times. Kolczynski et al. (2011) consider the impact of sampling error on the spread-
skill relationship in an idealised context. Whatever the origin, it remains true that these 
forecasts have deficiencies in mean and spread which could be improved by post-
processing: at the extreme of no skill, one would be better replacing a noisy sample by a 
fixed climatology. 

5.1. Spread calibration 
The above results suggest there may be benefit to scaling the ensemble spread to better 
represent forecast errors, provided the calibration is decomposed using the key predictor 
variables identified in the previous subsection. In principle, such a differentiated spread 
calibration has the potential to improve both reliability and resolution, since different 
forecasts can be scaled by different amounts. The basic principle of variance scaling has 
proved useful for more mainstream atmospheric variables (Flowerdew and Bowler, 
2011), and was also considered by Johnson and Swinbank (2009). 

A basic calibration scheme was implemented to test this idea. As before, it uses binned 
data and linear interpolation to avoid more detailed assumptions about the underlying 
distributions. It again uses twelve months of training data cyclically preceding the target 
forecast. Mean square spread and error are accumulated in bins defined by the 
ensemble mean and spread. The number of bins is kept small to limit statistical noise, 
and the boundaries are chosen based on sample counts and relationship turning points 
from the diagnostic results (0.4, 3.0 and 7.0 mm for ensemble mean, 2 and 20 mm2 for 
squared spread). To further control noise, the final statistics to be used for each gridpoint 
and bin are aggregated over a rectangular domain of surrounding gridpoints as required 
to reach at least 200 samples (which would give a 10% error on the variance of 
independent Gaussian variables). This means that common situations are trained on the 
most locally-relevant data, whilst rare situations draw data from a wider area to reduce 
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statistical noise. For each gridpoint and lead time, the desired ensemble spread is 
linearly interpolated from the training data based on the raw ensemble mean and 
spread. The perturbations are then scaled by the factor required to produce this spread. 
This has the advantage of preserving the spatial structure of each ensemble member, 
and thus the relationships between different locations, variables, or lead times. 

The results (not shown) are mixed. The match between spread and error as a function of 
lead time and ensemble mean forecast is greatly improved, and there is also some 
improvement in error as a function of spread. Probabilistic scores show a small positive 
impact on resolution for higher thresholds. There is a large positive impact on reliability 
at short lead times for all but the highest threshold, but neutral or negative impact at 
longer lead times. Rank histograms (Hamill and Colucci, 1997) suggest that simple 
scaling does not result in the correct distribution shape. In addition, the calibration 
slightly degrades the forecast climatology, because it changes the ensemble spread 
without compensating changes to the variability of the ensemble mean (Johnson and 
Bowler, 2009). Finally, there is the question of how to handle zero precipitation with a 
simple scaling approach, especially when reducing the spread for means above zero, or 
increasing the spread for means of zero. Ultimately, the framework proposed in the 
following section proved more conceptually and practically successful. 

6. Reliability-based calibration 
Both of the calibration methods described above had limited, mixed impact and in 
particular left significant unreliability with respect to local climatological thresholds. It is 
often asserted than unreliability can in principle be fixed by relabeling forecast 
probabilities, given sufficient representative training data, whilst resolution is harder to 
improve. This section presents a calibration method based on this idea, providing a 
baseline against which to compare other approaches. 

6.1. Design aims 
The reliability-based calibration scheme was designed around the following principles: 

• The primary measures of forecast performance are the probabilistic scores 
against climatological thresholds, since these consider the complete forecast 
PDF and relate to the probabilistic way in which ensemble forecasts should be 
used. 

• The previous calibration schemes attempted to improve probabilistic scores 
indirectly, by improving the climatology or spread of the underlying member 
forecasts. The new scheme targets the reliability directly. Within the limits of 
stationarity and statistical noise, the result should be reliable by construction, 
since each calibrated probability is based on a past observed event frequency.  

• It was noted above that separate spread calibration harms the forecast 
climatology. Reliability calibration aims to produce a reliable PDF conditioned on 
the forecast. The sum of all such conditional PDFs is the climatology, so 
reliability calibration can in principle simultaneously correct probabilities, spread, 
and climatology. 

• One of the motivations for the climatology and spread calibration schemes was 
that, by adjusting the underlying ensemble members, they preserve spatial, 
temporal and inter-variable structures. These are important so that the forecasts 
both look realistic when plotted and integrate realistically when used to drive 
downstream systems such as hydrological models. At first sight, a calibration of 
pointwise reliability produces probabilities not ensemble members, and thus 
loses these important correlations. However, the method includes a step which 



 

                             
 

13 
© Crown copyright 2012 
 

reconstructs a set of ensemble members retaining the spatial structure of the raw 
ensemble, the effectiveness of which is considered in section 6.4. 

• The scheme makes very few assumptions about the shape of the forecast or 
observed distributions. This is particularly useful for precipitation, given the 
statistical features noted in the Introduction. Whilst assumed distribution shapes 
can help to manage statistical noise, and may be required for more extreme 
events than those considered here, there is always the risk that the assumed 
shape will be unreliable in some situations. The scheme tests the limits of the 
data-driven approach, and could ultimately be compared to methods based on 
assumed distributions. 

• The scheme tries to avoid making adjustments based on noise rather than signal 
by aggregating or discarding data as required to achieve a specified minimum 
number of samples. The aim is to make the calibration as specific and local as 
possible, consistent with the underlying data volume. Ultimately, the scheme 
degrades to climatological probabilities when it is unable to be more specific. 

• Calibrating rare events requires training data that at least gets close to including 
them. Section 4 noted that about a year of training data was needed to stabilise 
the climatology calibration signal. The scheme is thus designed to use a 
relatively long set of equally-weighted training data (here one year). This is in 
contrast to schemes such as running bias correction (eg Johnson and Swinbank, 
2009), which by tackling a simpler problem are able to use a shorter training 
period which can potentially capture biases specific to the current weather 
regime. It is hoped that the reliability-based scheme can achieve some regime-
specificity by its more differentiated use of the training data. 

• The scheme could in principle be supplied with any training data, including 
reforecasts (eg Hamill et al., 2008). However, the interest here is in the impact of 
calibration on multiple ensemble systems and their multimodel combination. 
Reforecasts are not available for all these systems. In addition, there is no long 
archive of ukpp observations and, even if there were, changes in processing over 
the years might limit its usefulness as training data. By contrast, a year of recent 
historical forecasts and observations might practically be obtained for most 
forecasting systems. The results suggest the inevitable inhomogeneities are not 
too harmful, though comparison with calibration based on reforecasts would be 
required to be sure. 

• The scheme aims to make maximum use of the underlying ensemble forecast. In 
particular, it uses as predictors the full forecast probabilities to exceed a range of 
thresholds. This is in contrast to many calibration schemes, particularly those 
based on reforecasts, where predictors are typically just the ensemble mean and 
possibly the spread (eg Hagedorn et al., 2008; Hamill et al., 2008). The hope is 
that the full raw probabilities make better use of the detailed atmospheric 
dynamics and physics included within each ensemble scenario, reducing the 
amount of work the statistical scheme has to do. Ultimately, the correctness or 
not of this idea would have to be demonstrated by comparison to calibration 
schemes based on alternative compromises, such as reforecasts. Simple tests 
on the reliability-based calibration scheme where training uses a randomly-
chosen subset of members do show degraded performance. 

• The initial scheme presented here is very much a proof of concept, designed to 
demonstrate potentially important features whilst remaining reasonably simple 
and transparent. Various possible extensions and improvements will be 
mentioned below. 
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6.2. Implementation 
The reliability-based calibration scheme is illustrated in Figure 5. As before, the scheme 
is trained on a year of data cyclically preceding the target forecast. The training 
accumulates sample counts, forecast probabilities and observed frequencies for each 
gridpoint, lead time, threshold, and forecast probability bin. The main implementation 
uses ten thresholds spaced in powers of two from 0.1 to 51.2 mm. These aim to provide 
good resolution of low precipitation amounts whilst reducing statistical noise on high 
precipitation amounts. To further reduce statistical noise and memory usage, only five 
probability bins are used: three across the main probability range and one each for 
cases where zero or all members exceed the threshold. (This was motivated by short-
lead-time reliability diagrams such as those shown in Figure 5 where the behaviour of 
these outermost forecasts is discontinuous with the intermediate probabilities, 
presumably due to underspread; tests showed a small benefit compared to five equally-
spaced bins). 
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Figure 5. Illustration of the reliability-based calibration method. The raw ensemble members 
imply a Cumulative Density Function (CDF; black). The training (reliability diagrams) implies a 
calibrated CDF (orange). New members (green) are assigned to equally divide the probability 
range, in the same order as the raw ensemble members. Note the opposite sense in which 
reliability diagrams (probability to exceed a threshold) and CDFs (probability to be less than or 
equal to a threshold) are traditionally defined. 

Before the training data are used, they undergo a spatial aggregation process similar to 
that described in section 5.1. This is performed separately for each bin, so that common 
events are calibrated locally whilst rare events pull data from a wider area. Bins with 
fewer than the minimum number of samples over the domain as a whole are discarded 
(an improved scheme might combine them with neighbouring bins). 
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For each gridpoint and lead time, the raw probabilities are established by counting the 
number of members which exceed each threshold. These are calibrated by linear 
interpolation/extrapolation from the relevant reliability diagram, or replaced by the 
observed (approximately climatological) frequency if only one bin exceeded the 
minimum sample count. If the process stopped at this point, it could produce maps of 
calibrated probabilities to exceed the predefined thresholds, but not individual forecast 
values or spatial relationships. 

The rest of the process regards these calibrated probabilities as providing a calibrated 
CDF. Since each threshold is calibrated with a different set of predictors, it is possible for 
the calibrated probabilities to be non-monotonic as a function of threshold. In practice, 
the scheme appears to have sufficient control over statistical noise that this effect is 
small (with a mean probability decrease of about 0.015 across the approximately 5% of 
cases which are affected). The current implementation sorts the probabilities to force 
them to be monotonic, though the detailed treatment seems to have negligible impact on 
probabilistic scores. 

The next step identifies a set of ensemble member values to represent the calibrated 
CDF. These are defined to divide the CDF into bins of equal probability, following the 
theory behind rank histograms (Hamill and Colucci, 1997). The corresponding 
precipitation values are obtained by linear interpolation between the calibrated 
thresholds. To provide a clean distinction between zero and non-zero precipitation, all 
results below the lowest threshold (0.1mm) are mapped to zero. To close the top of the 
distribution, the cumulative probability is set to one at twice the highest threshold. A 
more elaborate scheme might fit an extreme value distribution to close the top of the 
CDF (eg Ferro, 2007). 

The key to preserving spatial, temporal and inter-variable structure is how this set of 
values is distributed between ensemble members. One can always construct ensemble 
members by sampling from the calibrated PDF, but this alone would produce spatially 
noisy fields lacking the correct correlations. Instead, the values are assigned to 
ensemble members in the same order as the values from the raw ensemble: the 
member with the locally highest rainfall remains locally highest, but with a calibrated 
rainfall magnitude. In this way, despite going via the intermediate formulation of 
probabilities to exceed thresholds, the overall calibration procedure amounts to a 
reshaping of the local CDF, preserving the order of the ensemble members. A similar 
ensemble reconstruction step was proposed by Bremnes (2007). 

For the multimodel ensemble, the results presented here combine the underlying 
ensembles before calibration. In principle, one could calibrate the individual ensembles 
separately and then combine them: this might be desirable if they had significantly 
different biases, for instance. However, as demonstrated in section 4, conditional biases 
appear relatively unimportant to the 12-hour accumulations on a 1˚ grid considered in 
this report. As discussed in section 3.1, simply aggregating members from calibrated 
ensembles need not produce a correctly calibrated composite. Aggregating before 
calibration provides more samples to resolve both the raw and calibrated probabilities, 
and allows the calibration scheme to directly control the statistical properties of the final 
result.  

6.3. Results at gridpoint scale 
Against fixed thresholds (not shown), the reliability-based calibration virtually eliminates 
the reliability penalty without harming resolution, suggesting that the basic formulation is 
performing as intended and has sufficient control over statistical noise. The interpolation 
implied by the ensemble reconstruction scheme produces probabilities that are broadly 
competitive with those obtained when training directly includes the target threshold. 
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Indeed, in some cases, interpolation between thresholds actually improves resolution, 
perhaps because it allows members to slide over intermediate values. Whilst the 
calibration does improve the Brier Skill Score for precipitation to exceed 25mm, it does 
no better than climatology. Bin aggregation or fitting an extreme value distribution might 
help to improve this, but the essential problem is the rarity of such events. Experiments 
using calibration and verification against short-range forecasts, using the whole 
European domain to provide training data, demonstrate that the scheme can improve 
25mm reliability without harming resolution in this case. 

The performance of the reliability-based calibration against the more demanding 
climatological thresholds is illustrated in Figure 6 (for comparison, the raw ensemble 
performance from Figure 1 is reproduced using pale lines). The calibration strongly 
reduces the reliability penalty in many cases, particularly for lead times where the 
forecasts have nonzero resolution and thus some prospect of skill. At longer lead times 
and the highest thresholds, the reliability appears to hit a nonzero floor, presumably 
limited by noise and the locality of the calibration data. The reliability penalty rises with 
lead time for the lower thresholds, and the forecasts still have negative overall BSS for 
the 99th percentile. One surprising feature is that the ‘better’ models end up with slightly 
larger 99th percentile reliability penalty at longer lead times. The cause of this is unclear, 
but is not seen against fixed thresholds or in other more idealised calibration 
experiments. 

Individual reliability diagrams (not shown) demonstrate that the calibration successfully 
diagonalises all but the 99th percentile at short lead times, but is unable to sustain this at 
longer lead times. Against fixed thresholds, by contrast, the reliability diagrams are 
diagonalised for all lead times where the verification is not dominated by noise. This 
illustrates the sterner test imposed by the use of climatological thresholds, requiring the 
calibration to be locally appropriate. The reliability against climatological thresholds 
might be improved by greater locality of training data, such as might be provided by a 
longer training period or dynamic aggregation of training bins over raw probabilities in 
addition to space. Another approach might be to calibrate against climatological 
thresholds, although the implications for spatial aggregation would need to be carefully 
considered. 

With the exception of 99th percentile reliability at long lead times, the multimodel 
ensemble remains competitive with or superior to the best single-model ensemble after 
all have been calibrated, particularly for resolution at short lead times and the 50th 
percentile. The calibration produces better reliability than the raw multimodel ensemble 
for the 99th percentile out to about T+5 days, and for the 50th percentile, particularly at 
long lead times. Otherwise, the much simpler raw multimodel ensemble is competitive 
with or superior to the best calibrated single model. The (resolution) advantage of the 
raw multimodel ensemble over the best calibrated single model for light precipitation is 
consistent with the result reported by Hamill (2012). 

Tests comparing local calibration to uniform training from the whole ukpp domain show 
the former to be slightly beneficial for all scores except 99th percentile reliability. This 
includes small resolution improvements arising from improvements in local reliability. 
The 99th percentile reliability illustrates the fact that more samples are needed to 
accurately place more extreme quantiles, and performance might be improved by 
changing the aggregation criterion from a simple fixed sample count to a formula which 
recognised this effect. However, there is some evidence of a tradeoff between resolution 
and reliability: more aggregation tends to slightly improve the latter at the expense of the 
former. 

Figure 6 does show some small declines in resolution at longer lead times, with similar 
impact on ROC area (not shown). This appears to arise when the calibration correctly 
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reduces forecast probabilities and then re-
quantises these onto a smaller number of 
ensemble members. This is an unavoidable 
consequence of choosing to represent the 
calibrated probability with a finite number of 
ensemble members. 

The reliability-based calibration has mixed 
impact on the climatology diagnostics 
introduced in section 4. The 50th percentile is 
improved to an extent competitive with the 
direct calibration of section 4.1. This may be 
related to the strong improvement in 50th 
percentile resolution for short lead times and 
the systems with more members, which is 
similar to that seen for direct climatology 
calibration. For higher quantiles, the draw 
towards observations is less convincing, and 
some results drift with lead time as the 
forecasts become more uncertain. One issue 
appears to be the ability to resolve more 
extreme probabilities with a finite number of 
members, particularly at long lead times 
where the ensemble effectively has to 
represent the whole climatology. This idea is 
reinforced by the fact that the systems with 
more members generally perform better, and 
this performance degrades when the 
forecasts (but not the training) are restricted 
to 20 members throughout. In principle, 
more correct climatology might be obtained 
by distributing each member randomly within 
its assigned quantile range, rather than 
always using the same fixed quantile values. 
However, such noise might harm more 
important skill measures. Combining rather 
than discarding bins that have too few 
samples may also help to improve the 
accuracy of climatological probabilities. 

The diagnostics introduced in section 5 show 
the reliability-based calibration scheme 
drawing rms spread closer to rms error, 
although not as much as the direct spread 
calibration described in section 5.1. 
Reliability-based calibration also helps to 
make error as a function of spread more 
diagonal, perhaps even better than direct 
spread calibration. These results seem to 
support the idea that correct spread needs to 
be obtained as a consequence of a more 
complete calibration, rather than as the sole 
means to achieve that calibration. 

Rank histograms (not shown) are much 

Figure 6. Performance of the single and 
multi-ensemble forecasts after reliability-
based calibration. For comparison, the 
uncalibrated results from Figure 1 are 
reproduced using faint lines.  
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flatter after reliability-based calibration than before, and demonstrate that the calibration 
successfully homogenises the multimodel ensemble at short lead times. 

6.4. Impact of spatial structure 
One of the aims of the calibration schemes considered in this report is to produce not 
just point probabilities to exceed predefined thresholds, but ensemble members that 
retain appropriate spatial, temporal and inter-variable structure. Whereas authors such 
as Berrocal et al. (2008) aim to model correlations statistically, the schemes considered 
in this report rely on the raw ensemble. No attempt is made to calibrate towards actual 
correlations, but equally the raw ensemble could provide case-specific correlations, 
including in the time dimension. 

A simple test of this feature can be performed by calibrating at the grid scale but 
verifying averages over a larger scale (here the 3x3 region centred on each gridbox). 
The error variance of this average, for example, is the average of the 3x3 error 
covariance matrix, incorporating both the error variances of the individual gridboxes and 
the correlation between them. A similar verification technique is used by Berrocal et al. 
(2008). 

The results are shown in Figure 7. Calibration at the grid scale (green) performs almost 
as well as direct calibration at 3x3 scale (yellow). Both have similar resolution and 
superior reliability to the raw forecasts (red). Assigning the calibrated quantiles to 
random ensemble members (blue) discards the spatial structure of the raw ensemble. 
This performs much worse than the other methods, with the exception of 99th percentile 
reliability at longer lead times. In this case, the extra randomness improves the reliability, 
perhaps indicating excessive correlations in the raw forecasts. Calibration at the grid 
scale with random quantile assignment would then provide more samples from which to 
construct the 3x3 average, reducing the floor on the reliability penalty. In practice, this is 
of limited benefit since all of the forecasts have negative skill for this threshold. 

 
Figure 7. The impact on 3x3-gridbox averages of copying spatial structure from the raw 
ensemble. The plots show BSS reliability and resolution against climatological thresholds as in 
Figure 1, except that the climatology is now taken from the observed 3x3-gridbox averages. 
Colours show the raw ensemble (red), calibration at the grid scale (green), calibration at the grid-
scale but with quantiles assigned randomly to ensemble members (blue), and direct calibration of 
3x3 averages against the 3x3 average observations (yellow). 

7. Discussion 
All ensemble systems suffer from systematic errors and can thus potentially be improved 
by post-processing techniques. This report has considered two such techniques in the 
context of 12-hour precipitation accumulations on a 1˚ grid: combining forecasts from 
multiple ensemble systems, and calibrating forecasts based on historic verification data. 
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Forecast performance was assessed with a variety of techniques. Overall probabilistic 
performance was verified using reliability and resolution components of the Brier Skill 
Score against thresholds drawn from spatially- and temporally-local climatology. This 
approach has a number of advantages such as reducing ‘false skill’ and equalising the 
contribution from different regions. Forecast performance was best for the lowest 
thresholds. Statistical unreliability leads to negative overall skill at progressively earlier 
lead times the higher the threshold, so that the 99th percentile has negative skill at all 
lead times. 

The forecast climatology was assessed by comparison against equal quantiles of the 
observed climatology. Some small systematic errors were found, but overall the forecast 
and observed climatologies were quite similar for the scales considered here. 

The overall scale of predicted uncertainty was assessed by comparing rms spread to the 
rms error of the ensemble mean forecast. Overall results show good agreement, but 
important discrepancies emerge when the results are decomposed using other 
variables. Forecasts with ensemble mean around 0.4mm were systematically 
underspread, whilst long-range forecasts with ensemble mean around 5mm were 
systematically overspread. Further details emerged for error as a joint function of spread 
and ensemble mean. 

In all of the verification, the simple aggregation of members from the ECMWF, Met 
Office and NCEP ensembles was competitive with or superior to the best single-model 
ensemble. Some of this advantage appears to come from system diversity, and some 
from having extra members. The greatest advantage was seen at short lead times. 
These advantages were generally retained after calibrating both the single- and multi-
model ensembles. In situations of positive skill, the uncalibrated multimodel ensemble 
appears competitive with the best calibrated single-model ensemble. 

Three calibration methods were tested. All of these were designed to take account of the 
statistical difficulties associated with precipitation, and produce complete ensemble 
members with spatial, temporal and inter-variable structure. Mapping quantiles from 
forecast to observed climatology was effective at correcting the climatology, but does not 
address the key problem of forecast uncertainty. Perturbation scaling was effective at 
matching ensemble spread to error, but harmed forecast climatology and failed to 
produce forecast PDFs with the correct shape. 

The third scheme directly targets statistical reliability, simultaneously calibrating 
climatology, spread and probabilities. It virtually eliminates unreliability against fixed 
thresholds. Against climatological thresholds, the method also provides good 
improvements, but is unable to diagonalise reliability diagrams at long lead times and 
high thresholds, so that the overall 99th percentile BSS remains negative. A number of 
possible solutions were suggested, including more training data, more members to 
better resolve the climatology of rare events, improvements to the aggregation 
procedures, calibration against climatological thresholds, and fitting extreme value 
distributions. 

The reliability-based calibration method includes a number of steps which could be 
performed in different ways. The calibrated probabilities used here were trained on the 
raw probabilities to exceed the same threshold, but the observed event frequency could 
be binned according to other variables such as forecasts at lower threshold. This might 
help to improve resolution scores, although a balance would need to be struck with the 
statistical noise implied by more finely-divided training data. The ensemble 
reconstruction approach could be applied to probabilities calibrated by alternative 
methods, such as logistic regression (Hamill et al., 2008; Wilks, 2009). 



 

                             
 

20 
© Crown copyright 2012 
 

Whilst the methods used in this report have been motivated by the statistical features of 
precipitation, they are generic and could be applied to other variables. Indeed, one of the 
attractions of the ensemble reconstruction approach is the suggestion that it might be 
able to produce self-consistent spatial, temporal, multi-variable forecasts. Future work at 
the Met Office will focus on extending the analysis to other variables and over a wider 
domain, which should improve the ability to calibrate and verify more rare events. It 
would also be interesting to see how similar methods performed on finer-scale forecasts. 
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